1
|
Taha M, AlDuwaisan A, Daneshmand M, Ibrahim MM, Bourget-Murray J, Grammatopoulos G, Garceau S, Abdelbary H. Mapping Staphylococcus aureus at Early and Late Stages of Infection in a Clinically Representative Hip Prosthetic Joint Infection Rat Model. Microorganisms 2024; 12:1895. [PMID: 39338569 PMCID: PMC11433939 DOI: 10.3390/microorganisms12091895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Prosthetic joint infection (PJI) continues to be a devastating complication following total joint replacement surgeries where Staphylococcus aureus is the main offending organism. To improve our understanding of the disease pathogenesis, a histological analysis of infected peri-implant tissue in a hip PJI rat model was utilized to assess S. aureus spread and tissue reaction at early and late stages of infection. Sprague-Dawley rats were used and received a left cemented hip hemiarthroplasty using a 3D-printed titanium femoral stem. The rats received an intra-articular injection of S. aureus Xen36. These infected rats were sacrificed either at 3 days post-infection (early-stage infection) or at 13-days post-infection (late-stage infection). The femoral and acetabular tissues of all animals were harvested at euthanasia. Histological analysis for the harvested tissue was performed using immunohistochemistry, hematoxylin and eosin, as well as Masson's trichrome stains. Histological examination revealed significant quantitative and qualitative differences in peri-implant tissue response to infection at early and late stages. This hip PJI rat model identified clear histologic differences between early and late stages of S. aureus infection and how quickly bacterial infiltration could occur. These findings can provide insight into why certain surgical strategies like debridement and antibiotics may be associated with high failure rates.
Collapse
Affiliation(s)
- Mariam Taha
- Chronic Disease Program, The Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Division of Orthopaedic Surgery, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada
| | - Abdullah AlDuwaisan
- Division of Orthopaedic Surgery, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada
- Division of Orthopaedic Surgery, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| | - Manijeh Daneshmand
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Mazen M Ibrahim
- Division of Orthopaedic Surgery, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada
| | | | | | - Simon Garceau
- Division of Orthopaedic Surgery, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada
| | - Hesham Abdelbary
- Chronic Disease Program, The Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Division of Orthopaedic Surgery, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada
| |
Collapse
|
2
|
Branter J, Basu S, Smith S. Tumour treating fields in a combinational therapeutic approach. Oncotarget 2018; 9:36631-36644. [PMID: 30564303 PMCID: PMC6290966 DOI: 10.18632/oncotarget.26344] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 10/24/2018] [Indexed: 12/15/2022] Open
Abstract
The standard of care for patients with newly diagnosed Glioblastoma multiforme (GBM) has remained unchanged since 2005, with patients undergoing maximal surgical resection, followed by radiotherapy plus concomitant and maintenance Temozolomide. More recently, Tumour treating fields (TTFields) therapy has become FDA approved for adult recurrent and adult newly-diagnosed GBM following the EF-11 and EF-14 trials, respectively. TTFields is a non-invasive anticancer treatment which utilizes medium frequency alternating electric fields to target actively dividing cancerous cells. TTFields selectively targets cells within mitosis through interacting with key mitotic proteins to cause mitotic arrest and cell death. TTFields therapy presents itself as a candidate for the combinational therapy route due to the lack of overlapping toxicities associated with electric fields. Here we review current literature pertaining to TTFields in combination with alkylating agents, radiation, anti-angiogenics, mitotic inhibitors, immunotherapies, and also with novel agents. This review highlights the observed synergistic and additive effects of combining TTFields with various other therapies, as well highlighting the strategies relating to combinations with electric fields.
