1
|
Zhang JL, Xu MF, Chen J, Wei YL, She ZY. Kinesin-7 CENP-E mediates chromosome alignment and spindle assembly checkpoint in meiosis I. Chromosoma 2024; 133:149-168. [PMID: 38456964 DOI: 10.1007/s00412-024-00818-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 02/05/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
In eukaryotes, meiosis is the genetic basis for sexual reproduction, which is important for chromosome stability and species evolution. The defects in meiosis usually lead to chromosome aneuploidy, reduced gamete number, and genetic diseases, but the pathogenic mechanisms are not well clarified. Kinesin-7 CENP-E is a key regulator in chromosome alignment and spindle assembly checkpoint in cell division. However, the functions and mechanisms of CENP-E in male meiosis remain largely unknown. In this study, we have revealed that the CENP-E gene was highly expressed in the rat testis. CENP-E inhibition influences chromosome alignment and spindle organization in metaphase I spermatocytes. We have found that a portion of misaligned homologous chromosomes is located at the spindle poles after CENP-E inhibition, which further activates the spindle assembly checkpoint during the metaphase-to-anaphase transition in rat spermatocytes. Furthermore, CENP-E depletion leads to abnormal spermatogenesis, reduced sperm count, and abnormal sperm head structure. Our findings have elucidated that CENP-E is essential for homologous chromosome alignment and spindle assembly checkpoint in spermatocytes, which further contribute to chromosome stability and sperm cell quality during spermatogenesis.
Collapse
Affiliation(s)
- Jing-Lian Zhang
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, 350122, Fujian, China
| | - Meng-Fei Xu
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, 350122, Fujian, China
| | - Jie Chen
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, 350122, Fujian, China
| | - Ya-Lan Wei
- Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, 350001, Fujian, China
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Zhen-Yu She
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China.
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, 350122, Fujian, China.
| |
Collapse
|
2
|
Yang YH, Wei YL, She ZY. Kinesin-7 CENP-E in tumorigenesis: Chromosome instability, spindle assembly checkpoint, and applications. Front Mol Biosci 2024; 11:1366113. [PMID: 38560520 PMCID: PMC10978661 DOI: 10.3389/fmolb.2024.1366113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Kinesin motors are a large family of molecular motors that walk along microtubules to fulfill many roles in intracellular transport, microtubule organization, and chromosome alignment. Kinesin-7 CENP-E (Centromere protein E) is a chromosome scaffold-associated protein that is located in the corona layer of centromeres, which participates in kinetochore-microtubule attachment, chromosome alignment, and spindle assembly checkpoint. Over the past 3 decades, CENP-E has attracted great interest as a promising new mitotic target for cancer therapy and drug development. In this review, we describe expression patterns of CENP-E in multiple tumors and highlight the functions of CENP-E in cancer cell proliferation. We summarize recent advances in structural domains, roles, and functions of CENP-E in cell division. Notably, we describe the dual functions of CENP-E in inhibiting and promoting tumorigenesis. We summarize the mechanisms by which CENP-E affects tumorigenesis through chromosome instability and spindle assembly checkpoints. Finally, we overview and summarize the CENP-E-specific inhibitors, mechanisms of drug resistances and their applications.
Collapse
Affiliation(s)
- Yu-Hao Yang
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, China
| | - Ya-Lan Wei
- Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, China
- College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Zhen-Yu She
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, China
| |
Collapse
|
3
|
She ZY, Xu MF, Jiang SY, Wei YL. Kinesin-7 CENP-E is essential for chromosome alignment and spindle assembly of mouse spermatocytes. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119306. [PMID: 35680098 DOI: 10.1016/j.bbamcr.2022.119306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Genome stability depends on chromosome congression and alignment during cell division. Kinesin-7 CENP-E is critical for kinetochore-microtubule attachment and chromosome alignment, which contribute to genome stability in mitosis. However, the functions and mechanisms of CENP-E in the meiotic division of male spermatocytes remain largely unknown. In this study, by combining the use of chemical inhibitors, siRNA-mediated gene knockdown, immunohistochemistry, and high-resolution microscopy, we have found that CENP-E inhibition results in chromosome misalignment and metaphase arrest in dividing spermatocyte during meiosis. Strikingly, we have revealed that CENP-E regulates spindle organization in metaphase I spermatocytes and cultured GC-2 spd cells. CENP-E depletion leads to spindle elongation, chromosome misalignment, and chromosome instability in spermatocytes. Together, these findings indicate that CENP-E mediates the kinetochore recruitment of BubR1, spindle assembly checkpoint and chromosome alignment in dividing spermatocytes, which finally contribute to faithful chromosome segregation and chromosome stability in the male meiotic division.
