1
|
Superresolution microscopy localizes endogenous Dvl2 to Wnt signaling-responsive biomolecular condensates. Proc Natl Acad Sci U S A 2022; 119:e2122476119. [PMID: 35867833 PMCID: PMC9335300 DOI: 10.1073/pnas.2122476119] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Wnt signaling governs cell fate and tissue polarity across species. The Dishevelled proteins are central to Wnt signaling cascades. Wnt-mediated multiprotein complexes such as the “signalosome” and the “destruction complex” have been proposed to represent biomolecular condensates. These nonmembranous, specialized compartments have been suggested to form through liquid–liquid phase separation and ensure correctly proceeding physiological reactions. Although biomolecular condensates have increasingly been studied, key questions remain regarding, for example, their architecture and physiological regulation. Here, superresolution microscopy after endogenous labeling of Dishevelled-2 gives insights into protein functions and Wnt signaling at physiological levels. It reveals the distinct molecular architecture of endogenous Wnt condensates at single-molecule resolution and illustrates close interactions at the centrosome. During organismal development, homeostasis, and disease, Dishevelled (Dvl) proteins act as key signaling factors in beta-catenin–dependent and beta-catenin–independent Wnt pathways. While their importance for signal transmission has been genetically demonstrated in many organisms, our mechanistic understanding is still limited. Previous studies using overexpressed proteins showed Dvl localization to large, punctate-like cytoplasmic structures that are dependent on its DIX domain. To study Dvl’s role in Wnt signaling, we genome engineered an endogenously expressed Dvl2 protein tagged with an mEos3.2 fluorescent protein for superresolution imaging. First, we demonstrate the functionality and specificity of the fusion protein in beta-catenin–dependent and beta-catenin–independent signaling using multiple independent assays. We performed live-cell imaging of Dvl2 to analyze the dynamic formation of the supramolecular cytoplasmic Dvl2_mEos3.2 condensates. While overexpression of Dvl2_mEos3.2 mimics the previously reported formation of abundant large “puncta,” supramolecular condensate formation at physiological protein levels is only observed in a subset of cells with approximately one per cell. We show that, in these condensates, Dvl2 colocalizes with Wnt pathway components at gamma-tubulin and CEP164-positive centrosomal structures and that the localization of Dvl2 to these condensates is Wnt dependent. Single-molecule localization microscopy using photoactivated localization microscopy (PALM) of mEos3.2 in combination with DNA-PAINT demonstrates the organization and repetitive patterns of these condensates in a cell cycle–dependent manner. Our results indicate that the localization of Dvl2 in supramolecular condensates is coordinated dynamically and dependent on cell state and Wnt signaling levels. Our study highlights the formation of endogenous and physiologically regulated biomolecular condensates in the Wnt pathways at single-molecule resolution.
Collapse
|
2
|
de Man SMA, van Amerongen R. Zooming in on the WNT/CTNNB1 Destruction Complex: Functional Mechanistic Details with Implications for Therapeutic Targeting. Handb Exp Pharmacol 2021; 269:137-173. [PMID: 34486095 DOI: 10.1007/164_2021_522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
WNT/CTNNB1 signaling is crucial for balancing cell proliferation and differentiation in all multicellular animals. CTNNB1 accumulation is the hallmark of WNT/CTNNB1 pathway activation and the key downstream event in both a physiological and an oncogenic context. In the absence of WNT stimulation, the cytoplasmic and nuclear levels of CTNNB1 are kept low because of its sequestration and phosphorylation by the so-called destruction complex, which targets CTNNB1 for proteasomal degradation. In the presence of WNT proteins, or as a result of oncogenic mutations, this process is impaired and CTNNB1 levels become elevated.Here we discuss recent advances in our understanding of destruction complex activity and inactivation, focusing on the individual components and interactions that ultimately control CTNNB1 turnover (in the "WNT off" situation) and stabilization (in the "WNT on" situation). We especially highlight the insights gleaned from recent quantitative, image-based studies, which paint an unprecedentedly detailed picture of the dynamic events that control destruction protein complex composition and function. We argue that these mechanistic details may reveal new opportunities for therapeutic intervention and could result in the destruction complex re-emerging as a target for therapy in cancer.
