1
|
Chen YR, Li YT, Wang MQ, Zhu SL. Prognostic significance and function of MCM10 in human hepatocellular carcinoma. Future Oncol 2021; 17:4457-4470. [PMID: 34350781 DOI: 10.2217/fon-2021-0225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To investigate the role of MCM10, a conserved replication factor, in hepatocellular carcinoma (HCC). Methods: We used data from 364 HCC patients in the Cancer Genome Atlas database and conducted in vitro experiments to confirm the role of MCM10. Results: High MCM10 expression correlated with poor HCC patient outcome and was an independent prognosticator for HCC. Time-dependent receiver operating characteristic curve analysis found that the sequential trend of MCM10 for survival was not inferior to that of the tumor node metastasis stage. The MCM10 model had a higher C-index than the non-MCM10 model, indicating that incorporating MCM10 into a multivariate model improves the model's prognostic accuracy for HCC. Genetic alterations of MCM10 prominently correlated with an unfavorable HCC outcome. Conclusion: Our findings strongly suggest using the MCM10 gene as a prognostic indicator in HCC.
Collapse
Affiliation(s)
- Yi-Ru Chen
- Department of Gastroenterology & Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yi-Ting Li
- Department of General Practice, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mei-Qian Wang
- Department of Gastroenterology & Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Sen-Lin Zhu
- Department of Gastroenterology & Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Zhou J, Wang M, Zhou Z, Wang W, Duan J, Wu G. Expression and Prognostic Value of MCM Family Genes in Osteosarcoma. Front Mol Biosci 2021; 8:668402. [PMID: 34239894 PMCID: PMC8257954 DOI: 10.3389/fmolb.2021.668402] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/10/2021] [Indexed: 11/16/2022] Open
Abstract
We performed a detailed cancer VS normal analysis to explore the expression and prognostic value of minichromosome maintenance (MCM) proteinsin human sarcoma. The mRNA expression levels of the MCM family genes in sarcoma were analyzed using data from ONCOMINE, GEPIA and CCLE databases. KEGG database was used to analyze the function of MCM2–7 complex in DNA replication and cell cycle. QRT-PCR and western blot were used to confirm the differential expression of key MCMs in osteosarcoma cell lines. Cell Counting Kit-8 and flow cytometry method were used to detect the cell proliferation and apoptosis of hFOB1.19 cells. The results showed that MCM1–7 and MCM10 were all upregulated in sarcoma in ONCOMINE database. MCM2, and MCM4–7 were highly expressed in sarcoma in GEPIA database. Moreover, all these ten factors were highly expressed in sarcoma cell lines. Furthermore, we analyzed the prognostic value of MCMs for sarcoma in GEPIA and found that MCM2, MCM3, MCM4, and MCM10 are prognostic biomarkers for human sarcoma. Analysis results using KEGG datasets showed that MCM4 and MCM6–7 constituted a core structure of MCM2-7 hexamers. We found that AzadC treatment and overexpression of MCM4 significantly promoted hFOB1.19 cell proliferation and inhibited apoptosis. The present study implied that MCM2–4 and 10 are potential biomarkers for the prognosis of sarcoma. The prognostic role of MCM4 may be attributable to the change in its DNA methylation patterns.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Mingyong Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China.,Institute of Osteoporosis Diagnosis and Treatments of Soochow University, Suzhou, China
| | - Zhen Zhou
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Wanchun Wang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Juan Duan
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Gen Wu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
3
|
Yuan Z, Li H. Molecular mechanisms of eukaryotic origin initiation, replication fork progression, and chromatin maintenance. Biochem J 2020; 477:3499-3525. [PMID: 32970141 PMCID: PMC7574821 DOI: 10.1042/bcj20200065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/29/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022]
Abstract
Eukaryotic DNA replication is a highly dynamic and tightly regulated process. Replication involves several dozens of replication proteins, including the initiators ORC and Cdc6, replicative CMG helicase, DNA polymerase α-primase, leading-strand DNA polymerase ε, and lagging-strand DNA polymerase δ. These proteins work together in a spatially and temporally controlled manner to synthesize new DNA from the parental DNA templates. During DNA replication, epigenetic information imprinted on DNA and histone proteins is also copied to the daughter DNA to maintain the chromatin status. DNA methyltransferase 1 is primarily responsible for copying the parental DNA methylation pattern into the nascent DNA. Epigenetic information encoded in histones is transferred via a more complex and less well-understood process termed replication-couple nucleosome assembly. Here, we summarize the most recent structural and biochemical insights into DNA replication initiation, replication fork elongation, chromatin assembly and maintenance, and related regulatory mechanisms.