Collapse
Affiliation(s)
- Zhen-Yu She
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China; Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian 350122, China.
| | - Meng-Fei Xu
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China; Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian 350122, China
| | - Sun-Ying Jiang
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China; Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian 350122, China
| | - Ya-Lan Wei
- Fujian Obstetrics and Gynecology Hospital, Fuzhou, Fujian 350011, China; Medical Research Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, China
| |
Collapse
|
4
|
Vukušić K, Tolić IM. Polar Chromosomes-Challenges of a Risky Path. Cells 2022; 11:1531. [PMID: 35563837 PMCID: PMC9101661 DOI: 10.3390/cells11091531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 12/29/2022] Open
Abstract
The process of chromosome congression and alignment is at the core of mitotic fidelity. In this review, we discuss distinct spatial routes that the chromosomes take to align during prometaphase, which are characterized by distinct biomolecular requirements. Peripheral polar chromosomes are an intriguing case as their alignment depends on the activity of kinetochore motors, polar ejection forces, and a transition from lateral to end-on attachments to microtubules, all of which can result in the delayed alignment of these chromosomes. Due to their undesirable position close to and often behind the spindle pole, these chromosomes may be particularly prone to the formation of erroneous kinetochore-microtubule interactions, such as merotelic attachments. To prevent such errors, the cell employs intricate mechanisms to preposition the spindle poles with respect to chromosomes, ensure the formation of end-on attachments in restricted spindle regions, repair faulty attachments by error correction mechanisms, and delay segregation by the spindle assembly checkpoint. Despite this protective machinery, there are several ways in which polar chromosomes can fail in alignment, mis-segregate, and lead to aneuploidy. In agreement with this, polar chromosomes are present in certain tumors and may even be involved in the process of tumorigenesis.
Collapse
Affiliation(s)
- Kruno Vukušić
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
| | | |
Collapse
|
5
|
Lou Y, Lu J, Zhang Y, Gu P, Wang H, Qian F, Zhou W, Zhang W, Zhong H, Han B. The centromere-associated protein CENPU promotes cell proliferation, migration, and invasiveness in lung adenocarcinoma. Cancer Lett 2022; 532:215599. [PMID: 35176420 DOI: 10.1016/j.canlet.2022.215599] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 01/19/2022] [Accepted: 02/13/2022] [Indexed: 12/01/2022]
Abstract
CENPU, encoding an important factor involved in kinetochore assembly during mitosis, is associated with shorter survival rates in lung adenocarcinoma (LUAD) patients. CENPU promotes growth rates and invasive behavior of LUAD cells; however, its mechanism of action in LUAD progression remains to be elucidated. CENPU mRNA and protein expression were elevated in LUAD tumors, and high CENPU gene expression was associated with inferior survival prognosis in LUAD patients. CENPU knockdown inhibited LUAD cell proliferation, clone formation, migration, invasion, and epithelial-mesenchymal transition (EMT) in addition to inducing cell cycle arrest and apoptosis in vitro and reduced LUAD xenograft tumor growth in vivo. Furthermore, we identified CENPU-regulated genes significantly enriched for proliferation and apoptosis pathways, and identified HSP Family Member C10 (DNAJC10) as putative effector of CENPU. CENPU knockdown produced DNAJC10 protein downregulation, and DNAJC10 overexpression partially rescued the phenotypic effects of CENPU knockdown in LUAD cells. Moreover, CENPU's coiled-coil domain was essential for CENPU's phenotypic effects in LUAD cells. In conclusion, the kinetochore component CENPU plays a critical role in LUAD cell proliferation and invasiveness. Targeting CENPU-DNAJC10 axis may inhibit LUAD tumor cell proliferation and metastasis.
