1
|
Sterling NA, Terry BK, McDonnell JM, Kim S. P53 independent pathogenic mechanisms contribute to BubR1 microcephaly. Front Cell Dev Biol 2023; 11:1282182. [PMID: 37900274 PMCID: PMC10602889 DOI: 10.3389/fcell.2023.1282182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023] Open
Abstract
The mosaic variegated aneuploidy (MVA)-associated gene Budding Uninhibited by Benzimidazole 1B (BUB1B) encodes BUBR1, a core member of the spindle assembly checkpoint complex that ensures kinetochore-spindle attachment for faithful chromosome segregation. BUB1B mutation in humans and its deletion in mice cause microcephaly. In the absence of BubR1 in mice, massive cell death reduces cortical cells during neurogenesis. However, the molecular and cellular mechanisms triggering cell death are unknown. In this study, we performed three-dimensional imaging analysis of mitotic BubR1-deficient neural progenitors in a murine model to show profound chromosomal segregation defects and structural abnormalities. Chromosomal defects and accompanying DNA damage result in P53 activation and apoptotic cell death in BubR1 mutants. To test whether the P53 cell death pathway is responsible for cortical cell loss, we co-deleted Trp53 in BubR1-deficient cortices. Remarkably, we discovered that residual apoptotic cell death remains in double mutants lacking P53, suggesting P53-independent apoptosis. Furthermore, the minimal rescue of cortical size and cortical neuron numbers in double mutant mice suggests the compelling extent of alternative death mechanisms in the absence of P53. This study demonstrates a potential pathogenic mechanism for microcephaly in MVA patients and uncovers the existence of powerful means of eliminating unfit cells even when the P53 death pathway is disabled.
Collapse
Affiliation(s)
- Noelle A. Sterling
- Shriners Hospitals Pediatrics Research Center, Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Biomedical Sciences Graduate Program, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Bethany K. Terry
- Shriners Hospitals Pediatrics Research Center, Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Biomedical Sciences Graduate Program, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Julia M. McDonnell
- Shriners Hospitals Pediatrics Research Center, Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Seonhee Kim
- Shriners Hospitals Pediatrics Research Center, Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
2
|
Mattiello L, Soliman Abdel Rehim S, Manic G, Vitale I. Assessment of cell cycle progression and mitotic slippage by videomicroscopy. Methods Cell Biol 2023; 181:43-58. [PMID: 38302243 DOI: 10.1016/bs.mcb.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Senescence is a state of irreversible cell cycle arrest accompanied by the acquisition of the senescence-associated secretory phenotype (SASP), which is activated in response to a variety of damaging stimuli, including genotoxic therapy. Accumulating evidence indicates that mitotic stress also promotes entry into senescence. This occurs via a mechanism involving defective mitoses and mitotic arrest, followed by abortion of cell division and slippage in the G1 phase. In this process, mitotic slippage leads to the generation of senescent cells characterized by a large cell body and a multinucleated and/or enlarged nuclear size. Here, we provide a detailed protocol for the assessment of cell proliferation and mitotic slippage in colorectal cancer cells upon pharmacological inhibition of the mitotic kinesin KIF11, best known as EG5. This approach can be used for preliminary characterization of senescence induction by therapeutics, but requires validation with standard senescence assays.
Collapse
Affiliation(s)
- Luca Mattiello
- IIGM-Italian Institute for Genomic Medicine, c/o IRCSS, Candiolo, Italy; Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Sara Soliman Abdel Rehim
- IIGM-Italian Institute for Genomic Medicine, c/o IRCSS, Candiolo, Italy; Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Gwenola Manic
- IIGM-Italian Institute for Genomic Medicine, c/o IRCSS, Candiolo, Italy; Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy.
| | - Ilio Vitale
- IIGM-Italian Institute for Genomic Medicine, c/o IRCSS, Candiolo, Italy; Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy.
| |
Collapse
|
3
|
Suleimenov M, Bekbayev S, Ten M, Suleimenova N, Tlegenova M, Nurmagambetova A, Kauanova S, Vorobjev I. Bcl-xL activity influences outcome of the mitotic arrest. Front Pharmacol 2022; 13:933112. [PMID: 36188556 PMCID: PMC9520339 DOI: 10.3389/fphar.2022.933112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Microtubule-targeting (MT) drugs taxanes and vinca alkaloids are widely used as chemotherapeutic agents against different tumors for more than 30 years because of their ability to block mitotic progression by disrupting the mitotic spindle and activating the spindle assembly checkpoint (SAC) for a prolonged period of time. However, responses to mitotic arrest are different—some cells die during mitotic arrest, whereas others undergo mitotic slippage and survive becoming able for proliferation. Using normal fibroblasts and several cancer cell types we determined two critical doses, T1 and T2, of mitotic inhibitors (nocodazole, Taxol, and vinorelbine). T1 is the maximal dose cells can tolerate undergoing normal division, and T2 is the minimal mitostatic dose, wherein > 90% of mitotic cells are arrested in mitosis. In all studied cell lines after treatment with mitotic inhibitors in a dose above T2 cells had entered mitosis either die or undergo mitotic slippage. We show that for all three drugs used cell death during mitotic arrest and after slippage proceeded via mitochondria-dependent apoptosis. We determined two types of cancer cells: sensitive to mitotic arrest, that is, undergoing death in mitosis (DiM) frequently, and resistant to mitotic arrest, that is, undergoing mitotic slippage followed by prolonged survival. We then determined that inhibition of Bcl-xL, but not other anti-apoptotic proteins of the Bcl-2 group that regulate MOMP, make resistant cells susceptible to DiM induced by mitotic inhibitors. Combined treatment with MT drugs and highly specific Bcl-xL inhibitors A-1155643 or A-1331852 allows achieving 100% DiM in a time significantly shorter than maximal duration of mitotic arrest in all types of cultured cells tested. We further examined efficacy of sequential treatment of cultured cells using mitotic inhibitors followed by inhibitors of Bcl-xL anti-apoptotic protein and for the first time show that sensitivity to Bcl-xL inhibitors rapidly declines after mitotic slippage. Thus sequential use of mitotic inhibitors and inhibitors of Bcl-xL anti-apoptotic protein will be efficient only if the Bcl-xL inhibitor will be added before mitotic slippage occurs or soon afterward. The combined treatment proposed might be an efficient approach to anti-cancer therapy.
