1
|
Dżaman K, Czerwaty K. Extracellular Vesicle-Based Drug Delivery Systems for Head and Neck Squamous Cell Carcinoma: A Systematic Review. Pharmaceutics 2023; 15:pharmaceutics15051327. [PMID: 37242569 DOI: 10.3390/pharmaceutics15051327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/07/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
It is estimated that there are over 890,000 new cases of head and neck squamous cell carcinoma (HNSCC) worldwide each year, accounting for approximately 5% of all cancer cases. Current treatment options for HNSCC often cause significant side effects and functional impairments, thus there is a challenge to discover more acceptable treatment technologies. Extracellular vesicles (EVs) can be utilized for HNSCC treatment in several ways, for example, for drug delivery, immune modulation, as biomarkers for diagnostics, gene therapy, or tumor microenvironment modulation. This systematic review summarizes new knowledge regarding these options. Articles published up to 11 December 2022, were identified by searching the electronic databases PubMed/MEDLINE, Scopus, Web of Science, and Cochrane. Only full-text original research papers written in English were considered eligible for analysis. The quality of studies was assessed using the Office of Health Assessment and Translation (OHAT) Risk of Bias Rating Tool for Human and Animal Studies, modified for the needs of this review. Of 436 identified records, 18 were eligible and included. It is important to note that the use of EVs as a treatment for HNSCC is still in the early stages of research, so we summarized information on challenges such as EV isolation, purification, and standardization of EV-based therapies in HNSCC.
Collapse
Affiliation(s)
- Karolina Dżaman
- Department of Otolaryngology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Katarzyna Czerwaty
- Department of Otolaryngology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| |
Collapse
|
2
|
Tehrani JM, Kennedy EM, Tian FY, Everson TM, Deyssenroth M, Burt A, Hermetz K, Hao K, Chen J, Koestler DC, Marsit CJ. Variation in placental microRNA expression associates with maternal family history of cardiovascular disease. J Dev Orig Health Dis 2023; 14:132-139. [PMID: 35815737 PMCID: PMC9832176 DOI: 10.1017/s2040174422000319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In the United States, cardiovascular disease is the leading cause of death and the rate of maternal mortality remains among the highest of any industrialized nation. Maternal cardiometabolic health throughout gestation and postpartum is representative of placental health and physiology. Both proper placental functionality and placental microRNA expression are essential to successful pregnancy outcomes, and both are highly sensitive to genetic and environmental sources of variation. Placental pathologies, such as preeclampsia, are associated with maternal cardiovascular health but may also contribute to the developmental programming of chronic disease in offspring. However, the role of more subtle alterations to placental function and microRNA expression in this developmental programming remains poorly understood. We performed small RNA sequencing to investigate microRNA in placentae from the Rhode Island Child Health Study (n = 230). MicroRNA counts were modeled on maternal family history of cardiovascular disease using negative binomial generalized linear models. MicroRNAs were considered to be differentially expressed at a false discovery rate (FDR) less than 0.10. Parallel mRNA sequencing data and bioinformatic target prediction software were then used to identify potential mRNA targets of differentially expressed microRNAs. Nine differentially expressed microRNAs were identified (FDR < 0.1). Bioinformatic target prediction revealed 66 potential mRNA targets of these microRNAs, many of which are implicated in TGFβ signaling pathway but also in pathways involving cellular metabolism and immunomodulation. A robust association exists between familial cardiovascular disease and placental microRNA expression which may be implicated in both placental insufficiencies and the developmental programming of chronic disease.
Collapse
Affiliation(s)
- Jesse M. Tehrani
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Elizabeth M. Kennedy
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Fu-Ying Tian
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Todd M. Everson
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Maya Deyssenroth
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Amber Burt
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Karen Hermetz
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Ke Hao
- Department of Genetics and Genome Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jia Chen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Devin C. Koestler
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS, USA
| | - Carmen J. Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| |
Collapse
|
3
|
Zhang W, Zhou L, Zhang C. LncRNA Miat promotes neuropathic pain through miR-362-3p/BAMBI signaling axis. Exp Cell Res 2022; 420:113359. [PMID: 36122770 DOI: 10.1016/j.yexcr.2022.113359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022]
Abstract
The treatment of neuropathic pain (NP) has become an important subject to be studied and solved urgently in clinical practice. The role of long noncoding RNAs (lncRNAs) in NP development is becoming clear. Therefore, this study aimed to investigate the role and mechanism of lncRNA Miat in NP. In this study, chronic contractionary injury (CCI) mouse NP model was performed. Firstly, the effects of Miat on pain behavior in mice and the expression levels of pro-inflammatory cytokines and pro-inflammatory proteins in spinal cord tissue were explored by interfering with the expression of Miat. Then, Miat-targeted signaling pathway was predicted by bioinformatics and verified by dual luciferase reporter gene and RNA pull down. Finally, the mechanism of Miat was confirmed by the rescue experiments. Our results demonstrated that Miat knockdown alleviated paw withdrawal threshold, paw withdrawal latency, cold hyperalgesia frequency and neuroinflammation in CCI mice. MiR-362-3p was able to bind to Miat and BAMBI. Overall, Miat upregulated BAMBI by inhibiting miR-362-3p, thereby promoting the occurrence and development of NP. This study analyzed the possibility and effectiveness of targeting Miat for NP clinical treatment, in order to provide new ideas and technical methods for NP gene therapy.