Collapse
Affiliation(s)
- Zuanning Yuan
- Structural Biology Program, Van Andel Institute, Grand Rapids, Michigan, U.S.A
| | - Huilin Li
- Structural Biology Program, Van Andel Institute, Grand Rapids, Michigan, U.S.A
| |
Collapse
|
4
|
Knockdown of MCM10 Gene Impairs Glioblastoma Cell Proliferation, Migration and Invasion and the Implications for the Regulation of Tumorigenesis. J Mol Neurosci 2020; 70:759-768. [PMID: 32030558 DOI: 10.1007/s12031-020-01486-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 01/17/2020] [Indexed: 10/24/2022]
Abstract
Minichromosome maintenance 10 (MCM10) plays an important role in DNA replication and is expressed in a variety of tumors, including glioma. However, its role and mechanism in glioma remain elusive. The purpose of this study was to examine the molecular function of MCM10 in glioblastoma cell lines in vitro and to further investigate the molecular mechanisms in the network mediated by MCM10. Cell proliferation, invasion, and migration were investigated in the absence of MCM10 mediated by RNA interference (RNAi) in U87 and U251 cell lines. Microarray data were obtained from U87 cells infected with a lentivirus expressing a small interfering RNA (siRNA) targeting MCM10, and ingenuity pathway analysis (IPA) was performed. Molecular signaling pathways, gene functions, and upstream and downstream regulatory genes and networks were analyzed. MCM10 was positively stained in human glioblastoma multiforme (GBM) samples according to immunohistochemistry. Silencing MCM10 in U87 and U251 cells significantly reduced cell proliferation, migration, and invasion. In U87 cells transfected with MCM10, 274 genes were significantly upregulated, while 313 genes were downregulated. IPA revealed that MCM10 is involved in the IGF-1 signaling pathway, and calcitriol appears to be a significant upstream regulator of MCM10. Other factors, such as TWIST1 and Stat3, also interact within the MCM10-mediated network. Our data indicate that MCM10 is involved in the regulation of GBM in vitro and may provide more evidence for understanding the molecular mechanisms of this fatal disease.
Collapse
|
5
|
Yang WD, Wang L. MCM10 facilitates the invaded/migrated potentials of breast cancer cells via Wnt/β-catenin signaling and is positively interlinked with poor prognosis in breast carcinoma. J Biochem Mol Toxicol 2019; 33:e22330. [PMID: 30990947 DOI: 10.1002/jbt.22330] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/27/2019] [Accepted: 03/15/2019] [Indexed: 12/16/2022]
Abstract
The minichromosome maintenance protein 10 (MCM10) is one of the MCM proteins that initiate DNA replication by interacting with CDC45-MCM2-7. It has been reported that MCM10 has a role in breast cancer progression. However, MCM10 in breast cancer is still not comprehensively studied and further research is needed. This study was aimed at investigating the potential effects of MCM10 on metastasis, the prognosis of breast carcinoma, and its underlying mechanisms. Using the ONCOMINE database and the Kaplan-Meier Plotter, MCM10 was significantly overexpressed in cancers, and high expression of MCM10 was involved in the poor prognosis of breast carcinoma. MCM10 can promote the proliferation, migration, and invasion of MDA-MB-231 cells. MCM10 knockdown brought about a radical reversal in cell behaviors. Meanwhile, decreased expression of β-catenin and cyclin Dl was detected in MCM10 short hairpin RNA cells, implying that MCM10 might induce breast cancer metastasis via the Wnt/β-catenin pathway.MCM10 can be defined as a potential diagnostic tool and a promising target for breast carcinoma.