Collapse
Affiliation(s)
- Saskia Madelon Ada de Man
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Renée van Amerongen
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Lin YC, Haas A, Bufe A, Parbin S, Hennecke M, Voloshanenko O, Gross J, Boutros M, Acebron SP, Bastians H. Wnt10b-GSK3β-dependent Wnt/STOP signaling prevents aneuploidy in human somatic cells. Life Sci Alliance 2020; 4:4/1/e202000855. [PMID: 33257473 PMCID: PMC7723298 DOI: 10.26508/lsa.202000855] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 01/08/2023] Open
Abstract
Wnt signaling is crucial for proper development, tissue homeostasis and cell cycle regulation. A key role of Wnt signaling is the GSK3β-mediated stabilization of β-catenin, which mediates many of the critical roles of Wnt signaling. In addition, it was recently revealed that Wnt signaling can also act independently of β-catenin. In fact, Wnt mediated stabilization of proteins (Wnt/STOP) that involves an LRP6-DVL-dependent signaling cascade is required for proper regulation of mitosis and for faithful chromosome segregation in human somatic cells. We show that inhibition of Wnt/LRP6 signaling causes whole chromosome missegregation and aneuploidy by triggering abnormally increased microtubule growth rates in mitotic spindles, and this is mediated by increased GSK3β activity. We demonstrate that proper mitosis and maintenance of numerical chromosome stability requires continuous basal autocrine Wnt signaling that involves secretion of Wnts. Importantly, we identified Wnt10b as a Wnt ligand required for the maintenance of normal mitotic microtubule dynamics and for proper chromosome segregation. Thus, a self-maintaining Wnt10b-GSK3β-driven cellular machinery ensures the proper execution of mitosis and karyotype stability in human somatic cells.
Collapse
Affiliation(s)
- Yu-Chih Lin
- Georg-August University Göttingen, Göttingen Center for Molecular Biosciences (GZMB) and University Medical Center Göttingen (UMG), Institute of Molecular Oncology, Section for Cellular Oncology, Göttingen, Germany
| | - Alexander Haas
- Georg-August University Göttingen, Göttingen Center for Molecular Biosciences (GZMB) and University Medical Center Göttingen (UMG), Institute of Molecular Oncology, Section for Cellular Oncology, Göttingen, Germany
| | - Anja Bufe
- University of Heidelberg, Centre for Organismal Studies (COS), Heidelberg, Germany
| | - Sabnam Parbin
- University Medical Center Göttingen (UMG), Hematology and Oncology and Developmental Biochemistry, Göttingen, Germany
| | - Magdalena Hennecke
- Georg-August University Göttingen, Göttingen Center for Molecular Biosciences (GZMB) and University Medical Center Göttingen (UMG), Institute of Molecular Oncology, Section for Cellular Oncology, Göttingen, Germany
| | - Oksana Voloshanenko
- Department of Cell and Molecular Biology, German Cancer Research Center (DKFZ), Division of Signaling and Functional Genomics and Heidelberg University, Medical Faculty Mannheim, Heidelberg, Germany
| | - Julia Gross
- University Medical Center Göttingen (UMG), Hematology and Oncology and Developmental Biochemistry, Göttingen, Germany
| | - Michael Boutros
- Department of Cell and Molecular Biology, German Cancer Research Center (DKFZ), Division of Signaling and Functional Genomics and Heidelberg University, Medical Faculty Mannheim, Heidelberg, Germany
| | - Sergio P Acebron
- University of Heidelberg, Centre for Organismal Studies (COS), Heidelberg, Germany
| | - Holger Bastians
- Georg-August University Göttingen, Göttingen Center for Molecular Biosciences (GZMB) and University Medical Center Göttingen (UMG), Institute of Molecular Oncology, Section for Cellular Oncology, Göttingen, Germany
| |
Collapse
|
4
|
ÖRENLİLİ YAYLAGÜL E, ÜLGER C. The effect of baicalein on Wnt/β-catenin pathway and miR-25 expression in Saos-2 osteosarcoma cell line. Turk J Med Sci 2020; 50:1168-1179. [PMID: 32283909 PMCID: PMC7379426 DOI: 10.3906/sag-2001-161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/11/2020] [Indexed: 12/18/2022] Open
Abstract