Collapse
Affiliation(s)
- Joshua Branter
- Children's Brain Tumour Research Centre, School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Surajit Basu
- Queen's Medical Centre, Department of Neurosurgery, Nottingham, UK
| | - Stuart Smith
- Children's Brain Tumour Research Centre, School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| |
Collapse
|
3
|
Islam S, Paek AL, Hammer M, Rangarajan S, Ruijtenbeek R, Cooke L, Weterings E, Mahadevan D. Drug-induced aneuploidy and polyploidy is a mechanism of disease relapse in MYC/BCL2-addicted diffuse large B-cell lymphoma. Oncotarget 2018; 9:35875-35890. [PMID: 30542505 PMCID: PMC6267596 DOI: 10.18632/oncotarget.26251] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/06/2018] [Indexed: 11/25/2022] Open
Abstract
Double-hit (DH) or double-expresser (DE) lymphomas are high-grade diffuse large B-cell lymphomas (DLBCL) that are mostly incurable with standard chemo-immunotherapy due to treatment resistance. The generation of drug-induced aneuploid/polyploid (DIAP) cells is a common effect of anti-DLBCL therapies (e.g. vincristine, doxorubicin). DIAP cells are thought to be responsible for treatment resistance, as they are capable of re-entering the cell cycle during off-therapy periods. Previously we have shown that combination of alisertib plus ibrutinib plus rituximab can partially abrogate DIAP cells and induce cell death. Here, we provide evidence that DIAP cells can re-enter the cell cycle and escape cell death during anti-DLBCL treatment. We also discuss MYC/BCL2 mediated molecular mechanism that underlie treatment resistance. We isolated aneuploid/polyploid populations of DH/DE-DLBCL cells after treatment with the aurora kinase (AK) inhibitor alisertib. Time-lapse microscopy of single polyploid cells revealed that following drug removal, a subset of these DIAP cells divide and proliferate by reductive cell divisions, including multipolar mitosis, meiosis-like nuclear fission and budding. Genomic, proteomic, and kinomic profiling demonstrated that alisertib-induced aneuploid/polyploid cells up-regulate DNA damage, DNA replication and immune evasion pathways. In addition, we identified amplified receptor tyrosine kinase and T-cell receptor signaling, as well as MYC-mediated dysregulation of the spindle assembly checkpoints RanGAP1, TPX2 and KPNA2. We infer that these factors contribute to treatment resistance of DIAP cells. These findings provide opportunities to develop novel DH/DE-DLBCL therapies, specifically targeting DIAP cells. Key Points ● MYC mediated upregulation of TPX2, KPNA2 and RanGAP1 dysregulate the spindle assembly checkpoint in drug-induced polyploid cells.● Drug-induced polyploid cells re-enter the cell cycle via multipolar mitosis, fission or budding, a mechanism of disease relapse.
Collapse
Affiliation(s)
- Shariful Islam
- Cancer Biology GIDP, University of Arizona Cancer Center, Tucson, AZ, USA
| | - Andrew L Paek
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Michael Hammer
- Division of Biotechnology, University of Arizona Cancer Center, Tucson, AZ, USA
| | | | | | - Laurence Cooke
- Department of Medicine, University of Arizona Cancer Center, Tucson, AZ, USA
| | - Eric Weterings
- Department of Radiation Oncology, University of Arizona, Tucson, AZ, USA
| | - Daruka Mahadevan
- Department of Medicine, University of Arizona Cancer Center, Tucson, AZ, USA
| |
Collapse
|
4
|
Pawlowska E, Szczepanska J, Szatkowska M, Blasiak J. An Interplay between Senescence, Apoptosis and Autophagy in Glioblastoma Multiforme-Role in Pathogenesis and Therapeutic Perspective. Int J Mol Sci 2018; 19:ijms19030889. [PMID: 29562589 PMCID: PMC5877750 DOI: 10.3390/ijms19030889] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 12/12/2022] Open
Abstract
Autophagy, cellular senescence, programmed cell death and necrosis are key responses of a cell facing a stress. These effects are partly interconnected, but regulation of their mutual interactions is not completely clear. That regulation seems to be especially important in cancer cells, which have their own program of development and demand more nutrition and energy than normal cells. Glioblastoma multiforme (GBM) belongs to the most aggressive and most difficult to cure cancers, so studies on its pathogenesis and new therapeutic strategies are justified. Using an animal model, it was shown that autophagy is required for GBM development. Temozolomide (TMZ) is the key drug in GBM chemotherapy and it was reported to induce senescence, autophagy and apoptosis in GBM. In some GBM cells, TMZ induces small toxicity despite its significant concentration and GBM cells can be intrinsically resistant to apoptosis. Resveratrol, a natural compound, was shown to potentiate anticancer effect of TMZ in GBM cells through the abrogation G2-arrest and mitotic catastrophe resulting in senescence of GBM cells. Autophagy is the key player in TMZ resistance in GBM. TMZ can induce apoptosis due to selective inhibition of autophagy, in which autophagic vehicles accumulate as their fusion with lysosomes is blocked. Modulation of autophagic action of TMZ with autophagy inhibitors can result in opposite outcomes, depending on the step targeted in autophagic flux. Studies on relationships between senescence, autophagy and apoptosis can open new therapeutic perspectives in GBM.