Collapse
Affiliation(s)
- Wei-Dong Yang
- Department of Thyroid and Breast Surgery, People's Hospital of Three Gorges University, Yichang, Hubei, China
| | - Lu Wang
- Department of Thyroid and Breast Surgery, People's Hospital of Three Gorges University, Yichang, Hubei, China
| |
Collapse
|
6
|
Mcm10 has potent strand-annealing activity and limits translocase-mediated fork regression. Proc Natl Acad Sci U S A 2018; 116:798-803. [PMID: 30598452 PMCID: PMC6338834 DOI: 10.1073/pnas.1819107116] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Fork regression is a way of circumventing or dealing with DNA lesions and is important to genome integrity. Fork regression is performed by double-strand DNA ATPases that initially cause newly synthesized strands to unpair from the parental strands, followed by pairing of the new strands and reversal of the fork. This study shows that Mcm10, an essential replication factor, efficiently anneals complementary strands and also inhibits fork regression by SMARCAL1. Moreover, the study localizes the Mcm10 DNA-binding domain to the N-terminal domains of the replicative CMG helicase at the forked nexus. Thus, forks that are unimpeded would contain Mcm10 at a strategic position where its DNA-binding and/or annealing function may block fork regression enzymes and thereby protect active forks from becoming reversed. The 11-subunit eukaryotic replicative helicase CMG (Cdc45, Mcm2-7, GINS) tightly binds Mcm10, an essential replication protein in all eukaryotes. Here we show that Mcm10 has a potent strand-annealing activity both alone and in complex with CMG. CMG-Mcm10 unwinds and then reanneals single strands soon after they have been unwound in vitro. Given the DNA damage and replisome instability associated with loss of Mcm10 function, we examined the effect of Mcm10 on fork regression. Fork regression requires the unwinding and pairing of newly synthesized strands, performed by a specialized class of ATP-dependent DNA translocases. We show here that Mcm10 inhibits fork regression by the well-known fork reversal enzyme SMARCAL1. We propose that Mcm10 inhibits the unwinding of nascent strands to prevent fork regression at normal unperturbed replication forks, either by binding the fork junction to form a block to SMARCAL1 or by reannealing unwound nascent strands to their parental template. Analysis of the CMG-Mcm10 complex by cross-linking mass spectrometry reveals Mcm10 interacts with six CMG subunits, with the DNA-binding region of Mcm10 on the N-face of CMG. This position on CMG places Mcm10 at the fork junction, consistent with a role in regulating fork regression.
Collapse
|
7
|
Cui F, Hu J, Ning S, Tan J, Tang H. Overexpression of MCM10 promotes cell proliferation and predicts poor prognosis in prostate cancer. Prostate 2018; 78:1299-1310. [PMID: 30095171 PMCID: PMC6282949 DOI: 10.1002/pros.23703] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 07/13/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Prostate cancer (PCa) is one of the most malignant tumors of the male urogenital system. There is an urgent need to identify novel biomarkers for PCa. METHODS In this study, we evaluated the expression levels of MCM10 in prostate cancer by analyzing public datasets (including The Cancer Genome Atlas and GSE21032). Furthermore, loss of function assays was performed to evaluate the effects of MCM10 on cell proliferation, apoptosis, and colony formation. Furthermore, we performed microarray and bioinformatics analyses to explore the potential mechanisms of MCM10. RESULTS In the present study, we for the first time revealed MCM10 was significantly upregulated in PCa. Moreover, we found increased MCM10 expression was significantly associated with advanced clinical stage and high Gleason score PCa. Kaplan-Meier analysis demonstrated higher MCM10 expression was associated with a poorer patient prognosis in PCa. Furthermore, loss of function assays showed that MCM10 knockdown inhibited cell proliferation and colony formation, but promoted cell apoptosis. Additionally, we performed microarray and bioinformatics analysis and found MCM10 regulated PCa progression by regulating a series of biological processes including cancer, cell death, and apoptosis. CONCLUSIONS These results suggest that MCM10 may be a potential diagnostic and therapeutic target for PCa.