Collapse
Affiliation(s)
- Wanyun Zhang
- Pain of Department, Guihang Guiyang Hospital, Guiyang, 550000, Guizhou, China
| | - Liming Zhou
- Medical Imaging of Department, Guihang Guiyang Hospital, Guiyang, 550000, Guizhou, China
| | - Chen Zhang
- Pain of Department, Guihang Guiyang Hospital, Guiyang, 550000, Guizhou, China.
| |
Collapse
|
4
|
Zhuang D, Wang S, Liu G, Liu P, Deng H, Sun J, Liu C, Leng X, Zhang Q, Bai F, Mi J, Wu X. Phenformin suppresses angiogenesis through the regulation of exosomal microRNA-1246 and microRNA-205 levels derived from oral squamous cell carcinoma cells. Front Oncol 2022; 12:943477. [PMID: 36158698 PMCID: PMC9492847 DOI: 10.3389/fonc.2022.943477] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/17/2022] [Indexed: 12/24/2022] Open
Abstract
Exosomes secreted by cancer cells are important components in the tumor microenvironment, enabling cancer cells to communicate with each other and with noncancerous cells to play important roles in tumor progression and metastasis. Phenformin, a biguanide antidiabetic drug, has been reported to have a strong antitumor function in multiple types of cancer cells, however little research has been reported about whether phenformin can regulate the secretion of exosomes by cancer cells to regulate the tumor microenvironment and contribute to its antitumor function. Here we found that exosomes (Phen-Exo) derived from phenformin-treated oral squamous cell carcinoma (OSCC) cells significantly suppress the proliferation, migration and tube formation of human umbilical vein endothelial cells (HUVECs) in vitro. The inhibition of angiogenesis by Phen-Exo was verified in vivo by matrigel plug angiogenesis assays and by chick chorioallantoic membrane assays. Mechanistically, we discovered that the expression of microRNA-1246 (miR-1246) and microRNA-205 (miR-205) was significantly increased in exosomes secreted by OSCC cells treated with phenformin, while high expression levels of miR-1246 or miR-205 in vascular endothelial cells inhibited their angiogenic effects and decreased expression of the angiogenic factor VEGFA. In conclusion, these results reveal that phenformin can inhibit angiogenesis by regulating the levels of miR-1246 and miR-205 in exosomes secreted by OSCC cells, suggesting that phenformin has the potential to alter the tumor microenvironment to antagonize the growth of OSCCs, which provides a theoretical basis for developing new strategies to treat OSCCs in the future.
Collapse
Affiliation(s)
- Dexuan Zhuang
- Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shuangshuang Wang
- Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guanyi Liu
- Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Panpan Liu
- Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Pediatrics Dentistry, Department of Preventive Dentistry, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Huiting Deng
- Engineering Laboratory for Biomaterials and Tissue Regeneration, Ningbo Stomatology Hospital, Savaid Stomatology School, Hangzhou Medical College, Ningbo, China
| | - Jianfeng Sun
- Engineering Laboratory for Biomaterials and Tissue Regeneration, Ningbo Stomatology Hospital, Savaid Stomatology School, Hangzhou Medical College, Ningbo, China
| | - Chang Liu
- Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xue Leng
- Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qun Zhang
- Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fuxiang Bai
- Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jun Mi
- Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Xunwei Wu, ; Jun Mi,
| | - Xunwei Wu
- Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Engineering Laboratory for Biomaterials and Tissue Regeneration, Ningbo Stomatology Hospital, Savaid Stomatology School, Hangzhou Medical College, Ningbo, China
- Suzhou Research Institute, Shandong University, Suzhou, China
- *Correspondence: Xunwei Wu, ; Jun Mi,
| |
Collapse
|
5
|
Integrated Analysis of lncRNA-miRNA-mRNA ceRNA Network in Mixed Dry Eye Disease. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:1534142. [PMID: 35935315 PMCID: PMC9329033 DOI: 10.1155/2022/1534142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/14/2022] [Accepted: 03/23/2022] [Indexed: 01/18/2023]
Abstract
In order to investigate the relationship between inflammation and lncRNA in mixed dry eye disease (DED), this study establishes competitive endogenous RNA (ceRNA) network in mixed DED. Microarray analysis of cornea from mixed DED mice is performed to screen for differences in lncRNA and target genes, and miRNA bioinformatics were predicted based on the ceRNA hypothesis. The ceRNA network, which consists of 96 relationship pairs, is constructed using the top 10 upregulated lncRNAs and all upregulated mRNAs and two pairs of lncRNA-miRNA-mRNA pairs (NONMMUT047964.2-miR-671-5p-Egr-1andNONMMUT054540.2-miR-1934-5p-Grm2) are selected for RT-qRCR verification in mouse corneal epithelial cells under high osmotic pressure and the samples for microarray. Meanwhile, mouse corneal epithelial cell lines (MCECs), transfected siRNA of NONMMUT047964.2 under high osmotic pressure, shows a decrease in apoptosis rate and a decrease in expression of IL-1β and IL-6. The experimental results show that the NONMMUT047964.2-miR-671-5p-Egr-1 axis may regulate the inflammation and promote the apoptosis of corneal epithelial cells under hypertonic condition.