Collapse
Affiliation(s)
- M. Suleimenov
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - S. Bekbayev
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
- National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - M. Ten
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
- National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - N. Suleimenova
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - M. Tlegenova
- National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - A. Nurmagambetova
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
- School of Engineering and Digital Science, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - S. Kauanova
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
- National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - I. Vorobjev
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
- National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
- *Correspondence: I. Vorobjev,
| |
Collapse
|
4
|
Habib EB, Mathavarajah S, Dellaire G. Tinker, Tailor, Tumour Suppressor: The Many Functions of PRP4K. Front Genet 2022; 13:839963. [PMID: 35281802 PMCID: PMC8912934 DOI: 10.3389/fgene.2022.839963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
Pre-mRNA processing factor 4 kinase (PRP4K, also known as PRPF4B) is an essential kinase first identified in the fission yeast Schizosaccharomyces pombe that is evolutionarily conserved from amoebae to animals. During spliceosomal assembly, PRP4K interacts with and phosphorylates PRPF6 and PRPF31 to facilitate the formation of the spliceosome B complex. However, over the past decade additional evidence has emerged that PRP4K has many diverse cellular roles beyond splicing that contribute to tumour suppression and chemotherapeutic responses in mammals. For example, PRP4K appears to play roles in regulating transcription and the spindle assembly checkpoint (SAC), a key pathway in maintaining chromosomes stability and the response of cancer cells to taxane-based chemotherapy. In addition, PRP4K has been revealed to be a haploinsufficient tumour suppressor that promotes aggressive cancer phenotypes when partially depleted. PRP4K is regulated by both the HER2 and estrogen receptor, and its partial loss increases resistance to the taxanes in multiple malignancies including cervical, breast and ovarian cancer. Moreover, ovarian and triple negative breast cancer patients harboring tumours with low PRP4K expression exhibit worse overall survival. The depletion of PRP4K also enhances both Yap and epidermal growth factor receptor (EGFR) signaling, the latter promoting anoikis resistance in breast and ovarian cancer. Finally, PRP4K is negatively regulated during epithelial-to-mesenchymal transition (EMT), a process that promotes increased cell motility, drug resistance and cancer metastasis. Thus, as we discuss in this review, PRP4K likely plays evolutionarily conserved roles not only in splicing but in a number of cellular pathways that together contribute to tumour suppression.
Collapse
Affiliation(s)
- Elias B. Habib
- Dalhousie University, Department of Pathology, Halifax, NS, Canada
| | | | - Graham Dellaire
- Dalhousie University, Department of Pathology, Halifax, NS, Canada
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
- *Correspondence: Graham Dellaire,
| |
Collapse
|
5
|
Jia S, Liu J, Sun G, Zhang J, Zhuang B, Jia X, Fu W, Wu D, Wang F, Zhao Y, Guo P, Bi W, Wang S, Guo W. Drug-Coated Balloon Angioplasty Versus Standard Uncoated Balloon Angioplasty for Long Femoropopliteal Lesions: Post Hoc Analysis of the 24-Month Results of the AcoArt I Study. Ann Vasc Surg 2021; 82:70-80. [PMID: 34902474 DOI: 10.1016/j.avsg.2021.10.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 08/17/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Restenosis is a common complication after endovascular treatment of peripheral artery disease. Drug-coated balloon (DCB) treatment has been proven safe and effective in reducing the rate of restenosis for simple and short lesions. However, the clinical results of DCBs for long lesions are still very limited. This study aimed to evaluate the efficacy and safety of DCBs in the treatment of long femoropopliteal artery disease. And the results of this study will also complement the existing evidence of DCB treatment of long lesions. METHODS Patients with lesion length ≥15cm according to computed tomography angiography (CTA) or angiography in the AcoArt I Study were included into this study. Based on the balloon catheter used in treatment, patients were divided into the DCB group and the percutaneous transluminal angioplasty (PTA) group. The demographic, lesion, and procedural characteristics and 24-month follow-up results were compared between the two groups. The primary efficacy endpoints were angiographic late lumen loss (LLL) at 6 months or at the time of clinically driven target lesion revascularization (CD-TLR), primary patency (PP), freedom from CD-TLR, and changes in the ankle-brachial index (ABI) and Rutherford class during 24 months of follow-up. The safety endpoint was the occurrence of major adverse events. RESULTS The total number of patients was 87, including 42 in the DCB group and 45 in the PTA group. There were no significant differences between the two groups in demographic, lesion, and procedural characteristics. The 6-month follow-up angiography showed that the LLL was significantly smaller in the DCB group than the PTA group (0.27 ± 0.90 mm vs 1.32 ± 0.91 mm; P<0.001). At 24 months, compared with the PTA group, the DCB group had a significantly higher rate of freedom from CD-TLR (81.58% vs 43.18%; P<0.001) and a significantly higher PP rate (46.88% vs 15.00%; P=0.003). The DCB group had a significantly higher ABI than the PTA group at 6, 12, and 24 months (P<0.001, P=0.004 and P=0.018, respectively). The DCB group had a better Rutherford class than the PTA group at 6 and 12 months (P=0.033 and P=0.012, respectively); the Rutherford class did not significantly differ between the two groups at 24 months (P=0.127). The incidence of major adverse events did not significantly differ between the two groups. CONCLUSION The effectiveness of the DCB is superior to a standard uncoated balloon in treating long lesions during 24 months of follow-up. Furthermore, the safety of the DCB is equivalent to that of PTA.