Collapse
Affiliation(s)
- Feilun Cui
- Department of UrologyThe Affiliated People's Hospital of Jiangsu UniversityZhenjiangJiangsuP.R. China
| | - Jianpeng Hu
- Department of UrologyThe Affiliated People's Hospital of Jiangsu UniversityZhenjiangJiangsuP.R. China
| | - Songyi Ning
- Medical College of Jiangsu UniversityZhenjiangJiangsuP.R. China
| | - Jian Tan
- Department of UrologyThe Affiliated People's Hospital of Jiangsu UniversityZhenjiangJiangsuP.R. China
| | - Huaming Tang
- Department of UrologyThe Affiliated People's Hospital of Jiangsu UniversityZhenjiangJiangsuP.R. China
| |
Collapse
|
8
|
AND-1 fork protection function prevents fork resection and is essential for proliferation. Nat Commun 2018; 9:3091. [PMID: 30082684 PMCID: PMC6079002 DOI: 10.1038/s41467-018-05586-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 07/13/2018] [Indexed: 12/31/2022] Open
Abstract
AND-1/Ctf4 bridges the CMG helicase and DNA polymerase alpha, facilitating replication. Using an inducible degron system in avian cells, we find that AND-1 depletion is incompatible with proliferation, owing to cells accumulating in G2 with activated DNA damage checkpoint. Replication without AND-1 causes fork speed slow-down and accumulation of long single-stranded DNA (ssDNA) gaps at the replication fork junction, with these regions being converted to DNA double strand breaks (DSBs) in G2. Strikingly, resected forks and DNA damage accumulation in G2, but not fork slow-down, are reverted by treatment with mirin, an MRE11 nuclease inhibitor. Domain analysis of AND-1 further revealed that the HMG box is important for fast replication but not for proliferation, whereas conversely, the WD40 domain prevents fork resection and subsequent DSB-associated lethality. Thus, our findings uncover a fork protection function of AND-1/Ctf4 manifested via the WD40 domain that is essential for proliferation and averts genome instability. AND-1, the vertebrate orthologue of Ctf4, is a critical player during DNA replication and for maintenance of genome integrity. Here the authors use a conditional AND-1 depletion system in avian DT40 cells to reveal the consequences of the lack of AND-1 on cell proliferation and DNA replication.
Collapse
|
9
|
Single-molecule visualization of Saccharomyces cerevisiae leading-strand synthesis reveals dynamic interaction between MTC and the replisome. Proc Natl Acad Sci U S A 2017; 114:10630-10635. [PMID: 28923950 DOI: 10.1073/pnas.1711291114] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The replisome, the multiprotein system responsible for genome duplication, is a highly dynamic complex displaying a large number of different enzyme activities. Recently, the Saccharomyces cerevisiae minimal replication reaction has been successfully reconstituted in vitro. This provided an opportunity to uncover the enzymatic activities of many of the components in a eukaryotic system. Their dynamic behavior and interactions in the context of the replisome, however, remain unclear. We use a tethered-bead assay to provide real-time visualization of leading-strand synthesis by the S. cerevisiae replisome at the single-molecule level. The minimal reconstituted leading-strand replisome requires 24 proteins, forming the CMG helicase, the Pol ε DNA polymerase, the RFC clamp loader, the PCNA sliding clamp, and the RPA single-stranded DNA binding protein. We observe rates and product lengths similar to those obtained from ensemble biochemical experiments. At the single-molecule level, we probe the behavior of two components of the replication progression complex and characterize their interaction with active leading-strand replisomes. The Minichromosome maintenance protein 10 (Mcm10), an important player in CMG activation, increases the number of productive replication events in our assay. Furthermore, we show that the fork protection complex Mrc1-Tof1-Csm3 (MTC) enhances the rate of the leading-strand replisome threefold. The introduction of periods of fast replication by MTC leads to an average rate enhancement of a factor of 2, similar to observations in cellular studies. We observe that the MTC complex acts in a dynamic fashion with the moving replisome, leading to alternating phases of slow and fast replication.