Collapse
|
6
|
Liu P, Zhang Q, Mi J, Wang S, Xu Q, Zhuang D, Chen W, Liu C, Zhang L, Guo J, Wu X. Exosomes derived from stem cells of human deciduous exfoliated teeth inhibit angiogenesis in vivo and in vitro via the transfer of miR-100-5p and miR-1246. Stem Cell Res Ther 2022; 13:89. [PMID: 35241153 PMCID: PMC8895508 DOI: 10.1186/s13287-022-02764-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/29/2021] [Indexed: 12/14/2022] Open
Abstract
Background Anti-angiogenic therapy has been shown to be a promising strategy for anti-tumor treatment. Increasing evidence indicates that tumor angiogenesis is affected by exosomes that are secreted by mesenchymal stem cells (MSCs), but whether exosomes derived from MSCs suppress or promote angiogenesis remain paradoxical. The purpose of this study focused on understanding the potential role of exosomes derived from stem cells of human deciduous exfoliated teeth (SHED-Exos) in regulating angiogenesis and the underlying molecular mechanism. Methods Exosomes were isolated from supernatants of SHED cells using an exosome purification kit and were characterized by transmission electron microscopy, nanoparticle tracking analysis and western blot analysis. Cell Counting Kit-8, flow cytometric assays, western blots, wound healing and transwell migration assays were performed to characterize the roles of SHED-Exos on cell proliferation, apoptosis and migration of human umbilical vein endothelial cells (HUVECs). The anti-angiogenic activity of SHED-Exos was assessed via a tube formation assay of endothelial cells and angiogenesis-related factors were analyzed by western blotting. In vivo, we used the chick chorioallantoic membrane (CAM) assay and an oral squamous cell carcinoma (OSCC) xenograft transplantation model with nude mice that received multi-point injections at three-day intervals to evaluate the effects on angiogenesis. Furthermore, the sequencing of microRNAs (miRNAs) in SHED-Exos was performed to investigate the underlying anti-angiogenic mechanism. Results The results showed that SHED-Exos inhibit cell proliferation and migration and induce apoptosis in HUVECs. SHED-Exos suppress the tube-like structure formation of HUVECs in vitro. SHED-Exos downregulate several angiogenesis-related factors, including VEGFA, MMP-9 and ANGPT1. In vivo, the chick CAM assay verified that treatment with SHED-Exos inhibits micro-vascular formation, and importantly, significantly reduces the micro-vascular formation of tumors generated from xenografted OSCC cells, which was associated with the inhibition of tumor growth in vivo. Mechanistically, our data suggested that SHED-Exos are enriched with miR-100-5p and miR-1246 and are transferred to endothelial cells, which results in decreased tube formation via the down-regulation of VEGFA expression. Conclusions These results demonstrate that SHED-Exos inhibit angiogenesis in vitro and in vivo, which suggests that SHED-Exos could potentially serve as a novel and effective therapeutic approach for anti-angiogenic treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02764-9.
Collapse
Affiliation(s)
- Panpan Liu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, Shandong, China.,Department of Pediatrics Dentistry and Preventive Dentistry, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, Shandong, China
| | - Qun Zhang
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, Shandong, China
| | - Jun Mi
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, Shandong, China
| | - Shuangshuang Wang
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, Shandong, China
| | - Qiuping Xu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, Shandong, China.,Savaid Stomatology School of Hangzhou Medical College, Ningbo Stomatology Hospital, Ningbo, China
| | - Dexuan Zhuang
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, Shandong, China
| | - Wenqian Chen
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, Shandong, China.,Savaid Stomatology School of Hangzhou Medical College, Ningbo Stomatology Hospital, Ningbo, China
| | - Chang Liu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, Shandong, China.,Savaid Stomatology School of Hangzhou Medical College, Ningbo Stomatology Hospital, Ningbo, China
| | - Liwei Zhang
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, Shandong, China.,Savaid Stomatology School of Hangzhou Medical College, Ningbo Stomatology Hospital, Ningbo, China
| | - Jing Guo
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, Shandong, China. .,Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, Shandong, China. .,Savaid Stomatology School of Hangzhou Medical College, Ningbo Stomatology Hospital, Ningbo, China.