Background/aim Osteosarcoma is the most common primary bone malignancy that occurs frequently in children and adolescents. Baicalein, a flavonoid that has attracted great attention in recent years with its strong antitumor activity, shows a wide range of biological and pharmaceutical effects.MicroRNAs have been found to be involved in many critical processes in cancers. This study aimed to investigate the effect of baicalein and miR-25 on Wnt/β-catenin signaling pathway of osteosarcoma cell line Saos-2. Materials and methods Cell viability was assessed, and qRT-PCR and Western blot were performed to study the effects of baicalein on expression of Wnt/β-catenin signaling pathway-realted genes (β-catenin, GSK-3β, and Axin2) of Saos-2 cells. Results Our results indicated that baicalein can inhibit the proliferation (IC50 value 35 μM), regulate Wnt/β-catenin pathway and also increase miR-25 expression of Saos-2. Baicalein and also miR-25 decreased the expression of β-catenin and Axin2, while increasing the expression of GSK-3β. Down regulation of miR-25 decreased the expression of GSK-3β, while β-catenin and Axin2 expression increased. Conclusion These findings demonstrate that baicalein may target genes related to the Wnt/β-catenin pathway by regulating miR-25 expression and may be a potential Wnt/β-catenin pathway inhibitor for osteosarcoma therapy.
Collapse
Affiliation(s)
- Esra ÖRENLİLİ YAYLAGÜL
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Aydın Adnan Menderes University, AydınTurkey
| | - Celal ÜLGER
- Department of Biology, Faculty of Arts and Science, Aydın Adnan Menderes University, AydınTurkey
| |
Collapse
|
5
|
Quintana-Urzainqui I, Kozić Z, Mitra S, Tian T, Manuel M, Mason JO, Price DJ. Tissue-Specific Actions of Pax6 on Proliferation and Differentiation Balance in Developing Forebrain Are Foxg1 Dependent. iScience 2018; 10:171-191. [PMID: 30529950 PMCID: PMC6287089 DOI: 10.1016/j.isci.2018.11.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/02/2018] [Accepted: 11/16/2018] [Indexed: 12/12/2022] Open
Abstract
Differences in the growth and maturation of diverse forebrain tissues depend on region-specific transcriptional regulation. Individual transcription factors act simultaneously in multiple regions that develop very differently, raising questions about the extent to which their actions vary regionally. We found that the transcription factor Pax6 affects the transcriptomes and the balance between proliferation and differentiation in opposite directions in the diencephalon versus cerebral cortex. We tested several possible mechanisms to explain Pax6's tissue-specific actions and found that the presence of the transcription factor Foxg1 in the cortex but not in the diencephalon was most influential. We found that Foxg1 is responsible for many of the differences in cell cycle gene expression between the diencephalon and cortex and, in cortex lacking Foxg1, Pax6's action on the balance of proliferation versus differentiation becomes diencephalon like. Our findings reveal a mechanism for generating regional forebrain diversity in which one transcription factor completely reverses the actions of another.
Collapse
Affiliation(s)
- Idoia Quintana-Urzainqui
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK.
| | - Zrinko Kozić
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Soham Mitra
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Tian Tian
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Martine Manuel
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - John O Mason
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - David J Price
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| |
Collapse
|
6
|
Abstract
The mitotic checkpoint ensures proper chromosome segregation; defects in this checkpoint can lead to aneuploidy, a hallmark of cancer. The mitotic checkpoint blocks progression through mitosis as long as chromosomes remain unattached to spindle microtubules. Unattached kinetochores induce the formation of a mitotic checkpoint complex (MCC) composed of Mad2, BubR1, Bub1 and Bub3 which inhibits anaphase onset. Spindle toxins induce prolonged mitotic arrest by creating persistently unattached kinetochores which trigger MCC formation. We find that the multifunctional ser/thr kinase, glycogen synthase kinase 3 (GSK3) is required for a strong mitotic checkpoint. Spindle toxin-induced mitotic arrest is relieved by GSK3 inhibitors SB 415286 (SB), RO 318220 (RO) and lithium chloride. Similarly, targeting GSK3β with knockout or RNAi reduced mitotic arrest in the presence of Taxol. GSK3 was required for optimal localization of Mad2, BubR1, and Bub1 at kinetochores and for optimal assembly of the MCC in spindle toxin-arrested cells. The WNT- and PI3K/Akt signaling pathways negatively regulate GSK3β activity. Inhibition of WNT and PI3K/Akt signaling, in the presence of Taxol, induced a longer mitotic arrest compared to Taxol alone. Our observations provide novel insight into the regulation of the mitotic checkpoint and its connection to growth-signaling pathways.