Collapse
|
10
|
S-phase checkpoint regulations that preserve replication and chromosome integrity upon dNTP depletion. Cell Mol Life Sci 2017; 74:2361-2380. [PMID: 28220209 PMCID: PMC5487892 DOI: 10.1007/s00018-017-2474-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 12/29/2016] [Accepted: 01/23/2017] [Indexed: 11/18/2022]
Abstract
DNA replication stress, an important source of genomic instability, arises upon different types of DNA replication perturbations, including those that stall replication fork progression. Inhibitors of the cellular pool of deoxynucleotide triphosphates (dNTPs) slow down DNA synthesis throughout the genome. Following depletion of dNTPs, the highly conserved replication checkpoint kinase pathway, also known as the S-phase checkpoint, preserves the functionality and structure of stalled DNA replication forks and prevents chromosome fragmentation. The underlying mechanisms involve pathways extrinsic to replication forks, such as those involving regulation of the ribonucleotide reductase activity, the temporal program of origin firing, and cell cycle transitions. In addition, the S-phase checkpoint modulates the function of replisome components to promote replication integrity. This review summarizes the various functions of the replication checkpoint in promoting replication fork stability and genome integrity in the face of replication stress caused by dNTP depletion.
Collapse
|
11
|
Mcm10: A Dynamic Scaffold at Eukaryotic Replication Forks. Genes (Basel) 2017; 8:genes8020073. [PMID: 28218679 PMCID: PMC5333062 DOI: 10.3390/genes8020073] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/09/2017] [Accepted: 02/09/2017] [Indexed: 12/13/2022] Open
Abstract
To complete the duplication of large genomes efficiently, mechanisms have evolved that coordinate DNA unwinding with DNA synthesis and provide quality control measures prior to cell division. Minichromosome maintenance protein 10 (Mcm10) is a conserved component of the eukaryotic replisome that contributes to this process in multiple ways. Mcm10 promotes the initiation of DNA replication through direct interactions with the cell division cycle 45 (Cdc45)-minichromosome maintenance complex proteins 2-7 (Mcm2-7)-go-ichi-ni-san GINS complex proteins, as well as single- and double-stranded DNA. After origin firing, Mcm10 controls replication fork stability to support elongation, primarily facilitating Okazaki fragment synthesis through recruitment of DNA polymerase-α and proliferating cell nuclear antigen. Based on its multivalent properties, Mcm10 serves as an essential scaffold to promote DNA replication and guard against replication stress. Under pathological conditions, Mcm10 is often dysregulated. Genetic amplification and/or overexpression of MCM10 are common in cancer, and can serve as a strong prognostic marker of poor survival. These findings are compatible with a heightened requirement for Mcm10 in transformed cells to overcome limitations for DNA replication dictated by altered cell cycle control. In this review, we highlight advances in our understanding of when, where and how Mcm10 functions within the replisome to protect against barriers that cause incomplete replication.
Collapse
|
12
|
Bai L, Yuan Z, Sun J, Georgescu R, O'Donnell ME, Li H. Architecture of the Saccharomyces cerevisiae Replisome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1042:207-228. [PMID: 29357060 DOI: 10.1007/978-981-10-6955-0_10] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Eukaryotic replication proteins are highly conserved, and thus study of Saccharomyces cerevisiae replication can inform about this central process in higher eukaryotes including humans. The S. cerevisiae replisome is a large and dynamic assembly comprised of ~50 proteins. The core of the replisome is composed of 31 different proteins including the 11-subunit CMG helicase; RFC clamp loader pentamer; PCNA clamp; the heteroligomeric DNA polymerases ε, δ, and α-primase; and the RPA heterotrimeric single strand binding protein. Many additional protein factors either travel with or transiently associate with these replisome proteins at particular times during replication. In this chapter, we summarize several recent structural studies on the S. cerevisiae replisome and its subassemblies using single particle electron microscopy and X-ray crystallography. These recent structural studies have outlined the overall architecture of a core replisome subassembly and shed new light on the mechanism of eukaryotic replication.
Collapse
Affiliation(s)
- Lin Bai
- Cryo-EM Structural Biology Laboratory, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Zuanning Yuan
- Cryo-EM Structural Biology Laboratory, Van Andel Research Institute, Grand Rapids, MI, USA
- Biochemistry and Structural Biology Graduate Program, Stony Brook University, Stony Brook, NY, USA
| | - Jingchuan Sun
- Cryo-EM Structural Biology Laboratory, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Roxana Georgescu
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Michael E O'Donnell
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| | - Huilin Li
- Cryo-EM Structural Biology Laboratory, Van Andel Research Institute, Grand Rapids, MI, USA.
- Biochemistry and Structural Biology Graduate Program, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|