Collapse
Affiliation(s)
- Senhao Jia
- Medical School of Chinese PLA, Beijing, China; Chinese PLA General Hospital, Beijing, China
| | - Jie Liu
- Chinese PLA General Hospital, Beijing, China
| | - Guoyi Sun
- Chinese PLA General Hospital, Beijing, China
| | - Jiwei Zhang
- Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Baixi Zhuang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xin Jia
- Chinese PLA General Hospital, Beijing, China
| | - Weiguo Fu
- Zhongshan Hospital Fudan University, Shanghai, China
| | - Danming Wu
- The People's Hospital of Liaoning Province, Shenyang, China
| | - Feng Wang
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yu Zhao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Pingfan Guo
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Wei Bi
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Shenming Wang
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Guo
- Chinese PLA General Hospital, Beijing, China.
| | | |
Collapse
|
6
|
Khing TM, Choi WS, Kim DM, Po WW, Thein W, Shin CY, Sohn UD. The effect of paclitaxel on apoptosis, autophagy and mitotic catastrophe in AGS cells. Sci Rep 2021; 11:23490. [PMID: 34873207 PMCID: PMC8648765 DOI: 10.1038/s41598-021-02503-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 11/17/2021] [Indexed: 12/20/2022] Open
Abstract
Paclitaxel is an anti-microtubule agent that has been shown to induce cell death in gastric cancer. However, the detailed mechanism of action is unclear. In this study, we reveal that the paclitaxel-induced cell death mechanism involves mitotic catastrophe, autophagy and apoptosis in AGS cells. Paclitaxel induced intrinsic apoptosis by activating caspase-3, caspase-9 and PARP. In addition, the significant increase in autophagy marker LC3B-II, together with Atg5, class III PI3K and Beclin-1, and the down-regulation of p62 following paclitaxel treatment verified that paclitaxel induced autophagy. Further experiments showed that paclitaxel caused mitotic catastrophe, cell cycle arrest of the accumulated multinucleated giant cells at the G2/M phase and induction of cell death in 24 h. Within 48 h, the arrested multinucleated cells escaped mitosis by decreasing cell division regulatory proteins and triggered cell death. Cells treated with paclitaxel for 48 h were grown in fresh medium for 24 h and checked for CDC2, CDC25C and lamin B1 protein expressions. These proteins had decreased significantly, indicating that the remaining cells became senescent. In conclusion, it is suggested that paclitaxel-induced mitotic catastrophe is an integral part of the cell death mechanism, in addition to apoptosis and autophagy, in AGS cells.
Collapse
Affiliation(s)
- Tin Myo Khing
- Laboratory of Signaling and Pharmacological Activity, Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Won Seok Choi
- Laboratory of Signaling and Pharmacological Activity, Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Dong Min Kim
- Laboratory of Signaling and Pharmacological Activity, Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Wah Wah Po
- Laboratory of Signaling and Pharmacological Activity, Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Wynn Thein
- Laboratory of Signaling and Pharmacological Activity, Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Chang Yell Shin
- Laboratory of Signaling and Pharmacological Activity, Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Uy Dong Sohn
- Laboratory of Signaling and Pharmacological Activity, Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
7
|
7-Epitaxol Induces Apoptosis and Autophagy in Head and Neck Squamous Cell Carcinoma through Inhibition of the ERK Pathway. Cells 2021; 10:cells10102633. [PMID: 34685613 PMCID: PMC8534141 DOI: 10.3390/cells10102633] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 01/10/2023] Open
Abstract
As the main derivative of paclitaxel, 7-Epitaxol is known to a have higher stability and cytotoxicity. However, the anticancer effect of 7-Epitaxol is still unclear. The purpose of this study was to explore the anticancer effects of 7-Epitaxol in squamous cell carcinoma of the head and neck (HNSCC). Our study findings revealed that 7-Epitaxol potently suppressed cell viability in SCC-9 and SCC-47 cells by inducing cell cycle arrest. Flow cytometry and DAPI staining demonstrated that 7-Epitaxol treatment induced cell death, mitochondrial membrane potential and chromatin condensation in OSCC cell lines. The compound regulated the proteins of extrinsic and intrinsic pathways at the highest concentration, and also increased the activation of caspases 3, 8, 9, and PARP in OSCC cell lines. Interestingly, a 7-Epitaxol-mediated induction of LC3-I/II expression and suppression of p62 expression were observed in OSCC cells lines. Furthermore, the MAPK inhibitors indicated that 7-Epitaxol induces apoptosis and autophagy marker proteins (cleaved-PARP and LC3-I/II) by reducing the phosphorylation of ERK1/2. In conclusion, these findings indicate the involvement of 7-Epitaxol in inducing apoptosis and autophagy through ERK1/2 signaling pathway, which identify 7-Epitaxol as a potent cytotoxic agent in HNSCC.
Collapse
|
8
|
Alrumaihi FA, Khan MA, Allemailem KS, Alsahli MA, Almatroudi A, Younus H, Alsuhaibani SA, Algahtani M, Khan A. Methanolic Fenugreek Seed Extract Induces p53-Dependent Mitotic Catastrophe in Breast Cancer Cells, Leading to Apoptosis. J Inflamm Res 2021; 14:1511-1535. [PMID: 33889009 PMCID: PMC8057839 DOI: 10.2147/jir.s300025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/24/2021] [Indexed: 12/29/2022] Open
Abstract
Purpose The plant Trigonella foenum-graecum, well-known as fenugreek, has been shown to control type-2 diabetes, the level of cholesterol, inflammation of wounds, disorders related to gastrointestinal tracts, and cancer as well. The present study aimed to evaluate the anti-cancer potential of methanolic fenugreek seed extract (FSE) and its possible molecular mechanism of action in breast cancer cells. Methods The anticancer potential of FSE was evaluated in MCF-7 and SK-BR3 breast cancer cells through various cellular assays after selecting the IC10, IC25, IC35, and IC50 doses by the cell cytotoxicity assay. Furthermore, the oral acute toxicity of FSE was examined in mice, according to the guidelines of the Organization for Economic Co-operation and Development (OECD). Results FSE exhibited dose-dependent cytotoxicity, as the IC50 was found to be 150 and 40 μg/mL for MCF-7 and SK-BR3 breast cancer cells, respectively. The cytological observations showed the typical apoptotic morphology in both of the breast cancer cells upon treatment with FSE, as it inhibited the migration and adhesion, in a dose-dependent manner. The flow cytometry analysis revealed that FSE induced a significant shift from G2/M, and polyploidy (>G) at higher concentrations that suggested the activation of p53-mediated mitotic catastrophe, consequently leading to apoptosis. FSE induced a significant increase in the mitochondrial depolarization, ROS as well as a Bax/Bcl-2 ratio, and also exhibited the mitochondrial associated p53 signaling pathway. The in vivo acute toxicity data revealed that the oral administration of FSE did not induce any toxic effect in mice. Conclusion This study, for the first time, reports the mechanistic details of the anti-cancer potential of FSE. It requires a detailed analysis to understand the effect of FSE to induce the apoptosis through the multiple signaling pathways at varying concentrations. The nontoxic effect of FSE in mice suggests to utilize it safely for pharmaceutical formulations in different cancer systems.
