1
|
A focus on yeast mating: From pheromone signaling to cell-cell fusion. Semin Cell Dev Biol 2023; 133:83-95. [PMID: 35148940 DOI: 10.1016/j.semcdb.2022.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 12/14/2022]
Abstract
Cells live in a chemical environment and are able to orient towards chemical cues. Unicellular haploid fungal cells communicate by secreting pheromones to reproduce sexually. In the yeast models Saccharomyces cerevisiae and Schizosaccharomyces pombe, pheromonal communication activates similar pathways composed of cognate G-protein-coupled receptors and downstream small GTPase Cdc42 and MAP kinase cascades. Local pheromone release and sensing, at a mobile surface polarity patch, underlie spatial gradient interpretation to form pairs between two cells of distinct mating types. Concentration of secretion at the point of cell-cell contact then leads to local cell wall digestion for cell fusion, forming a diploid zygote that prevents further fusion attempts. A number of asymmetries between mating types may promote efficiency of the system. In this review, we present our current knowledge of pheromone signaling in the two model yeasts, with an emphasis on how cells decode the pheromone signal spatially and ultimately fuse together. Though overall pathway architectures are similar in the two species, their large evolutionary distance allows to explore how conceptually similar solutions to a general biological problem can arise from divergent molecular components.
Collapse
|
2
|
Matos GS, Madeira JB, Fernandes CM, Dasilva D, Masuda CA, Del Poeta M, Montero-Lomelí M. Regulation of sphingolipid synthesis by the G1/S transcription factor Swi4. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158983. [PMID: 34062255 PMCID: PMC8512607 DOI: 10.1016/j.bbalip.2021.158983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 11/23/2022]
Abstract
SBF (Swi4/Swi6 Binding Factor) complex is a crucial regulator of G1/S transition in Saccharomyces cerevisiae. Here, we show that SBF complex is required for myriocin resistance, an inhibitor of sphingolipid synthesis. This phenotype was not shared with MBF complex mutants nor with deletion of the Swi4p downstream targets, CLN1/CLN2. Based on data mining results, we selected putative Swi4p targets related to sphingolipid metabolism and studied their gene transcription as well as metabolite levels during progression of the cell cycle. Genes which encode key enzymes for the synthesis of long chain bases (LCBs) and ceramides were periodically transcribed during the mitotic cell cycle, having a peak at G1/S, and required SWI4 for full transcription at this stage. In addition, HPLC-MS/MS data indicated that swi4Δ cells have decreased levels of sphingolipids during progression of the cell cycle, particularly, dihydrosphingosine (DHS), C24-phytoceramides and C24-inositolphosphoryl ceramide (IPC) while it had increased levels of mannosylinositol phosphorylceramide (MIPC). Furthermore, we demonstrated that both inhibition of de novo sphingolipid synthesis by myriocin or SWI4 deletion caused partial arrest at the G2/M phase. Importantly, our lipidomic data demonstrated that the sphingolipid profile of WT cells treated with myriocin resembled that of swi4Δ cells, with lower levels of DHS, IPC and higher levels of MIPC. Taken together, these results show that SBF complex plays an essential role in the regulation of sphingolipid homeostasis, which reflects in the correct progression through the G2/M phase of the cell cycle.
Collapse
Affiliation(s)
- Gabriel S Matos
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana B Madeira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Deveney Dasilva
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| | - Claudio A Masuda
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA; Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, USA; Veteran Administration Medical Center, Northport, NY, USA; MicroRid Technologies Inc., Dix Hills, NY, USA; Division of Infectious Diseases, School of Medicine, Stony Brook University, NY, USA
| | - Monica Montero-Lomelí
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
3
|
Han C, Xia K, Yang J, Zhang H, DeLisa MP, Liang X. Investigation of lipid profile in Acetobacter pasteurianus Ab3 against acetic acid stress during vinegar production. Extremophiles 2020; 24:909-922. [PMID: 33026498 DOI: 10.1007/s00792-020-01204-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 09/21/2020] [Indexed: 10/23/2022]
Abstract
Elucidation of the acetic acid resistance (AAR) mechanisms of Acetobacter pasteurianus is significant for vinegar production. In this study, cell membrane lipid profile of A. pasteurianus Ab3 was investigated by gas chromatography-mass spectrometer (GC-MS) and high performance liquid chromatography-electrospray ionization (HPLC-ESI) combined with high resolution accurate mass/mass spectrometry (HRAM/MS). We observed that cell remodeled the membrane physical state by decreasing the ratio of saturated fatty acids (SFAs)/unsaturated fatty acids (UFAs), and increasing the chain length of fatty acids (FAs) and the content of cyclopropane FAs in response to extreme acid stress. Noticeably, the content of octadecadienoic acid (C18:2) elevated remarkably. Moreover, a continuous reduction in cell membrane fluidity and a "V-type" variance in permeability were discovered. The content of glycerophospholipid and ceramide increased significantly in cells harvested from culture with acidity of 75 g/L and 95 g/L compared to that with acidity of 30 g/L. Among the identified lipid species, the content of phosphatidylcholine (e.g. PC 19:0/18:2 and 19:1/18:0), ceramide (e.g. Cer d18:0/16:1 and d18:0/16:1 + O), and dimethylphosphatidylethanolamine (e.g. dMePE 19:1/16:1) increased notably with increasing acidity. Collectively, these findings refresh our current understanding of the AAR mechanisms in A. pasteurianus Ab3, and should direct future strain breeding and vinegar fermentation.