Collapse
Affiliation(s)
- Elzbieta Pawlowska
- Department of Orthodontics, Medical University of Lodz, 92-216 Lodz, Poland.
| | - Joanna Szczepanska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-216 Lodz, Poland.
| | - Magdalena Szatkowska
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland.
| | - Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland.
| |
Collapse
|
5
|
Song YW, Lim Y, Cho SK. 2,4‑Di‑tert‑butylphenol, a potential HDAC6 inhibitor, induces senescence and mitotic catastrophe in human gastric adenocarcinoma AGS cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:675-683. [PMID: 29427610 DOI: 10.1016/j.bbamcr.2018.02.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/03/2018] [Accepted: 02/05/2018] [Indexed: 02/08/2023]
Abstract
The natural product 2,4‑di‑tert‑butylphenol (DTBP) has a wide spectrum of biological functions, including anticancer activities, although the underlying mechanisms are poorly understood. Here, we found that DTBP induces senescence in human gastric adenocarcinoma AGS cells as evidenced by upregulation of p21 and Rb and increased β‑galactosidase activity. DTBP also induces mitotic catastrophe and generates multinucleated cells, which is accompanied by an increase in the proportion of polymerized tubulin, possibly caused by inhibition of HDAC6 enzyme activity. In silico docking analysis showed that DTBP docked at the entrance of the ligand-binding pocket of the HDAC6 enzyme. Accordingly, DTBP represents a promising lead structure for the development of HDAC6 inhibitors, with an improvement in specificity conferred by modification of the cap group. We propose for the first time that the underlying mechanism of the anticancer activity of DTBP is attributed to inhibition of HDAC6 activity.
Collapse
Affiliation(s)
- Yeon Woo Song
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Republic of Korea
| | - Yoongho Lim
- Division of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul 143-701, Republic of Korea.
| | - Somi Kim Cho
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Republic of Korea; Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, SARI, Jeju 63243, Republic of Korea.
| |
Collapse
|
6
|
Castro-Gamero AM, Pezuk JA, Brassesco MS, Tone LG. G2/M inhibitors as pharmacotherapeutic opportunities for glioblastoma: the old, the new, and the future. Cancer Biol Med 2018; 15:354-374. [PMID: 30766748 PMCID: PMC6372908 DOI: 10.20892/j.issn.2095-3941.2018.0030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Glioblastoma (GBM) is one of the deadliest tumors and has a median survival of 3 months if left untreated. Despite advances in rationally targeted pharmacological approaches, the clinical care of GBM remains palliative in intent. Since the majority of altered signaling cascades involved in cancer establishment and progression eventually affect cell cycle progression, an alternative approach for cancer therapy is to develop innovative compounds that block the activity of crucial molecules needed by tumor cells to complete cell division. In this context, we review promising ongoing and future strategies for GBM therapeutics aimed towards G2/M inhibition such as anti-microtubule agents and targeted therapy against G2/M regulators like cyclin-dependent kinases, Aurora inhibitors, PLK1, BUB, 1, and BUBR1, and survivin. Moreover, we also include investigational agents in the preclinical and early clinical settings. Although several drugs were shown to be gliotoxic, most of them have not yet entered therapeutic trials. The use of either single exposure or a combination with novel compounds may lead to treatment alternatives for GBM patients in the near future.
Collapse
Affiliation(s)
- Angel Mauricio Castro-Gamero
- Human Genetics Laboratory, Institute of Natural Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas 37130-001, Brazil
| | - Julia Alejandra Pezuk
- Biotechnology and Innovation in Health Program and Pharmacy Program, Anhanguera University São Paulo (UNIAN-SP), São Paulo 05145-200, Brazil
| | - María Sol Brassesco
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, Brazil
| | - Luiz Gonzaga Tone
- Department of Pediatrics.,Department of Genetics, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| |
Collapse
|
7
|
Herůdková J, Paruch K, Khirsariya P, Souček K, Krkoška M, Vondálová Blanářová O, Sova P, Kozubík A, Hyršlová Vaculová A. Chk1 Inhibitor SCH900776 Effectively Potentiates the Cytotoxic Effects of Platinum-Based Chemotherapeutic Drugs in Human Colon Cancer Cells. Neoplasia 2017; 19:830-841. [PMID: 28888100 PMCID: PMC5591453 DOI: 10.1016/j.neo.2017.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/04/2017] [Accepted: 08/04/2017] [Indexed: 01/11/2023] Open
Abstract
Although Chk1 kinase inhibitors are currently under clinical investigation as effective cancer cell sensitizers to the cytotoxic effects of numerous chemotherapeutics, there is still a considerable uncertainty regarding their role in modulation of anticancer potential of platinum-based drugs. Here we newly demonstrate the ability of one of the most specific Chk1 inhibitors, SCH900776 (MK-8776), to enhance human colon cancer cell sensitivity to the cytotoxic effects of platinum(II) cisplatin and platinum(IV)- LA-12 complexes. The combined treatment with SCH900776 and cisplatin or LA-12 results in apparent increase in G1/S phase-related apoptosis, stimulation of mitotic slippage, and senescence of HCT116 cells. We further show that the cancer cell response to the drug combinations is significantly affected by the p21, p53, and PTEN status. In contrast to their wt counterparts, the p53- or p21-deficient cells treated with SCH900776 and cisplatin or LA-12 enter mitosis and become polyploid, and the senescence phenotype is strongly suppressed. While the cell death induced by SCH900776 and cisplatin or LA-12 is significantly delayed in the absence of p53, the anticancer action of the drug combinations is significantly accelerated in p21-deficient cells, which is associated with stimulation of apoptosis beyond G2/M cell cycle phase. We also show that cooperative killing action of the drug combinations in HCT116 cells is facilitated in the absence of PTEN. Our results indicate that SCH900776 may act as an important modulator of cytotoxic response triggered by platinum-based drugs in colon cancer cells.