Collapse
Affiliation(s)
- Faris A Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Masood A Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Mohammed A Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Hina Younus
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Sultan A Alsuhaibani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Mohammad Algahtani
- Department of Laboratory Medicine, Security Forces Hospital, Mecca, Saudi Arabia
| | - Arif Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
9
|
Škubník J, Pavlíčková V, Ruml T, Rimpelová S. Current Perspectives on Taxanes: Focus on Their Bioactivity, Delivery and Combination Therapy. PLANTS (BASEL, SWITZERLAND) 2021; 10:569. [PMID: 33802861 PMCID: PMC8002726 DOI: 10.3390/plants10030569] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022]
Abstract
Taxanes, mainly paclitaxel and docetaxel, the microtubule stabilizers, have been well known for being the first-line therapy for breast cancer for more than the last thirty years. Moreover, they have been also used for the treatment of ovarian, hormone-refractory prostate, head and neck, and non-small cell lung carcinomas. Even though paclitaxel and docetaxel significantly enhance the overall survival rate of cancer patients, there are some limitations of their use, such as very poor water solubility and the occurrence of severe side effects. However, this is what pushes the research on these microtubule-stabilizing agents further and yields novel taxane derivatives with significantly improved properties. Therefore, this review article brings recent advances reported in taxane research mainly in the last two years. We focused especially on recent methods of taxane isolation, their mechanism of action, development of their novel derivatives, formulations, and improved tumor-targeted drug delivery. Since cancer cell chemoresistance can be an unsurpassable hurdle in taxane administration, a significant part of this review article has been also devoted to combination therapy of taxanes in cancer treatment. Last but not least, we summarize ongoing clinical trials on these compounds and bring a perspective of advancements in this field.
Collapse
Affiliation(s)
| | | | | | - Silvie Rimpelová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague 6, Czech Republic; (J.Š.); (V.P.); (T.R.)
| |
Collapse
|
10
|
Niu J, Wang X, Qu J, Mager DE, Straubinger RM. Pharmacodynamic modeling of synergistic birinapant/paclitaxel interactions in pancreatic cancer cells. BMC Cancer 2020; 20:1024. [PMID: 33097020 PMCID: PMC7583190 DOI: 10.1186/s12885-020-07398-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/10/2020] [Indexed: 11/17/2022] Open
Abstract
Background For most patients, pancreatic adenocarcinoma responds poorly to treatment, and novel therapeutic approaches are needed. Standard-of-care paclitaxel (PTX), combined with birinapant (BRP), a bivalent mimetic of the apoptosis antagonist SMAC (second mitochondria-derived activator of caspases), exerts synergistic killing of PANC-1 human pancreatic adenocarcinoma cells. Methods To investigate potential mechanisms underlying this synergistic pharmacodynamic interaction, data capturing PANC-1 cell growth, apoptosis kinetics, and cell cycle distribution were integrated with high-quality IonStar-generated proteomic data capturing changes in the relative abundance of more than 3300 proteins as the cells responded to the two drugs, alone and combined. Results PTX alone (15 nM) elicited dose-dependent G2/M-phase arrest and cellular polyploidy. Combined BRP/PTX (150/15 nM) reduced G2/M by 35% and polyploid cells by 45%, and increased apoptosis by 20%. Whereas BRP or PTX alone produced no change in the pro-apoptotic protein pJNK, and a slight increase in the anti-apoptotic protein Bcl2, the drug combination increased pJNK and decreased Bcl2 significantly compared to the vehicle control. A multi-scale, mechanism-based mathematical model was developed to investigate integrated birinapant/paclitaxel effects on temporal profiles of key proteins involved in kinetics of cell growth, death, and cell cycle distribution. Conclusions The model, consistent with the observed reduction in the Bcl2/BAX ratio, suggests that BRP-induced apoptosis of mitotically-arrested cells is a major contributor to the synergy between BRP and PTX. Coupling proteomic and cellular response profiles with multi-scale pharmacodynamic modeling provides a quantitative mechanistic framework for evaluating pharmacodynamically-based drug-drug interactions in combination chemotherapy, and could potentially guide the development of promising drug regimens.
Collapse
Affiliation(s)
- Jin Niu
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Xue Wang
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York, USA.,New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York, USA
| | - Jun Qu
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA.,Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York, USA.,New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York, USA
| | - Donald E Mager
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Robert M Straubinger
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA. .,New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York, USA. .,Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York, 14214, USA.
| |
Collapse
|
11
|
Pedley R, King LE, Mallikarjun V, Wang P, Swift J, Brennan K, Gilmore AP. BioID-based proteomic analysis of the Bid interactome identifies novel proteins involved in cell-cycle-dependent apoptotic priming. Cell Death Dis 2020; 11:872. [PMID: 33067418 PMCID: PMC7567853 DOI: 10.1038/s41419-020-03091-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022]
Abstract
Apoptotic priming controls the commitment of cells to apoptosis by determining how close they lie to mitochondrial permeabilisation. Variations in priming are important for how both healthy and cancer cells respond to chemotherapeutic agents, but how it is dynamically coordinated by Bcl-2 proteins remains unclear. The Bcl-2 family protein Bid is phosphorylated when cells enter mitosis, increasing apoptotic priming and sensitivity to antimitotic drugs. Here, we report an unbiased proximity biotinylation (BioID) screen to identify regulators of apoptotic priming in mitosis, using Bid as bait. The screen primarily identified proteins outside of the canonical Bid interactome. Specifically, we found that voltage-dependent anion-selective channel protein 2 (VDAC2) was required for Bid phosphorylation-dependent changes in apoptotic priming during mitosis. These results highlight the importance of the wider Bcl-2 family interactome in regulating the temporal control of apoptotic priming.