Collapse
Affiliation(s)
- Chengcheng Han
- Department of Biochemical Engineering, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Kai Xia
- Department of Biochemical Engineering, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Jieqiong Yang
- Department of Biochemical Engineering, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Hong Zhang
- Department of Biochemical Engineering, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Matthew P DeLisa
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, NY, 14853, USA
| | - Xinle Liang
- Department of Biochemical Engineering, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|
4
|
Song J, Liu X, Li R. Sphingolipids: Regulators of azole drug resistance and fungal pathogenicity. Mol Microbiol 2020; 114:891-905. [PMID: 32767804 DOI: 10.1111/mmi.14586] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/29/2020] [Accepted: 08/02/2020] [Indexed: 12/14/2022]
Abstract
In recent years, the role of sphingolipids in pathogenic fungi, in terms of pathogenicity and resistance to azole drugs, has been a rapidly growing field. This review describes evidence about the roles of sphingolipids in azole resistance and fungal virulence. Sphingolipids can serve as signaling molecules that contribute to azole resistance through modulation of the expression of drug efflux pumps. They also contribute to azole resistance by participating in various microbial pathways such as the unfolded protein response (UPR), pH-responsive Rim pathway, and pleiotropic drug resistance (PDR) pathway. In addition, sphingolipid signaling and eisosomes also coordinately regulate sphingolipid biosynthesis in response to azole-induced membrane stress. Sphingolipids are important for fungal virulence, playing roles during growth in hosts under stressful conditions, maintenance of cell wall integrity, biofilm formation, and production of various virulence factors. Finally, we discuss the possibility of exploiting fungal sphingolipids for the development of new therapeutic strategies to treat infections caused by pathogenic fungi.
Collapse
Affiliation(s)
- Jinxing Song
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou, PR China
| | - Xiao Liu
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou, PR China
| | - Rongpeng Li
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou, PR China
| |
Collapse
|
5
|
A Geometric Clustering Tool (AGCT) to robustly unravel the inner cluster structures of time-series gene expressions. PLoS One 2020; 15:e0233755. [PMID: 32628677 PMCID: PMC7337352 DOI: 10.1371/journal.pone.0233755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 05/12/2020] [Indexed: 11/19/2022] Open
Abstract
Systems biology aims at holistically understanding the complexity of biological systems. In particular, nowadays with the broad availability of gene expression measurements, systems biology challenges the deciphering of the genetic cell machinery from them. In order to help researchers, reverse engineer the genetic cell machinery from these noisy datasets, interactive exploratory clustering methods, pipelines and gene clustering tools have to be specifically developed. Prior methods/tools for time series data, however, do not have the following four major ingredients in analytic and methodological view point: (i) principled time-series feature extraction methods, (ii) variety of manifold learning methods for capturing high-level view of the dataset, (iii) high-end automatic structure extraction, and (iv) friendliness to the biological user community. With a view to meet the requirements, we present AGCT (A Geometric Clustering Tool), a software package used to unravel the complex architecture of large-scale, non-necessarily synchronized time-series gene expression data. AGCT capture signals on exhaustive wavelet expansions of the data, which are then embedded on a low-dimensional non-linear map using manifold learning algorithms, where geometric proximity captures potential interactions. Post-processing techniques, including hard and soft information geometric clustering algorithms, facilitate the summarizing of the complete map as a smaller number of principal factors which can then be formally identified using embedded statistical inference techniques. Three-dimension interactive visualization and scenario recording over the processing helps to reproduce data analysis results without additional time. Analysis of the whole-cell Yeast Metabolic Cycle (YMC) moreover, Yeast Cell Cycle (YCC) datasets demonstrate AGCT's ability to accurately dissect all stages of metabolism and the cell cycle progression, independently of the time course and the number of patterns related to the signal. Analysis of Pentachlorophenol iduced dataset demonstrat how AGCT dissects data to identify two networks: Interferon signaling and NRF2-signaling networks.