Collapse
|
7
|
Rasmussen ML, Ortolano NA, Romero-Morales AI, Gama V. Wnt Signaling and Its Impact on Mitochondrial and Cell Cycle Dynamics in Pluripotent Stem Cells. Genes (Basel) 2018; 9:genes9020109. [PMID: 29463061 PMCID: PMC5852605 DOI: 10.3390/genes9020109] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 12/17/2022] Open
Abstract
The core transcriptional network regulating stem cell self-renewal and pluripotency remains an intense area of research. Increasing evidence indicates that modified regulation of basic cellular processes such as mitochondrial dynamics, apoptosis, and cell cycle are also essential for pluripotent stem cell identity and fate decisions. Here, we review evidence for Wnt regulation of pluripotency and self-renewal, and its connections to emerging features of pluripotent stem cells, including (1) increased mitochondrial fragmentation, (2) increased sensitivity to cell death, and (3) shortened cell cycle. We provide a general overview of the stem cell–specific mechanisms involved in the maintenance of these uncharacterized hallmarks of pluripotency and highlight potential links to the Wnt signaling pathway. Given the physiological importance of stem cells and their enormous potential for regenerative medicine, understanding fundamental mechanisms mediating the crosstalk between Wnt, organelle-dynamics, apoptosis, and cell cycle will be crucial to gain insight into the regulation of stemness.
Collapse
Affiliation(s)
- Megan L Rasmussen
- Department of Cell and Developmental Biology; Vanderbilt University, Nashville, TN37232, United States.
| | - Natalya A Ortolano
- Department of Cell and Developmental Biology; Vanderbilt University, Nashville, TN37232, United States.
| | | | - Vivian Gama
- Department of Cell and Developmental Biology; Vanderbilt University, Nashville, TN37232, United States.
- Vanderbilt Center for Stem Cell Biology; Vanderbilt University, Nashville, TN37232, United States.
- Vanderbilt Ingram Cancer Center; Vanderbilt University, Nashville, TN37232, United States.
| |
Collapse
|
8
|
Zaman GJR, de Roos JADM, Libouban MAA, Prinsen MBW, de Man J, Buijsman RC, Uitdehaag JCM. TTK Inhibitors as a Targeted Therapy for CTNNB1 ( β-catenin) Mutant Cancers. Mol Cancer Ther 2017; 16:2609-2617. [PMID: 28751540 DOI: 10.1158/1535-7163.mct-17-0342] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/12/2017] [Accepted: 07/20/2017] [Indexed: 11/16/2022]
Abstract
The spindle assembly checkpoint kinase TTK (Mps1) is a key regulator of chromosome segregation and is the subject of novel targeted therapy approaches by small-molecule inhibitors. Although the first TTK inhibitors have entered phase I dose escalating studies in combination with taxane chemotherapy, a patient stratification strategy is still missing. With the aim to identify a genomic biomarker to predict the response of tumor cells to TTK inhibitor therapy, we profiled a set of preclinical and clinical TTK inhibitors from different chemical series on a panel of 66 genetically characterized cell lines derived from different tumors (Oncolines). Cell lines harboring activating mutations in the CTNNB1 gene, encoding the Wnt pathway signaling regulator β-catenin, were on average up to five times more sensitive to TTK inhibitors than cell lines wild-type for CTNNB1 The association of CTNNB1-mutant status and increased cancer cell line sensitivity to TTK inhibition was confirmed with isogenic cell line pairs harboring either mutant or wild-type CTNNB1 Treatment of a xenograft model of a CTNNB1-mutant cell line with the TTK inhibitor NTRC 0066-0 resulted in complete inhibition of tumor growth. Mutations in CTNNB1 occur at relatively high frequency in endometrial cancer and hepatocellular carcinoma, which are known to express high TTK levels. We propose mutant CTNNB1 as a prognostic drug response biomarker, enabling the selection of patients most likely to respond to TTK inhibitor therapy in proof-of-concept clinical trials. Mol Cancer Ther; 16(11); 2609-17. ©2017 AACR.