Collapse
Affiliation(s)
- Robert Pedley
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Louise E King
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Venkatesh Mallikarjun
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Pengbo Wang
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Cancer Research UK Manchester Institute, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Joe Swift
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Keith Brennan
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Andrew P Gilmore
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.
| |
Collapse
|
12
|
Sawatani Y, Komiyama Y, Nakashiro KI, Uchida D, Fukumoto C, Shimura M, Hasegawa T, Kamimura R, Hitomi-Koide M, Hyodo T, Kawamata H. Paclitaxel Potentiates the Anticancer Effect of Cetuximab by Enhancing Antibody-Dependent Cellular Cytotoxicity on Oral Squamous Cell Carcinoma Cells In Vitro. Int J Mol Sci 2020; 21:E6292. [PMID: 32878053 PMCID: PMC7503545 DOI: 10.3390/ijms21176292] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 01/22/2023] Open
Abstract
Administration of cetuximab (C-mab) in combination with paclitaxel (PTX) has been used for patients with head and neck squamous cell carcinoma (SCC) clinically. In this study, we attempted to clarify the molecular mechanisms of the enhancing anticancer effect of C-mab combined with PTX on oral SCC cells in vitro. We used two oral SCC cells (HSC4, OSC19) and A431 cells. PTX alone inhibited cell growth in all cells in a concentration-dependent manner. C-mab alone inhibited the growth of A431 and OSC19 cells at low concentrations, but inhibited the growth of HSC4 cells very weakly, even at high concentrations. A combined effect of the two drugs was moderate on A431 cells, but slight on HSC4 and OSC19 cells. A low concentration of PTX enhanced the antibody-dependent cellular cytotoxicity (ADCC) induced by C-mab in all of the cells tested. PTX slightly enhanced the anticancer effect of C-mab in this ADCC model on A431 and HSC4 cells, and markedly enhanced the anticancer effect of C-mab on OSC19 cells. These results indicated that PTX potentiated the anticancer effect of C-mab through enhancing the ADCC in oral SCC cells.
Collapse
Affiliation(s)
- Yuta Sawatani
- Department of Oral and Maxillofacial Surgery, Dokkyo Medical University School of Medicine, 880 Kita-kobayashi, Mibu, Shimo-tsuga, Tochigi 321-0293, Japan; (Y.S.); (Y.K.); (C.F.); (M.S.); (T.H.); (R.K.); (M.H.-K.); (T.H.)
| | - Yuske Komiyama
- Department of Oral and Maxillofacial Surgery, Dokkyo Medical University School of Medicine, 880 Kita-kobayashi, Mibu, Shimo-tsuga, Tochigi 321-0293, Japan; (Y.S.); (Y.K.); (C.F.); (M.S.); (T.H.); (R.K.); (M.H.-K.); (T.H.)
- Section of Dentistry and Oral and Maxillofacial Surgery, Sano Kosei General Hospital, 1728 Horigomecho, Sano, Tochigi 327-8511, Japan
| | - Koh-ichi Nakashiro
- Department of Oral and Maxillofacial Surgery, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan; (K.-i.N.); (D.U.)
| | - Daisuke Uchida
- Department of Oral and Maxillofacial Surgery, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan; (K.-i.N.); (D.U.)
| | - Chonji Fukumoto
- Department of Oral and Maxillofacial Surgery, Dokkyo Medical University School of Medicine, 880 Kita-kobayashi, Mibu, Shimo-tsuga, Tochigi 321-0293, Japan; (Y.S.); (Y.K.); (C.F.); (M.S.); (T.H.); (R.K.); (M.H.-K.); (T.H.)
| | - Michiko Shimura
- Department of Oral and Maxillofacial Surgery, Dokkyo Medical University School of Medicine, 880 Kita-kobayashi, Mibu, Shimo-tsuga, Tochigi 321-0293, Japan; (Y.S.); (Y.K.); (C.F.); (M.S.); (T.H.); (R.K.); (M.H.-K.); (T.H.)
| | - Tomonori Hasegawa
- Department of Oral and Maxillofacial Surgery, Dokkyo Medical University School of Medicine, 880 Kita-kobayashi, Mibu, Shimo-tsuga, Tochigi 321-0293, Japan; (Y.S.); (Y.K.); (C.F.); (M.S.); (T.H.); (R.K.); (M.H.-K.); (T.H.)
| | - Ryouta Kamimura
- Department of Oral and Maxillofacial Surgery, Dokkyo Medical University School of Medicine, 880 Kita-kobayashi, Mibu, Shimo-tsuga, Tochigi 321-0293, Japan; (Y.S.); (Y.K.); (C.F.); (M.S.); (T.H.); (R.K.); (M.H.-K.); (T.H.)
| | - Masayo Hitomi-Koide
- Department of Oral and Maxillofacial Surgery, Dokkyo Medical University School of Medicine, 880 Kita-kobayashi, Mibu, Shimo-tsuga, Tochigi 321-0293, Japan; (Y.S.); (Y.K.); (C.F.); (M.S.); (T.H.); (R.K.); (M.H.-K.); (T.H.)
| | - Toshiki Hyodo
- Department of Oral and Maxillofacial Surgery, Dokkyo Medical University School of Medicine, 880 Kita-kobayashi, Mibu, Shimo-tsuga, Tochigi 321-0293, Japan; (Y.S.); (Y.K.); (C.F.); (M.S.); (T.H.); (R.K.); (M.H.-K.); (T.H.)