Collapse
|
6
|
Zhou W, Tan W, Huang X, Yu HG. Doxorubicin combined with Notch1-targeting siRNA for the treatment of gastric cancer. Oncol Lett 2018; 16:2805-2812. [PMID: 30127866 PMCID: PMC6096196 DOI: 10.3892/ol.2018.9039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 03/01/2018] [Indexed: 12/11/2022] Open
Abstract
Notch1, a transmembrane receptor that has a notable role in gastric cancer (GC) as an oncogene, has been reported to be involved in doxorubicin resistance. Thus, Notch1 is a potential therapeutic target for GC. In the present study, the protein levels of Notch1 intracellular domain (NICD; a marker of Notch1 activation) in human GC cell lines and tumor tissues was measured by western blotting. Next, the effects of Notch1 depletion in SGC7901 cells were evaluated. Finally, the efficacy of Notch1 small interfering RNA (siRNA) combined with doxorubicin therapy for GC was examined in vitro and in vivo. The results revealed that NICD levels were high in GC cells, and that the inhibition of NICD by transfection with Notch1 siRNA induced apoptosis and inhibited proliferation. Ectopic downregulation of Notch1 expression enhanced the sensitivity of GC tumors to doxorubicin, which suppressed the development of GC. These data demonstrated that Notch1 was a significant regulator of cell proliferation and apoptosis in GC. Thus, the combination of doxorubicin with Notch1 siRNA is a potential strategy for the treatment of GC.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Hubei Key Laboratory of Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Wei Tan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Hubei Key Laboratory of Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xu Huang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Hubei Key Laboratory of Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Hong Gang Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Hubei Key Laboratory of Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
7
|
Dunn TM, Gable K, Han G. Yeast mating: Ceramide acyl chain length matters? Cell Cycle 2017; 17:7-8. [PMID: 29261003 DOI: 10.1080/15384101.2017.1360660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Teresa M Dunn
- a Department of Biochemistry and Molecular Biology , Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| | - Kenneth Gable
- a Department of Biochemistry and Molecular Biology , Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| | - Gongshe Han
- a Department of Biochemistry and Molecular Biology , Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| |
Collapse
|
8
|
Villasmil ML, Gallo-Ebert C, Liu HY, Francisco J, Nickels JT. A link between very long chain fatty acid elongation and mating-specific yeast cell cycle arrest. Cell Cycle 2017; 16:2192-2203. [PMID: 28745545 DOI: 10.1080/15384101.2017.1329065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Ceramides and sphingolipid intermediates are well-established regulators of the cell cycle. In the budding yeast Saccharomyces cerevisae, the complex sphingolipid backbone, ceramide, comprises a long chain sphingoid base, a polar head group, and a very long chain fatty acid (VLCFA). While ceramides and long chain bases have been extensively studied as to their roles in regulating cell cycle arrest under multiple conditions, the roles of VLCFAs are not well understood. Here, we used the yeast elo2 and elo3 mutants, which are unable to elongate fatty acids, as tools to explore if maintaining VLCFA elongation is necessary for cell cycle arrest in response to yeast mating. We found that both elo2 and elo3 cells had severely reduced mating efficiencies and were unable to form polarized shmoo projections that are necessary for cell-cell contact during mating. They also lacked functional MAP kinase signaling activity and were defective in initiating a cell cycle arrest in response to pheromone. Additional data suggests that mislocalization of the Ste5 scaffold in elo2 and elo3 mutants upon mating initiation may be responsible for the inability to initiate a cell cycle arrest. Moreover, the lack of proper Ste5 localization may be caused by the inability of mutant cells to mobilize PIP2. We suggest that VLCFAs are required for Ste5 localization, which is a necessary event for initiating MAP kinase signaling and cell cycle arrest during yeast mating initiation.
Collapse
Affiliation(s)
| | - Christina Gallo-Ebert
- b Institute of Metabolic Disorders, Genesis Biotechnology Group , Hamilton , NJ , USA
| | - Hsing-Yin Liu
- b Institute of Metabolic Disorders, Genesis Biotechnology Group , Hamilton , NJ , USA
| | | | - Joseph T Nickels
- b Institute of Metabolic Disorders, Genesis Biotechnology Group , Hamilton , NJ , USA
| |
Collapse
|
9
|
Megyeri M, Riezman H, Schuldiner M, Futerman AH. Making Sense of the Yeast Sphingolipid Pathway. J Mol Biol 2016; 428:4765-4775. [PMID: 27664439 DOI: 10.1016/j.jmb.2016.09.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 09/13/2016] [Accepted: 09/14/2016] [Indexed: 12/17/2022]
Abstract
Sphingolipids (SL) and their metabolites play key roles both as structural components of membranes and as signaling molecules. Many of the key enzymes and regulators of SL metabolism were discovered using the yeast Saccharomyces cerevisiae, and based on the high degree of conservation, a number of mammalian homologs were identified. Although yeast continues to be an important tool for SL research, the complexity of SL structure and nomenclature often hampers the ability of new researchers to grasp the subtleties of yeast SL biology and discover new modulators of this intricate pathway. Moreover, the emergence of lipidomics by mass spectrometry has enabled the rapid identification of SL species in yeast and rendered the analysis of SL composition under various physiological and pathophysiological conditions readily amenable. However, the complex nomenclature of the identified species renders much of the data inaccessible to non-specialists. In this review, we focus on parsing both the classical SL nomenclature and the nomenclature normally used during mass spectrometry analysis, which should facilitate the understanding of yeast SL data and might shed light on biological processes in which SLs are involved. Finally, we discuss a number of putative roles of various yeast SL species.
Collapse
Affiliation(s)
- Márton Megyeri
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Howard Riezman
- Department of Biochemistry and NCCR Chemical Biology, University of Geneva, Geneva, 1211, Switzerland
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|