| | - Xunwei Wu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, Shandong, China. .,Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. .,Savaid Stomatology School of Hangzhou Medical College, Ningbo Stomatology Hospital, Ningbo, China.
| |
Collapse
|
7
|
Xia F, Xu Y, Zhang X, Lyu J, Zhao P. Competing endogenous RNA network associated with oxygen-induced retinopathy: Expression of the network and identification of the MALAT1/miR-124-3p/EGR1 regulatory axis. Exp Cell Res 2021; 408:112783. [PMID: 34469714 DOI: 10.1016/j.yexcr.2021.112783] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 07/19/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023]
Abstract
Retinopathy of prematurity (ROP) is a severe retinal dysfunction in prematurely born babies. The relationship between non-coding RNAs and retinopathy of prematurity (ROP) remain unclear. Microarray analysis of lncRNAs, miRNAs, and mRNAs was conducted in a mouse model of ROP. A competing endogenous RNA (ceRNA) network was constructed. The relationship among MALAT1, miR-124-3p, and Early growth response protein 1 (EGR1) was assessed in hypoxia-induced primary human umbilical vein endothelial cells (HUVECs) and ROP mouse model. In the study, we found 2252 lncRNAs, 1239 mRNAs, and 36 miRNAs were differentially regulated. ceRNA network consisting of 21 lncRNAs, 10 miRNAs, and 19 mRNAs was established. Of the most down-regulated miRNAs, miR-124-3p was selected for additional study. miR-124-3p ceased the migration and proliferation of primary HUVECs in hypoxic conditions, and directly suppressed EGR1. Additionally, MALAT1 directly sponged miR-124-3p. Knockdown of MALAT1 decreased EGR1 expression and inhibited the migration and proliferation of primary HUVECs in hypoxia. Furthermore, these changes were rescued by depletion of miR-124-3p. In vivo, intravitreal injection of miR-124-3p, shMALAT1 decreased EGR1 expression and markedly suppressed retinal neovascularization in OIR models. Intravitreal injection of shMALAT1 and miR-124-3p antagomir at the same time can promote retinal neovascularization, which reversed the suppression of retinal neovascularization functioned by shMALAT1. In conclusion, the expression profiles of lncRNAs and miRNAs and the ceRNA network in a mouse model of ROP may be indicative of the underlying mechanisms of retinal angiogenesis and neural activity. The MALAT1/miR-124-3p/EGR1 regulatory axis is partly responsible for retinal neovascularization, which may provide a novel theoretical basis for the pathogenesis of ROP.
Collapse
Affiliation(s)
- Fengjie Xia
- Department of Ophthalmology, Xinhua Hospital, Affiliated to Medicine School of Shanghai Jiaotong University, No. 1665, Kongjiang Road, Shanghai, 200092, China
| | - Yu Xu
- Department of Ophthalmology, Xinhua Hospital, Affiliated to Medicine School of Shanghai Jiaotong University, No. 1665, Kongjiang Road, Shanghai, 200092, China
| | - Xiang Zhang
- Department of Ophthalmology, Xinhua Hospital, Affiliated to Medicine School of Shanghai Jiaotong University, No. 1665, Kongjiang Road, Shanghai, 200092, China
| | - Jiao Lyu
- Department of Ophthalmology, Xinhua Hospital, Affiliated to Medicine School of Shanghai Jiaotong University, No. 1665, Kongjiang Road, Shanghai, 200092, China.
| | - Peiquan Zhao
- Department of Ophthalmology, Xinhua Hospital, Affiliated to Medicine School of Shanghai Jiaotong University, No. 1665, Kongjiang Road, Shanghai, 200092, China.
