1
|
Win S, Than TA, Kaplowitz N. Mitochondrial P-JNK target, SAB (SH3BP5), in regulation of cell death. Front Cell Dev Biol 2024; 12:1359152. [PMID: 38559813 PMCID: PMC10978662 DOI: 10.3389/fcell.2024.1359152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/19/2024] [Indexed: 04/04/2024] Open
Abstract
Cell death occurs in various circumstances, such as homeostasis, stress response, and defense, via specific pathways and mechanisms that are regulated by specific activator-induced signal transductions. Among them, Jun N-terminal kinases (JNKs) participate in various aspects, and the recent discovery of JNKs and mitochondrial protein SAB interaction in signal regulation of cell death completes our understanding of the mechanism of sustained activation of JNK (P-JNK), which leads to triggering of the machinery of cell death. This understanding will lead the investigators to discover the modulators facilitating or preventing cell death for therapeutic application in acute or chronic diseases and cancer. We discuss here the mechanism and modulators of the JNK-SAB-ROS activation loop, which is the core component of mitochondria-dependent cell death, specifically apoptosis and mitochondrial permeability transition (MPT)-driven necrosis, and which may also contribute to cell death mechanisms of ferroptosis and pyroptosis. The discussion here is based on the results and evidence discovered from liver disease models, but the JNK-SAB-ROS activation loop to sustain JNK activation is universally applicable to various disease models where mitochondria and reactive oxygen species contribute to the mechanism of disease.
Collapse
Affiliation(s)
- Sanda Win
- *Correspondence: Sanda Win, ; Neil Kaplowitz,
| | | | - Neil Kaplowitz
- Department of Medicine, Division of Gastroenterology and Liver Diseases, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
2
|
Huang P, Song Y, Yang Y, Bai F, Li N, Liu D, Li C, Li X, Gou W, Zong L. Identification and verification of diagnostic biomarkers based on mitochondria-related genes related to immune microenvironment for preeclampsia using machine learning algorithms. Front Immunol 2024; 14:1304165. [PMID: 38259465 PMCID: PMC10800455 DOI: 10.3389/fimmu.2023.1304165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
Preeclampsia is one of the leading causes of maternal and fetal morbidity and mortality worldwide. Preeclampsia is linked to mitochondrial dysfunction as a contributing factor in its progression. This study aimed to develop a novel diagnostic model based on mitochondria-related genes(MRGs) for preeclampsia using machine learning and further investigate the association of the MRGs and immune infiltration landscape in preeclampsia. In this research, we analyzed GSE75010 database and screened 552 DE-MRGs between preeclampsia samples and normal samples. Enrichment assays indicated that 552 DE-MRGs were mainly related to energy metabolism pathway and several different diseases. Then, we performed LASSO and SVM-RFE and identified three critical diagnostic genes for preeclampsia, including CPOX, DEGS1 and SH3BP5. In addition, we developed a novel diagnostic model using the above three genes and its diagnostic value was confirmed in GSE44711, GSE75010 datasets and our cohorts. Importantly, the results of RT-PCR confirmed the expressions of CPOX, DEGS1 and SH3BP5 were distinctly increased in preeclampsia samples compared with normal samples. The results of the CIBERSORT algorithm revealed a striking dissimilarity between the immune cells found in preeclampsia samples and those found in normal samples. In addition, we found that the levels of SH3BP5 were closely associated with several immune cells, highlighting its potential involved in immune microenvironment of preeclampsia. Overall, this study has provided a novel diagnostic model and diagnostic genes for preeclampsia while also revealing the association between MRGs and immune infiltration. These findings offer valuable insights for further research and treatment of preeclampsia.