| | - Hitoshi Kawamata
- Department of Oral and Maxillofacial Surgery, Dokkyo Medical University School of Medicine, 880 Kita-kobayashi, Mibu, Shimo-tsuga, Tochigi 321-0293, Japan; (Y.S.); (Y.K.); (C.F.); (M.S.); (T.H.); (R.K.); (M.H.-K.); (T.H.)
| |
Collapse
|
13
|
VanGenderen C, Harkness TAA, Arnason TG. The role of Anaphase Promoting Complex activation, inhibition and substrates in cancer development and progression. Aging (Albany NY) 2020; 12:15818-15855. [PMID: 32805721 PMCID: PMC7467358 DOI: 10.18632/aging.103792] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
The Anaphase Promoting Complex (APC), a multi-subunit ubiquitin ligase, facilitates mitotic and G1 progression, and is now recognized to play a role in maintaining genomic stability. Many APC substrates have been observed overexpressed in multiple cancer types, such as CDC20, the Aurora A and B kinases, and Forkhead box M1 (FOXM1), suggesting APC activity is important for cell health. We performed BioGRID analyses of the APC coactivators CDC20 and CDH1, which revealed that at least 69 proteins serve as APC substrates, with 60 of them identified as playing a role in tumor promotion and 9 involved in tumor suppression. While these substrates and their association with malignancies have been studied in isolation, the possibility exists that generalized APC dysfunction could result in the inappropriate stabilization of multiple APC targets, thereby changing tumor behavior and treatment responsiveness. It is also possible that the APC itself plays a crucial role in tumorigenesis through its regulation of mitotic progression. In this review the connections between APC activity and dysregulation will be discussed with regards to cell cycle dysfunction and chromosome instability in cancer, along with the individual roles that the accumulation of various APC substrates may play in cancer progression.
Collapse
Affiliation(s)
- Cordell VanGenderen
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Troy Anthony Alan Harkness
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Terra Gayle Arnason
- Department of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.,Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
14
|
Yuan B, Hao J, Zhang Q, Wang Y, Zhu Y. Role of Bcl-2 on drug resistance in breast cancer polyploidy-induced spindle poisons. Oncol Lett 2020; 19:1701-1710. [PMID: 32194662 PMCID: PMC7039128 DOI: 10.3892/ol.2020.11256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 10/22/2019] [Indexed: 12/13/2022] Open
Abstract
Spindle poisons are chemotherapeutic drugs used in the treatment of malignant tumors; however, numerous patients develop resistance following chemotherapy. The present study aimed to induce polyploidy in breast cancer cells using the spindle poison nocodazole to investigate the mechanism of polyploid-induced tumor resistance. It was revealed that the spindle poison nocodazole induced apoptosis in HCC1806 cells but also induced polyploidy in MDA-MB-231 cells. The drug sensitivities of the polyploid MDA-MB-231 cells to paclitaxel, docetaxel, epirubicin, 5-fluorouracil and oxaliplatin were lower than those of the original tumor cells; however, the polyploid MDA-MB-231 cells were more sensitive to etoposide than the original tumor cells. The expression of F-box and WD repeat domain containing 7 (FBW7) was decreased, while the expression of MCL1 apoptosis regulator BCL2 family member (MCL-1) and Bcl-2 was increased, and caspase-3/9 and Bax were not expressed in MDA-MB-231 cells. The resistance to docetaxel and etoposide was reversed, but the sensitivity of paclitaxel was not changed following Bcl-2 silencing. The formation of polyploidy in tumors may be one of the molecular mechanisms underlying tumor resistance to spindle poisons. Expression of the Bcl-2 family members, for example FBW7 and MCL-1, plays a key role in apoptosis and the cell escape process that forms polyploid cells. However, Bcl-2 silencing has different reversal effects on different anti-tumor drugs, which requires further investigation.
Collapse
Affiliation(s)
- Bibo Yuan
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Juan Hao
- Department of Gynecology and Obstetrics, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Qian Zhang
- Department of Gynecology and Obstetrics, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Yan Wang
- Department of Gynecology and Obstetrics, Tianjin Jinghai Hospital, Tianjin 301600, P.R. China
| | - Yu Zhu
- Department of Clinical Laboratory, Tianjin Huanhu Hospital, Tianjin 300350, P.R. China
| |
Collapse
|
15
|
Lee YH, Chen YY, Yeh YL, Wang YJ, Chen RJ. Stilbene Compounds Inhibit Tumor Growth by the Induction of Cellular Senescence and the Inhibition of Telomerase Activity. Int J Mol Sci 2019; 20:ijms20112716. [PMID: 31159515 PMCID: PMC6600253 DOI: 10.3390/ijms20112716] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 12/17/2022] Open
Abstract
Cellular senescence is a state of cell cycle arrest characterized by a distinct morphology, gene expression pattern, and secretory phenotype. It can be triggered by multiple mechanisms, including those involved in telomere shortening, the accumulation of DNA damage, epigenetic pathways, and the senescence-associated secretory phenotype (SASP), and so on. In current cancer therapy, cellular senescence has emerged as a potent tumor suppression mechanism that restrains proliferation in cells at risk for malignant transformation. Therefore, compounds that stimulate the growth inhibition effects of senescence while limiting its detrimental effects are believed to have great clinical potential. In this review article, we first review the current knowledge of the pro- and antitumorigeneic functions of senescence and summarize the key roles of telomerase in the regulation of senescence in tumors. Second, we review the current literature regarding the anticancer effects of stilbene compounds that are mediated by the targeting of telomerase and cell senescence. Finally, we provide future perspectives on the clinical utilization of stilbene compounds, especially resveratrol and pterostilbene, as novel cancer therapeutic remedies. We conclude and propose that stilbene compounds may induce senescence and may potentially be used as the therapeutic or adjuvant agents for cancers with high telomerase activity.