| |
Collapse
|
8
|
Knockdown of LncRNA SNHG1 Suppresses Corneal Angiogenesis by the Regulation of miR-195-5p/VEGF-A. J Ophthalmol 2021; 2021:6646512. [PMID: 34712495 PMCID: PMC8548121 DOI: 10.1155/2021/6646512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
LncRNA SNHG1 (SNHG1) has been widely studied as the causative factor of angiogenesis and proliferative agent in gastric, lung, cervical, and hepatocellular carcinomas. However, its significance of angiogenesis and progression of corneal neovascularization (CRNV) is least understood. This study focuses on the molecular mechanisms followed by SNHG1 to establish CRNV and its angiogenesis. Bioinformatics analysis to identify potential miRNA targets of SNHG1 and vascular endothelial growth factor A (VEGF-A) was conducted using StarBase and was subsequently confirmed by the luciferase reporter assay. Relative quantitative expression of SNHG1 in human umbilical vein endothelial cells (HUVECs) was detected through qRT-PCR and western blot analysis. Cell proliferation was detected through CCK-8 assay, whereas migratory abilities of the cells were determined with transwell assay. A capillary-like tube formation assay was performed to detect the tube formation ability of the cells. Following this, relative expression of miR-195-5p and VEGF-A was determined through qRT-PCR and western blot analysis. Results from the experiments manifested upregulated levels of SNHG1 and VEGF-A in HUVECs and CRNV tissues as compared with the control group, whereas downregulated levels of miR-195-5p were measured in the CRNV tissues and HUVECs, suggesting the negative correlation between lncRNA and miRNA. Overexpressed vascular endothelial growth factor promoted cell proliferation and tube formation; however, its silencing leads to inhibition in angiogenesis and proliferation. Potential binding sites of SNHG1 showed miR-195-5p as its direct target and SNHG1 as a sponge for this miRNA. Knockdown and downregulated levels of SNHG1 showed a notable decrease and inhibition in angiogenesis and migration of CRNV cells. The study showed that SNHG1 inhibition significantly reduced cell proliferation, migration, and tube formation in HUVECs transfect with lncRNA SNHG1. Mechanistic insights into the SNHG1 showed that SNHG1 acts as a sponge for miR-195-5p and upregulates the levels of VEGF-A.
Collapse
|
9
|
Esteghlal S, Mokhtari MJ, Beyzaei Z. Quercetin Can Inhibit Angiogenesis via the Down Regulation of MALAT1 and MIAT LncRNAs in Human Umbilical Vein Endothelial Cells. Int J Prev Med 2021; 12:59. [PMID: 34447501 PMCID: PMC8356977 DOI: 10.4103/ijpvm.ijpvm_103_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Angiogenesis is an important step in cancer metastasis since it enables the growing tumor to receive nutrients and oxygen. Quercetin is a generic flavonoid and has been investigated for its ability to inhibit angiogenesis in different types of cancers. MALAT1 and MIAT lncRNAs are associated with the angiogenesis process. MALAT1 induces hypoxia-driven angiogenesis via the overexpression of angiogenic genes. Down regulation of MIAT1 could inhibit the proliferation of endothelial cells, tube formation, and migration. In this study, we assessed the anti-angiogenic activity of quercetin on human umbilical vein endothelial cells (HUVEC) via the expression of MALAT1 and MIAT genes. Methods: In the present study, HUVEC cells were incubated with various concentrations of quercetin for 24, 48, and 72 h. Cell proliferation was then evaluated by MTT assay. RNA was extracted by TRIzol and cDNA synthesis. The expression levels of MALAT1 and MIAT genes relative to the GAPDH gene were quantified using the highly sensitive real-time PCR method. Results: Our results demonstrated that quercetin has an inhibitory impact on the cell viability of HUVEC cells. The IC50 values of quercetin after 24, 48, and 72 h were 282.05 μM, 228.25 μM, and 131.65 μM, respectively. The MALAT1/GAPDH ratio was computed as 0.21 for 24h, 0.18 for 48h, and 0.29 for 72 h. The MIAT/GAPDH ratio was computed as 0.82 for 24h, 0.84 for 48h, and 0.78 for 72 h. Conclusions: In conclusion, quercetin treatment had an anti-angiogenic effect on HUVEC cells, at least partially via the down regulation of MALAT1 and MIAT LncRNAs gene expression.
Collapse
Affiliation(s)
- Somayeh Esteghlal
- Department of Biology, Zarghan Branch, Islamic Azad University, Zarghan, Iran
| | | | - Zahra Beyzaei
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
10
|
Knockdown of lncRNA TUG1 suppresses corneal angiogenesis through regulating miR-505-3p/VEGFA. Microvasc Res 2021; 138:104233. [PMID: 34411571 DOI: 10.1016/j.mvr.2021.104233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/14/2021] [Accepted: 08/12/2021] [Indexed: 12/28/2022]
Abstract
OBJECTIVES Vascular endothelial growth factor A (VEGFA) is one of the major factors initiating and regulating angiogenesis. LncRNA taurine up-regulated gene 1 (TUG1) has been implicated in the pathological neovascularization. The aim of this study is to explore the function of TUG1 in regulating VEGFA-mediated angiogenesis in endothelial cells. METHODS A total of 12 corneal neovascularization (CRNV) samples were collected form patient undergoing corneal transplantation at Tongji Hospital, Wuhan, China. qRT-PCR and Western blotting were performed to examine gene expression and protein levels. Human umbilical vein endothelial cells (HUVECs) were used as an in vitro angiogenesis model. CCK-8 proliferation assay was used to determine cell proliferation capacity and wound healing was performed to analyze cell migration ability. Dual luciferase reporter assay was used for functional interaction validation between miR-505-3p and its targets. The in vitro angiogenic potential was evaluated by tube formation assay. RESULTS TUG1 and VEGFA were upregulated in CRNV tissues and VEGFA-treated HUVECs. TUG1 knockdown inhibited proliferation, migration and tube formation capacity of HUVECs. TUG1 regulated the angiogenesis of HUVECs by modulating VEGFA expression through targeting miR-505-3p. CONCLUSIONS Our results suggest that lncRNA TUG1 promotes the angiogenesis of HUVECs through modulating miR-505-3p/VEGFA axis.