Collapse
Affiliation(s)
- Jarmila Herůdková
- Department of Cytokinetics, Institute of Biophysics, Czech Academy of Sciences, v.v.i., Brno, Czech Republic; Department of Animal Physiology and Immunology, Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Kamil Paruch
- Department of Chemistry, CZ Openscreen, Faculty of Science, Masaryk University, Brno, Czech Republic; Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Prashant Khirsariya
- Department of Chemistry, CZ Openscreen, Faculty of Science, Masaryk University, Brno, Czech Republic; Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Karel Souček
- Department of Cytokinetics, Institute of Biophysics, Czech Academy of Sciences, v.v.i., Brno, Czech Republic; Department of Animal Physiology and Immunology, Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Martin Krkoška
- Department of Cytokinetics, Institute of Biophysics, Czech Academy of Sciences, v.v.i., Brno, Czech Republic; Department of Animal Physiology and Immunology, Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Olga Vondálová Blanářová
- Department of Cytokinetics, Institute of Biophysics, Czech Academy of Sciences, v.v.i., Brno, Czech Republic
| | - Petr Sova
- Platinum Pharmaceuticals, a.s., Brno, Czech Republic
| | - Alois Kozubík
- Department of Cytokinetics, Institute of Biophysics, Czech Academy of Sciences, v.v.i., Brno, Czech Republic; Department of Animal Physiology and Immunology, Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Alena Hyršlová Vaculová
- Department of Cytokinetics, Institute of Biophysics, Czech Academy of Sciences, v.v.i., Brno, Czech Republic.
| |
Collapse
|
8
|
Kumar R, Gont A, Perkins TJ, Hanson JEL, Lorimer IAJ. Induction of senescence in primary glioblastoma cells by serum and TGFβ. Sci Rep 2017; 7:2156. [PMID: 28526854 PMCID: PMC5438350 DOI: 10.1038/s41598-017-02380-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 04/18/2017] [Indexed: 12/26/2022] Open
Abstract
Glioblastoma is the most common type of adult brain tumour and has a median survival after diagnosis of a little more than a year. Glioblastomas have a high frequency of mutations in the TERT promoter and CDKN2A locus that are expected to render them resistant to both replicative and oncogene-induced senescence. However, exposure of PriGO8A primary glioblastoma cells to media with 10% serum induced a senescence-like phenotype characterized by increased senescence-associated β galactosidase activity, PML bodies and p21 and morphological changes typical of senescence. Microarray expression analysis showed that 24 h serum exposure increased the expression of genes associated with the TGFβ pathway. Treatment of PriGO8A cells with TGFβ was sufficient to induce senescence in these cells. The response of PriGO8A cells to serum was dependent on basal expression of the TGFβ activator protein thrombospondin. Primary glioblastoma cells from three additional patients showed a variable ability to undergo senescence in response to serum. However all were able to undergo senescence in response to TGFβ, although for cells from one patient this required concomitant inhibition of Ras pathway signalling. Primary glioblastoma cells therefore retain a functional senescence program that is inducible by acute activation of the TGFβ signalling pathway.
Collapse
Affiliation(s)
- Ritesh Kumar
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, K1H 8L6, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.,Department of Surgery, University of Ottawa, Ottawa, Ontario, Canada
| | - Alexander Gont
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, K1H 8L6, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Theodore J Perkins
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.,Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, K1H 8L6, Canada
| | - Jennifer E L Hanson
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, K1H 8L6, Canada
| | - Ian A J Lorimer
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, K1H 8L6, Canada. .,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada. .,Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
9
|
Walen KH. Mitotic Slippage Process Concealed Cancer-Sought Chromosome Instability Mechanism (S-CIN). ACTA ACUST UNITED AC 2017. [DOI: 10.4236/jct.2017.86052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|