Collapse
Affiliation(s)
- Yu-Hsuan Lee
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan.
| | - Yu-Ying Chen
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan.
| | - Ya-Ling Yeh
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan.
| | - Ying-Jan Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan.
| | - Rong-Jane Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan.
| |
Collapse
|
16
|
Simmons AJ, Park R, Sterling NA, Jang MH, van Deursen JMA, Yen TJ, Cho SH, Kim S. Nearly complete deletion of BubR1 causes microcephaly through shortened mitosis and massive cell death. Hum Mol Genet 2019; 28:1822-1836. [PMID: 30668728 PMCID: PMC6522074 DOI: 10.1093/hmg/ddz022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/14/2018] [Accepted: 01/15/2019] [Indexed: 02/06/2023] Open
Abstract
BUB-related 1 (BubR1) encoded by Budding Uninhibited by Benzimidazole 1B (BUB1B) is a crucial mitotic checkpoint protein ensuring proper segregation of chromosomes during mitosis. Mutations of BUB1B are responsible for mosaic variegated aneuploidy (MVA), a human congenital disorder characterized by extensive abnormalities in chromosome number. Although microcephaly is a prominent feature of MVA carrying the BUB1B mutation, how BubR1 deficiency disturbs neural progenitor proliferation and neuronal output and leads to microcephaly is unknown. Here we show that conditional loss of BubR1 in mouse cerebral cortex recapitulates microcephaly. BubR1-deficient cortex includes a strikingly reduced number of late-born, but not of early-born, neurons, although BubR1 expression is substantially reduced from an early stage. Importantly, absence of BubR1 decreases the proportion of neural progenitors in mitosis, specifically in metaphase, suggesting shortened mitosis owing to premature chromosome segregation. In the BubR1 mutant, massive apoptotic cell death, which is likely due to the compromised genomic integrity that results from aberrant mitosis, depletes progenitors and neurons during neurogenesis. There is no apparent alteration in centrosome number, spindle formation or primary cilia, suggesting that the major effect of BubR1 deficiency on neural progenitors is to impair the mitotic checkpoint. This finding highlights the importance of the mitotic checkpoint in the pathogenesis of microcephaly. Furthermore, the ependymal cell layer does not form in the conditional knockout, revealing an unrecognized role of BubR1 in assuring the integrity of the ventricular system, which may account for the presence of hydrocephalus in some patients.
Collapse
Affiliation(s)
- Ambrosia J Simmons
- Shriners Hospitals Pediatric Research Center, Department of Anatomy and Cell Biology, Lewis Katz School of Medicine Temple University, Philadelphia, PA, USA
- MD/Ph.D. program, Lewis Katz School of Medicine Temple University, Philadelphia, PA, USA
| | - Raehee Park
- Shriners Hospitals Pediatric Research Center, Department of Anatomy and Cell Biology, Lewis Katz School of Medicine Temple University, Philadelphia, PA, USA
| | - Noelle A Sterling
- Shriners Hospitals Pediatric Research Center, Department of Anatomy and Cell Biology, Lewis Katz School of Medicine Temple University, Philadelphia, PA, USA
| | - Mi-Hyeon Jang
- Department of Neurologic Surgery, Mayo Clinic College of Medicine, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Jan M A van Deursen
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | | | - Seo-Hee Cho
- Shriners Hospitals Pediatric Research Center, Department of Anatomy and Cell Biology, Lewis Katz School of Medicine Temple University, Philadelphia, PA, USA
| | - Seonhee Kim
- Shriners Hospitals Pediatric Research Center, Department of Anatomy and Cell Biology, Lewis Katz School of Medicine Temple University, Philadelphia, PA, USA
| |
Collapse
|
17
|
Du X, Wang F, Wu DM, Zhang MH, Jia X, Zhang JW, Zhuang BX, Zhao Y, Guo PF, Bi W, Fu WG, Guo W, Wang SM. Comparison between paclitaxel-coated balloon and standard uncoated balloon in the treatment of femoropopliteal long lesions in diabetics. Medicine (Baltimore) 2019; 98:e14840. [PMID: 30921183 PMCID: PMC6455750 DOI: 10.1097/md.0000000000014840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Atherosclerotic diseases may include femoropopliteal artery stenosis or occlusion. Percutaneous transluminal angioplasty (PTA) is an effective and minimally invasive treatment strategy for atherosclerotic femoropopliteal artery stenosis/occlusion disease. Balloon angioplasty is a widely used technique in the management of occlusive disease in almost all arterial segments.We enrolled 111 diabetics with long femoropopliteal lesions, among which 54 received PTA with paclitaxel-coated balloon (the Paclitaxel group), and 57 with standard balloon catheters (the Control group).The primary outcome was set as angiographic late lumen loss (LLL) within 6 months; the secondary angiographic outcome was binary restenosis. Clinical outcomes included Rutherford clarification, ankle-brachial index (ABI) and rate of clinically driven target lesion revascularization (TLR). Two groups had similar basal clinical features, angiographic and procedural characteristics. Compared to controls, the Paclitaxel group had a significantly lower 6-month LLL rate, 12-month binary restenosis rate, 12-month TLR, lower Rutherford grades at 3 and 6 months, and higher ABI at 3 months. For all factors which might influence outcomes, fasting blood glucose was negatively correlated with ABI; the blood urea nitrogen (BUN) was positively related with the Rutherford clarification grades. In addition, the coronary heart disease (CHD) and smoking histories were positively correlated with residual stenosis after treatment.Collectively, the paclitaxel-coated balloon angioplasty can yield more favorable angiographic and clinical outcomes than standard uncoated balloon angioplasty, even in the more challenging lesions (the long and occlusive femoropopliteal lesions) in diabetics, when it had a similar safety profile to the traditional balloon. Blood glucose, BUN, CHD, and smoking imply poor curative effects.