Collapse
|
11
|
Jiang L, He W, Tang F, Tang N, Huang G, Huang W, Wu X, Guan J, Zeng S, Li M, Chen Q, Zhang M, Zhong H, Lan Q, Cui L, Li L, Xu F. Epigenetic Landscape Analysis of the Long Non-Coding RNA and Messenger RNA in a Mouse Model of Corneal Alkali Burns. Invest Ophthalmol Vis Sci 2021; 62:28. [PMID: 33891681 PMCID: PMC8083103 DOI: 10.1167/iovs.62.4.28] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose Corneal alkali burns (CABs) are a common clinical ocular disease, presenting a poor prognosis. Although some long noncoding RNAs (lncRNAs) reportedly play a key role in epigenetic regulation associated with CABs, studies regarding the lncRNA signature in CABs remain rare and elusive. Methods A CAB model was established in C57BL/6J mice and profiling of lncRNA expressions was performed by RNA-Seq. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted to predicate the related pathological pathways and candidate genes. RT-qPCR was used to verify the expression pattern of lncRNAs and related mRNAs, both in vitro and in vivo. Data were statistically analyzed by GraphPad Prism version 6.0. Results In all, 4436 aberrantly expressed lncRNAs were identified in CAB mice when compared with control mice. In the top 13 aberrantly expressed lncRNAs, Bc037156 and 4930511E03Rik were confirmed as the most significantly altered lncRNAs. Pathway analysis revealed that mitogen-activated protein kinase (MAPK) signaling pathway was most enriched. Following 4930511E03Rik siRNA treated, Srgn, IL-1β and Cxcr2 were significant upregulated in corneal epithelial cells, corneal keratocytes, and bone marrow dendritic cells, with NaOH treatment. Moreover, after Bc037156 siRNA treated, expression levels of IL-1β and Srgn were significantly downregulated in the three cell lines. Conclusions Our study suggests that Bc037156 and 4930511E03Rik may be involved in inflammation, immune response, and neovascularization by regulating Srgn, IL-1β, and Cxcr2 expression after CAB. These candidate lncRNAs and mRNAs may be the potential targets for the treatment strategy of the alkali injured cornea.
Collapse
Affiliation(s)
- Li Jiang
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, People's Republic of China
| | - Wenjing He
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, People's Republic of China
| | - Fen Tang
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, People's Republic of China
| | - Ningning Tang
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, People's Republic of China
| | - Guangyi Huang
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, People's Republic of China
| | - Wei Huang
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, People's Republic of China
| | - Xiaonian Wu
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, People's Republic of China
| | - Jianpei Guan
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, People's Republic of China
| | - Siming Zeng
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, People's Republic of China
| | - Min Li
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, People's Republic of China
| | - Qi Chen
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, People's Republic of China
| | - Mingyuan Zhang
- Laboratory Animal Center, Guangxi Medical University, Nanning, China
| | - Haibin Zhong
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, People's Republic of China
| | - Qianqian Lan
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, People's Republic of China
| | - Ling Cui
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, People's Republic of China
| | - Lili Li
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, People's Republic of China
| | - Fan Xu
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, People's Republic of China
| |
Collapse
|
12
|
Jones R, Wijesinghe S, Wilson C, Halsall J, Liloglou T, Kanhere A. A long intergenic non-coding RNA regulates nuclear localization of DNA methyl transferase-1. iScience 2021; 24:102273. [PMID: 33851096 PMCID: PMC8022221 DOI: 10.1016/j.isci.2021.102273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/21/2020] [Accepted: 03/02/2021] [Indexed: 01/10/2023] Open
Abstract
DNA methyl transferase-1 or DNMT1 maintains DNA methylation in the genome and is important for regulating gene expression in cells. Aberrant changes in DNMT1 activity and DNA methylation are commonly observed in cancers and many other diseases. Recently, a number of long intergenic non-protein-coding RNAs or lincRNAs have been shown to play a role in regulating DNMT1 activity. CCDC26 is a nuclear lincRNA that is frequently mutated in cancers and is a hotbed for disease-associated single nucleotide changes. However, the functional mechanism of CCDC26 is not understood. Here, we show that this lincRNA is concentrated on the nuclear periphery. Strikingly, in the absence of CCDC26 lincRNA, DNMT1 is mis-located in the cytoplasm, and the genomic DNA is significantly hypomethylated. This is accompanied by double-stranded DNA breaks and increased cell death. These results point to a previously unrecognized mechanism of lincRNA-mediated subcellular localization of DNMT1 and regulation of DNA methylation.