Collapse
Affiliation(s)
- Yuqing Lou
- Department of Respiratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Lu
- Department of Respiratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yanwei Zhang
- Department of Respiratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Gu
- Department of Respiratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Huimin Wang
- Department of Respiratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Fangfei Qian
- Department of Respiratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Wensheng Zhou
- Department of Respiratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Zhang
- Department of Respiratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Hua Zhong
- Department of Respiratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Baohui Han
- Department of Respiratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
6
|
Aurora B Tension Sensing Mechanisms in the Kinetochore Ensure Accurate Chromosome Segregation. Int J Mol Sci 2021; 22:ijms22168818. [PMID: 34445523 PMCID: PMC8396173 DOI: 10.3390/ijms22168818] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 11/29/2022] Open
Abstract
The accurate segregation of chromosomes is essential for the survival of organisms and cells. Mistakes can lead to aneuploidy, tumorigenesis and congenital birth defects. The spindle assembly checkpoint ensures that chromosomes properly align on the spindle, with sister chromatids attached to microtubules from opposite poles. Here, we review how tension is used to identify and selectively destabilize incorrect attachments, and thus serves as a trigger of the spindle assembly checkpoint to ensure fidelity in chromosome segregation. Tension is generated on properly attached chromosomes as sister chromatids are pulled in opposing directions but resisted by centromeric cohesin. We discuss the role of the Aurora B kinase in tension-sensing and explore the current models for translating mechanical force into Aurora B-mediated biochemical signals that regulate correction of chromosome attachments to the spindle.
Collapse
|
7
|
Bloom CR, North BJ. Physiological relevance of post-translational regulation of the spindle assembly checkpoint protein BubR1. Cell Biosci 2021; 11:76. [PMID: 33892776 PMCID: PMC8066494 DOI: 10.1186/s13578-021-00589-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/15/2021] [Indexed: 12/29/2022] Open
Abstract
BubR1 is an essential component of the spindle assembly checkpoint (SAC) during mitosis where it functions to prevent anaphase onset to ensure proper chromosome alignment and kinetochore-microtubule attachment. Loss or mutation of BubR1 results in aneuploidy that precedes various potential pathologies, including cancer and mosaic variegated aneuploidy (MVA). BubR1 is also progressively downregulated with age and has been shown to be directly involved in the aging process through suppression of cellular senescence. Post-translational modifications, including but not limited to phosphorylation, acetylation, and ubiquitination, play a critical role in the temporal and spatial regulation of BubR1 function. In this review, we discuss the currently characterized post-translational modifications to BubR1, the enzymes involved, and the biological consequences to BubR1 functionality and implications in diseases associated with BubR1. Understanding the molecular mechanisms promoting these modifications and their roles in regulating BubR1 is important for our current understanding and future studies of BubR1 in maintaining genomic integrity as well as in aging and cancer.
Collapse
Affiliation(s)
- Celia R Bloom
- Biomedical Sciences Department, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE, 68178, USA
| | - Brian J North
- Biomedical Sciences Department, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE, 68178, USA.
| |
Collapse
|
8
|
Leaving no-one behind: how CENP-E facilitates chromosome alignment. Essays Biochem 2021; 64:313-324. [PMID: 32347304 PMCID: PMC7475649 DOI: 10.1042/ebc20190073] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/08/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023]
Abstract
Chromosome alignment and biorientation is essential for mitotic progression and genomic stability. Most chromosomes align at the spindle equator in a motor-independent manner. However, a subset of polar kinetochores fail to bi-orient and require a microtubule motor-based transport mechanism to move to the cell equator. Centromere Protein E (CENP-E/KIF10) is a kinesin motor from the Kinesin-7 family, which localizes to unattached kinetochores during mitosis and utilizes plus-end directed microtubule motility to slide mono-oriented chromosomes to the spindle equator. Recent work has revealed how CENP-E cooperates with chromokinesins and dynein to mediate chromosome congression and highlighted its role at aligned chromosomes. Additionally, we have gained new mechanistic insights into the targeting and regulation of CENP-E motor activity at the kinetochore. Here, we will review the function of CENP-E in chromosome congression, the pathways that contribute to CENP-E loading at the kinetochore, and how CENP-E activity is regulated during mitosis.