Collapse
Affiliation(s)
- Xin Du
- Chinese PLA General Hospital
| | - Feng Wang
- First Affiliated Hospital of Dalian Medical University
| | - Dan-ming Wu
- The people's hospital of Liaoning province, Shenyang
| | | | - Xin Jia
- Chinese PLA General Hospital
| | - Ji-wei Zhang
- Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital
| | - Bai-xi Zhuang
- China Academy of Chinese Medical Sciences Xiyuan Hospital
| | - Yu Zhao
- Chongqing Medical University First Affiliated Hospital
| | - Ping-fan Guo
- First Affiliated Hospital of Fujian Medical University
| | - Wei Bi
- Second Hospital of Hebei Medical University
| | | | - Wei Guo
- Chinese PLA General Hospital
| | - Shen-ming Wang
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
18
|
Ruan W, Lim HH, Surana U. Mapping Mitotic Death: Functional Integration of Mitochondria, Spindle Assembly Checkpoint and Apoptosis. Front Cell Dev Biol 2019; 6:177. [PMID: 30687704 PMCID: PMC6335265 DOI: 10.3389/fcell.2018.00177] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/22/2018] [Indexed: 01/18/2023] Open
Abstract
Targeting the mitotic pathways of rapidly proliferating tumor cells has been an effective strategy in traditional cancer therapy. Chemotherapeutics such as taxanes and vinca alkaloids, which disrupt microtubule function, have enjoyed clinical success; however, the accompanying side effects, toxicity and multi drug resistance remain as serious concerns. The emerging classes of inhibitors targeting mitotic kinases and proteasome face their own set of challenges. It is hoped that elucidation of the regulatory interface between mitotic checkpoints, mitochondria and mitotic death will aid the development of more efficacious anti-mitotic agents and improved treatment protocols. The links between the spindle assembly checkpoint (SAC) and mitochondrial dynamics that control the progression of anti-mitotic agent-induced apoptosis have been under investigation for several years and the functional integration of these various signaling networks is now beginning to emerge. In this review, we highlight current research on the regulation of SAC, the death pathway and mitochondria with particular focus on their regulatory interconnections.
Collapse
Affiliation(s)
- Weimei Ruan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Hong Hwa Lim
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.,Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Uttam Surana
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.,Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore.,Department of Pharmacology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
19
|
Henriques AC, Ribeiro D, Pedrosa J, Sarmento B, Silva PMA, Bousbaa H. Mitosis inhibitors in anticancer therapy: When blocking the exit becomes a solution. Cancer Lett 2018; 440-441:64-81. [PMID: 30312726 DOI: 10.1016/j.canlet.2018.10.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/12/2018] [Accepted: 10/02/2018] [Indexed: 12/11/2022]
Abstract
Current microtubule-targeting agents (MTAs) remain amongst the most important antimitotic drugs used against a broad range of malignancies. By perturbing spindle assembly, MTAs activate the spindle assembly checkpoint (SAC), which induces mitotic arrest and subsequent apoptosis. However, besides toxic side effects and resistance, mitotic slippage and failure in triggering apoptosis in various cancer cells are limiting factors of MTAs efficacy. Alternative strategies to target mitosis without affecting microtubules have, thus, led to the identification of small molecules, such as those that target spindle Kinesins, Aurora and Polo-like kinases. Unfortunately, these so-called second-generation of antimitotics, encompassing mitotic blockers and mitotic drivers, have failed in clinical trials. Our recent understanding regarding the mechanisms of cell death during a mitotic arrest pointed out apoptosis as the main variable, providing an opportunity to control the cell fates and influence the effectiveness of antimitotics. Here, we provide an overview on the second-generation of antimitotics, and discuss possible strategies that exploit SAC activity, mitotic slippage/exit and apoptosis induction, in order to improve the efficacy of anticancer strategies that target mitosis.
Collapse
Affiliation(s)
- Ana C Henriques
- CESPU, Instituto de Investigação e Formação Avançada Em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Gandra PRD, Portugal; INEB, Instituto Nacional de Engenharia Biomédica, Universidade Do Porto, Porto, Portugal
| | - Diana Ribeiro
- CESPU, Instituto de Investigação e Formação Avançada Em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Gandra PRD, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade Do Porto, Porto, Portugal
| | - Joel Pedrosa
- CESPU, Instituto de Investigação e Formação Avançada Em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Gandra PRD, Portugal
| | - Bruno Sarmento
- CESPU, Instituto de Investigação e Formação Avançada Em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Gandra PRD, Portugal; INEB, Instituto Nacional de Engenharia Biomédica, Universidade Do Porto, Porto, Portugal; i3S - Instituto de Investigação e Inovação Em Saúde, Universidade Do Porto, Porto, Portugal
| | - Patrícia M A Silva
- CESPU, Instituto de Investigação e Formação Avançada Em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Gandra PRD, Portugal
| | - Hassan Bousbaa
- CESPU, Instituto de Investigação e Formação Avançada Em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Gandra PRD, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade Do Porto, Porto, Portugal.
| |
Collapse
|
20
|
Cellular effects of the microtubule-targeting agent peloruside A in hypoxia-conditioned colorectal carcinoma cells. Biochim Biophys Acta Gen Subj 2017; 1861:1833-1843. [DOI: 10.1016/j.bbagen.2017.03.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/27/2017] [Accepted: 03/29/2017] [Indexed: 12/27/2022]
|
21
|
Balachandran RS, Kipreos ET. Addressing a weakness of anticancer therapy with mitosis inhibitors: Mitotic slippage. Mol Cell Oncol 2017; 4:e1277293. [PMID: 28401182 PMCID: PMC5383364 DOI: 10.1080/23723556.2016.1277293] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 12/22/2016] [Accepted: 12/23/2016] [Indexed: 12/18/2022]
Abstract
Mitosis inhibitors, which include antimicrotubule drugs, are chemotherapy agents that induce the arrest and apoptosis of mitotic cells. Mitotic slippage, in which mitotically arrested cells exit mitosis, limits the effectiveness of mitosis inhibitors. We have discovered that the CRL2ZYG11A/B ubiquitin ligase promotes mitotic slippage. The combination of antimicrotubule drugs and a CRL2ZYG11A/B inhibitor prevents mitotic slippage to increase antimitotic efficacy.
Collapse
Affiliation(s)
| | - Edward T Kipreos
- Department of Cellular Biology, University of Georgia , Athens, GA, USA
| |
Collapse
|