Collapse
Affiliation(s)
- Rhian Jones
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Susanne Wijesinghe
- Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, UK
| | - Claire Wilson
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - John Halsall
- Institute of Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Triantafillos Liloglou
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Aditi Kanhere
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK.,Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
13
|
Di Y, Wang Y, Wang X, Nie QZ. Effects of long non-coding RNA myocardial infarction-associated transcript on retinal neovascularization in a newborn mouse model of oxygen-induced retinopathy. Neural Regen Res 2021; 16:1877-1881. [PMID: 33510096 PMCID: PMC8328761 DOI: 10.4103/1673-5374.306098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Whether long non-coding RNA myocardial infarction-associated transcript is involved in oxygen-induced retinopathy remains poorly understood. To validate this hypothesis, we established a newborn mouse model of oxygen-induced retinopathy by feeding in an oxygen concentration of 75 ± 2% from postnatal day 8 to postnatal day 12, followed by in normal air. On postnatal day 11, the mice were injected with the myocardial infarction-associated transcript siRNA plasmid via the vitreous cavity to knockdown long non-coding RNA myocardial infarction-associated transcript. Myocardial infarction-associated transcript siRNA transcription significantly inhibited myocardial infarction-associated transcript mRNA expression, reduced the phosphatidylinosital-3-kinase, phosphorylated Akt and vascular endothelial growth factor immunopositivities, protein and mRNA expression, and alleviated the pathological damage to the retina of oxygen-induced retinopathy mouse models. These findings suggest that myocardial infarction-associated transcript is likely involved in the retinal neovascularization in retinopathy of prematurity and that inhibition of myocardial infarction-associated transcript can downregulate phosphatidylinosital-3-kinase, phosphorylated Akt and vascular endothelial growth factor expression levels and inhibit neovascularization. This study was approved by the Animal Ethics Committee of Shengjing Hospital of China Medical University, China (approval No. 2016PS074K) on February 25, 2016.
Collapse
Affiliation(s)
- Yu Di
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yue Wang
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xue Wang
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Qing-Zhu Nie
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
14
|
Ghafouri-Fard S, Shoorei H, Mohaqiq M, Taheri M. Non-coding RNAs regulate angiogenic processes. Vascul Pharmacol 2020; 133-134:106778. [PMID: 32784009 DOI: 10.1016/j.vph.2020.106778] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023]
Abstract
Angiogenesis has critical roles in numerous physiologic processes during embryonic and adult life such as wound healing and tissue regeneration. However, aberrant angiogenic processes have also been involved in the pathogenesis of several disorders such as cancer and diabetes mellitus. Vascular endothelial growth factor (VEGF) is implicated in the regulation of this process in several physiologic and pathologic conditions. Notably, several non-coding RNAs (ncRNAs) have been shown to influence angiogenesis through modulation of expression of VEGF or other angiogenic factors. In the current review, we summarize the function and characteristics of microRNAs and long non-coding RNAs which regulate angiogenic processes. Understanding the role of these transcripts in the angiogenesis can facilitate design of therapeutic strategies to defeat the pathogenic events during this process especially in the human malignancies. Besides, angiogenesis-related mechanisms can improve tissue regeneration after conditions such as arteriosclerosis, myocardial infarction and limb ischemia. Thus, ncRNA-regulated angiogenesis can be involved in the pathogenesis of several disorders.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahdi Mohaqiq
- Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University, Winston-Salem, NC, USA
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Zhao Z, Sun W, Guo Z, Zhang J, Yu H, Liu B. Mechanisms of lncRNA/microRNA interactions in angiogenesis. Life Sci 2020; 254:116900. [DOI: 10.1016/j.lfs.2019.116900] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/09/2019] [Accepted: 09/20/2019] [Indexed: 12/12/2022]
|
16
|
Abstract
The advent of deep sequencing technologies led to the identification of a considerable amount of noncoding RNA transcripts, which are increasingly recognized for their functions in controlling cardiovascular diseases. MicroRNAs have already been studied for a decade, leading to the identification of several vasculoprotective and detrimental species, which might be considered for therapeutic targeting. Other noncoding RNAs such as circular RNAs, YRNAs, or long noncoding RNAs are currently gaining increasing attention, and first studies provide insights into their functions as mediators or antagonists of vascular diseases in vivo. The present review article will provide an overview of the different types of noncoding RNAs controlling the vasculature and focus on the developing field of long noncoding RNAs.