Collapse
Affiliation(s)
- Pu Huang
- Department of Obstetrics & Gynecology, the First Affiliated Hospital of Xi’an Jiaotong University, Xian, Shaanxi, China
| | - Yuchun Song
- Department of Gynecology and Obstetrics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Yu Yang
- Department of Obstetrics & Gynecology, the First Affiliated Hospital of Xi’an Jiaotong University, Xian, Shaanxi, China
| | - Feiyue Bai
- Department of Obstetrics & Gynecology, the First Affiliated Hospital of Xi’an Jiaotong University, Xian, Shaanxi, China
| | - Na Li
- Department of Obstetrics & Gynecology, the First Affiliated Hospital of Xi’an Jiaotong University, Xian, Shaanxi, China
| | - Dan Liu
- Department of Obstetrics & Gynecology, the First Affiliated Hospital of Xi’an Jiaotong University, Xian, Shaanxi, China
| | - Chunfang Li
- Department of Obstetrics & Gynecology, the First Affiliated Hospital of Xi’an Jiaotong University, Xian, Shaanxi, China
| | - Xuelan Li
- Department of Obstetrics & Gynecology, the First Affiliated Hospital of Xi’an Jiaotong University, Xian, Shaanxi, China
| | - Wenli Gou
- Department of Obstetrics & Gynecology, the First Affiliated Hospital of Xi’an Jiaotong University, Xian, Shaanxi, China
| | - Lu Zong
- Department of Obstetrics & Gynecology, the First Affiliated Hospital of Xi’an Jiaotong University, Xian, Shaanxi, China
| |
Collapse
|
3
|
Abstract
Vesicles mediate the trafficking of membranes/proteins in the endocytic and secretory pathways. These pathways are regulated by small GTPases of the Rab family. Rab proteins belong to the Ras superfamily of GTPases, which are significantly involved in various intracellular trafficking and signaling processes in the nervous system. Rab11 is known to play a key role especially in recycling many proteins, including receptors important for signal transduction and preservation of functional activities of nerve cells. Rab11 activity is controlled by GEFs (guanine exchange factors) and GAPs (GTPase activating proteins), which regulate its function through modulating GTP/GDP exchange and the intrinsic GTPase activity, respectively. Rab11 is involved in the transport of several growth factor molecules important for the development and repair of neurons. Overexpression of Rab11 has been shown to significantly enhance vesicle trafficking. On the other hand, a reduced expression of Rab11 was observed in several neurodegenerative diseases. Current evidence appears to support the notion that Rab11 and its cognate proteins may be potential targets for therapeutic intervention. In this review, we briefly discuss the function of Rab11 and its related interaction partners in intracellular pathways that may be involved in neurodegenerative processes.
Collapse
Affiliation(s)
| | - Jiri Novotny
- Jiri Novotny, Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic.
| |
Collapse
|
4
|
Ke Y, Weng M, Chhetri G, Usman M, Li Y, Yu Q, Ding Y, Wang Z, Wang X, Sultana P, DiFiglia M, Li X. Trappc9 deficiency in mice impairs learning and memory by causing imbalance of dopamine D1 and D2 neurons. SCIENCE ADVANCES 2020; 6:6/47/eabb7781. [PMID: 33208359 PMCID: PMC7673810 DOI: 10.1126/sciadv.abb7781] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 10/01/2020] [Indexed: 05/06/2023]
Abstract
Genetic mutations in the gene encoding transport protein particle complex 9 (trappc9), a subunit of TRAPP that acts as a guanine nucleotide exchange factor for rab proteins, cause intellectual disability with brain structural malformations by elusive mechanisms. Here, we report that trappc9-deficient mice exhibit a broad range of behavioral deficits and postnatal delay in growth of the brain. Contrary to volume decline of various brain structures, the striatum of trappc9 null mice was enlarged. An imbalance existed between dopamine D1 and D2 receptor containing neurons in the brain of trappc9-deficient mice; pharmacological manipulation of dopamine receptors improved performances of trappc9 null mice to levels of wild-type mice on cognitive tasks. Loss of trappc9 compromised the activation of rab11 in the brain and resulted in retardation of endocytic receptor recycling in neurons. Our study elicits a pathogenic mechanism and a potential treatment for trappc9-linked disorders including intellectual disability.
Collapse
Affiliation(s)
- Yuting Ke
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Meiqian Weng
- Mucosal Immunology Laboratory, Combined Program in Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Gaurav Chhetri
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Muhammad Usman
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Yan Li
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Qing Yu
- Department of Nephrology, Shanghai General Hospital, 650 Songjiang Road, Songjiang District, Shanghai 201620, China
| | - Yingzhuo Ding
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Zejian Wang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Xiaolong Wang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Pinky Sultana
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Marian DiFiglia
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Xueyi Li
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China.
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|