Collapse
Affiliation(s)
- Guido J R Zaman
- Netherlands Translational Research Center B.V., Oss, the Netherlands.
| | | | | | | | - Jos de Man
- Netherlands Translational Research Center B.V., Oss, the Netherlands
| | - Rogier C Buijsman
- Netherlands Translational Research Center B.V., Oss, the Netherlands
| | | |
Collapse
|
9
|
Dietary intake alters gene expression in colon tissue: possible underlying mechanism for the influence of diet on disease. Pharmacogenet Genomics 2017; 26:294-306. [PMID: 26959716 PMCID: PMC4853256 DOI: 10.1097/fpc.0000000000000217] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Supplemental Digital Content is available in the text. Background Although the association between diet and disease is well documented, the biologic mechanisms involved have not been entirely elucidated. In this study, we evaluate how dietary intake influences gene expression to better understand the underlying mechanisms through which diet operates. Methods We used data from 144 individuals who had comprehensive dietary intake and gene expression data from RNAseq using normal colonic mucosa. Using the DESeq2 statistical package, we identified genes that showed statistically significant differences in expression between individuals in high-intake and low-intake categories for several dietary variables of interest adjusting for age and sex. We examined total calories, total fats, vegetable protein, animal protein, carbohydrates, trans-fatty acids, mutagen index, red meat, processed meat, whole grains, vegetables, fruits, fiber, folate, dairy products, calcium, and prudent and western dietary patterns. Results Using a false discovery rate of less than 0.1, meat-related foods were statistically associated with 68 dysregulated genes, calcium with three dysregulated genes, folate with four dysregulated genes, and nonmeat-related foods with 65 dysregulated genes. With a more stringent false discovery rate of less than 0.05, there were nine meat-related dysregulated genes and 23 nonmeat-related genes. Ingenuity pathway analysis identified three major networks among genes identified as dysregulated with respect to meat-related dietary variables and three networks among genes identified as dysregulated with respect to nonmeat-related variables. The top networks (Ingenuity Pathway Analysis network score >30) associated with meat-related genes were (i) cancer, organismal injury, and abnormalities, tumor morphology, and (ii) cellular function and maintenance, cellular movement, cell death, and survival. Among genes related to nonmeat consumption variables, the top networks were (i) hematological system development and function, nervous system development and function, tissue morphology and (ii) connective tissue disorders, organismal injury, and abnormalities. Conclusion Several dietary factors were associated with gene expression in our data. These findings provide insight into the possible mechanisms by which diet may influence disease processes.
Collapse
|
10
|
Acebron SP, Niehrs C. β-Catenin-Independent Roles of Wnt/LRP6 Signaling. Trends Cell Biol 2016; 26:956-967. [PMID: 27568239 DOI: 10.1016/j.tcb.2016.07.009] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/21/2016] [Accepted: 07/29/2016] [Indexed: 12/22/2022]
Abstract
Wnt/LRP6 signaling is best known for the β-catenin-dependent regulation of target genes. However, pathway branches have recently emerged, including Wnt/STOP signaling, which act independently of β-catenin and transcription. We review here the molecular mechanisms underlying β-catenin-independent Wnt/LRP6 signaling cascades and their implications for cell biology, development, and physiology.
Collapse
Affiliation(s)
- Sergio P Acebron
- Division of Molecular Embryology, Deutsches Krebsforschungszentrum (DKFZ)-Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) Alliance, 69120 Heidelberg, Germany.
| | - Christof Niehrs
- Division of Molecular Embryology, Deutsches Krebsforschungszentrum (DKFZ)-Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) Alliance, 69120 Heidelberg, Germany; Institute of Molecular Biology, 55128 Mainz, Germany.
| |
Collapse
|