Collapse
|
9
|
She ZY, Yu KW, Wei YL, Zhong N, Lin Y. Kinesin-7 CENP-E regulates the formation and structural maintenance of the acrosome. Cell Tissue Res 2020; 383:1167-1182. [PMID: 33237480 DOI: 10.1007/s00441-020-03341-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 11/05/2020] [Indexed: 12/23/2022]
Abstract
The acrosome is a special organelle that develops from the Golgi apparatus and the endolysosomal compartment in the spermatids. Centromere protein E (CENP-E) is an essential kinesin motor in chromosome congression and alignment. This study is aimed at investigating the roles and mechanisms of kinesin-7 CENP-E in the formation of the acrosome during spermatogenesis. Male ICR mice are injected with GSK923295 for long-term inhibition of CENP-E. Chemical inhibition and siRNA-mediated knockdown of CENP-E are carried out in the GC-2 spd cells. The morphology of the acrosomes is determined by the HE staining, immunofluorescence, and transmission electron microscopy. We have identified CENP-E is a key factor in the formation and structural maintenance of the acrosome during acrosome biogenesis. Long-term inhibition of CENP-E by GSK923295 results in the asymmetric acrosome and the dispersed acrosome. CENP-E depletion leads to the malformation of the Golgi complex and abnormal targeting of the PICK1- and PIST-positive Golgi-associated vesicles. Our findings uncover an essential role of CENP-E in membrane trafficking and structural organization of the acrosome in the spermatids during spermatogenesis. Our results shed light on the molecular mechanisms involved in vesicle trafficking and architecture maintenance of the acrosome.
Collapse
Affiliation(s)
- Zhen-Yu She
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China. .,Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, 350122, Fujian, China.
| | - Kai-Wei Yu
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China.,Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, 350122, Fujian, China
| | - Ya-Lan Wei
- Fujian Obstetrics and Gynecology Hospital, Fuzhou, 350011, Fujian, China.,Medical Research Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Ning Zhong
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China.,Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, 350122, Fujian, China
| | - Yang Lin
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China.,Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, 350122, Fujian, China
| |
Collapse
|
10
|
Yu KW, She ZY, Wei YL, Zhong N. Kinesin-7 CENP-E regulates cell division, gastrulation and organogenesis in development. Eur J Cell Biol 2020; 99:151107. [PMID: 32800279 DOI: 10.1016/j.ejcb.2020.151107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/13/2020] [Accepted: 07/06/2020] [Indexed: 01/21/2023] Open
Abstract
Kinesin-7 CENP-E motor protein is essential for chromosome alignment and kinetochore-microtubule attachment in cell division. Human CENP-E has recently identified to be linked with the microcephalic primordial dwarfism syndromes associated with a smaller head, brain malformations and a prominent nose. However, the roles of CENP-E in embryonic development remain largely unknown. In this study, we find that zebrafish CENP-E inhibition results in defects in early zygote cleavage, including asymmetric cell division, cell cycle arrest and the developmental abnormalities. We also demonstrate that CENP-E ablation in cultured cells leads to chromosome misalignment, spindle abnormalities and interruptions of the cell cycle. These observations suggest that CENP-E plays a key role in early cell division and cell cycle progression. Furthermore, we also find that CENP-E inhibition results in the defects in the epiboly, the developmental arrest, the smaller head and the abnormal embryo during zebrafish embryogenesis. Our data demonstrate new functions of CENP-E in development and provide insights into its essential roles in organogenesis.
Collapse
Affiliation(s)
- Kai-Wei Yu
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122, China; Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian, 350122, China
| | - Zhen-Yu She
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122, China; Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian, 350122, China.
| | - Ya-Lan Wei
- Fujian Obstetrics and Gynecology Hospital, Fuzhou, Fujian, 350011, China; Medical Research Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350001, China
| | - Ning Zhong
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122, China; Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian, 350122, China
| |
Collapse
|
11
|
The Mitotic Apparatus and Kinetochores in Microcephaly and Neurodevelopmental Diseases. Cells 2019; 9:cells9010049. [PMID: 31878213 PMCID: PMC7016623 DOI: 10.3390/cells9010049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/18/2019] [Accepted: 12/21/2019] [Indexed: 12/15/2022] Open
Abstract
Regulators of mitotic division, when dysfunctional or expressed in a deregulated manner (over- or underexpressed) in somatic cells, cause chromosome instability, which is a predisposing condition to cancer that is associated with unrestricted proliferation. Genes encoding mitotic regulators are growingly implicated in neurodevelopmental diseases. Here, we briefly summarize existing knowledge on how microcephaly-related mitotic genes operate in the control of chromosome segregation during mitosis in somatic cells, with a special focus on the role of kinetochore factors. Then, we review evidence implicating mitotic apparatus- and kinetochore-resident factors in the origin of congenital microcephaly. We discuss data emerging from these works, which suggest a critical role of correct mitotic division in controlling neuronal cell proliferation and shaping the architecture of the central nervous system.
Collapse
|