Collapse
Affiliation(s)
- Nicolas Jaé
- From the Institute for Cardiovascular Regeneration (N.J., S.D.), Goethe University Frankfurt, Germany
| | - Stefanie Dimmeler
- From the Institute for Cardiovascular Regeneration (N.J., S.D.), Goethe University Frankfurt, Germany.,Cardiopulmonary Institute (S.D.), Goethe University Frankfurt, Germany.,German Center for Cardiovascular Research (DZHK) and Cardiopulmonary Institute (CPI), Partner Site Rhine-Main, Frankfurt (S.D.)
| |
Collapse
|
17
|
Angioregulatory microRNAs in Colorectal Cancer. Cancers (Basel) 2019; 12:cancers12010071. [PMID: 31887997 PMCID: PMC7016698 DOI: 10.3390/cancers12010071] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer mortality. Angiogenesis is a rate-determining step in CRC development and metastasis. The balance of angiogenic and antiangiogenic factors is crucial in this process. Angiogenesis-related genes can be regulated post-transcriptionally by microRNAs (miRNAs) and some miRNAs have been shown to shuttle between tumor cells and the tumor microenvironment (TME). MiRNAs have context-dependent actions and can promote or suppress angiogenesis dependent on the type of cancer. On the one hand, miRNAs downregulate anti-angiogenic targets and lead to angiogenesis induction. Tumor suppressor miRNAs, on the other hand, enhance anti-angiogenic response by targeting pro-angiogenic factors. Understanding the interaction between these miRNAs and their target mRNAs will help to unravel molecular mechanisms involved in CRC progression. The aim of this article is to review the current literature on angioregulatory miRNAs in CRC.
Collapse
|
18
|
Qi K, Lin R, Xue C, Liu T, Wang Y, Zhang Y, Li J. Long Non-Coding RNA (LncRNA) CAIF is Downregulated in Osteoarthritis and Inhibits LPS-Induced Interleukin 6 (IL-6) Upregulation by Downregulation of MiR-1246. Med Sci Monit 2019; 25:8019-8024. [PMID: 31653823 PMCID: PMC6827483 DOI: 10.12659/msm.917135] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Background Osteoarthritis (OA) affects about 40% of people older than 40 years of age, and the mechanism is not well understood. Long non-coding RNA (lncRNA) CAIF is a recently identified critical player in myocardial infarction, while its role in other human diseases is unclear. The present study aimed to investigate the role of CAIF in OA. Material/Methods Levels of CAIF in synovial fluid of OA patients (n=60) and healthy controls (n=60) were measuring by performing quantitative real-time polymerase chain reaction (qRT-PCR). MiR-1246 and interleukin (IL)-6 levels in synovial fluid were measured by performing qRT-PCR and enzyme-linked immunosorbent assay (ELISA), respectively. Cell apoptosis analysis was performed after CHON-001 cells were treated with 500 mg/mL lipopolysaccharide (LPS) for 24 hours. Results We found that CAIF in synovial fluid was downregulated in OA patients and inversely correlated with miR-1246 and IL-6. Downregulated CAIF distinguished OA patients from healthy controls. In cells of chondrogenic cell line CHON-001, CAIF overexpression mediated the inhibited expression of miR-1246 and secretion of IL-6, while miR-1246 overexpression reduced the effects of CAIF overexpression on IL-6 secretion. In addition, CAIF overexpression inhibited the apoptosis of CHON-001 cells under LPS treatment, while miR-1246 overexpression attenuated the effects of CAIF overexpression. Conclusions Therefore, CAIF may downregulate miR-1246 to improve OA.
Collapse
Affiliation(s)
- Ke Qi
- Department of Joint Surgery, Changhai Hospital, Shanghai, China (mainland)
| | - Rongqiang Lin
- Department of Joint Surgery, Changhai Hospital, Shanghai, China (mainland)
| | - Chenchen Xue
- Department of Joint Surgery, Changhai Hospital, Shanghai, China (mainland)
| | - Tianze Liu
- Department of Joint Surgery, Changhai Hospital, Shanghai, China (mainland)
| | - Yiming Wang
- Department of Joint Surgery, Changhai Hospital, Shanghai, China (mainland)
| | - Yongjin Zhang
- Department of Joint Surgery, Changhai Hospital, Shanghai, China (mainland)
| | - Jia Li
- Department of Joint Surgery, Changhai Hospital, Shanghai, China (mainland)
| |
Collapse
|