1
|
Functional diversity: update of the posttranslational modification of Epstein-Barr virus coding proteins. Cell Mol Life Sci 2022; 79:590. [PMID: 36376593 DOI: 10.1007/s00018-022-04561-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/26/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022]
Abstract
Epstein-Barr virus (EBV), a human oncogenic herpesvirus with a typical life cycle consisting of latent phase and lytic phase, is associated with many human diseases. EBV can express a variety of proteins that enable the virus to affect host cell processes and evade host immunity. Additionally, these proteins provide a basis for the maintenance of viral infection, contribute to the formation of tumors, and influence the occurrence and development of related diseases. Posttranslational modifications (PTMs) are chemical modifications of proteins after translation and are very important to guarantee the proper biological functions of these proteins. Studies in the past have intensely investigated PTMs of EBV-encoded proteins. EBV regulates the progression of the latent phase and lytic phase by affecting the PTMs of its encoded proteins, which are critical for the development of EBV-associated human diseases. In this review, we summarize the PTMs of EBV-encoded proteins that have been discovered and studied thus far with focus on their effects on the viral life cycle.
Collapse
|
2
|
Xue M, Feng T, Chen Z, Yan Y, Chen Z, Dai J. Protein Acetylation Going Viral: Implications in Antiviral Immunity and Viral Infection. Int J Mol Sci 2022; 23:ijms231911308. [PMID: 36232610 PMCID: PMC9570087 DOI: 10.3390/ijms231911308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/10/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
During viral infection, both host and viral proteins undergo post-translational modifications (PTMs), including phosphorylation, ubiquitination, methylation, and acetylation, which play critical roles in viral replication, pathogenesis, and host antiviral responses. Protein acetylation is one of the most important PTMs and is catalyzed by a series of acetyltransferases that divert acetyl groups from acetylated molecules to specific amino acid residues of substrates, affecting chromatin structure, transcription, and signal transduction, thereby participating in the cell cycle as well as in metabolic and other cellular processes. Acetylation of host and viral proteins has emerging roles in the processes of virus adsorption, invasion, synthesis, assembly, and release as well as in host antiviral responses. Methods to study protein acetylation have been gradually optimized in recent decades, providing new opportunities to investigate acetylation during viral infection. This review summarizes the classification of protein acetylation and the standard methods used to map this modification, with an emphasis on viral and host protein acetylation during viral infection.
Collapse
Affiliation(s)
- Minfei Xue
- Department of Respiratory Medicine, Children’s Hospital of Soochow University, Soochow University, Suzhou 215025, China
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Tingting Feng
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Zhiqiang Chen
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Yongdong Yan
- Department of Respiratory Medicine, Children’s Hospital of Soochow University, Soochow University, Suzhou 215025, China
| | - Zhengrong Chen
- Department of Respiratory Medicine, Children’s Hospital of Soochow University, Soochow University, Suzhou 215025, China
- Correspondence: (Z.C.); (J.D.)
| | - Jianfeng Dai
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
- Correspondence: (Z.C.); (J.D.)
| |
Collapse
|
3
|
Li J, Liu J, Yu H, Zhao W, Xia X, You S, Zhang J, Tong H, Wei L. Sources, fates and treatment strategies of typical viruses in urban sewage collection/treatment systems: A review. DESALINATION 2022; 534:115798. [PMID: 35498908 PMCID: PMC9033450 DOI: 10.1016/j.desal.2022.115798] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
The ongoing coronavirus pandemic (COVID-19) throughout the world has severely threatened the global economy and public health. Due to receiving severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a wide variety of sources (e.g., households, hospitals, slaughterhouses), urban sewage treatment systems are regarded as an important path for the transmission of waterborne viruses. This review presents a quantitative profile of the concentration distribution of typical viruses within wastewater collection systems and evaluates the influence of different characteristics of sewer systems on virus species and concentration. Then, the efficiencies and mechanisms of virus removal in the units of wastewater treatment plants (WWTPs) are summarized and compared, among which the inactivation efficiencies of typical viruses by typical disinfection approaches under varied operational conditions are elucidated. Subsequently, the occurrence and removal of viruses in treated effluent reuse and desalination, as well as that in sewage sludge treatment, are discussed. Potential dissemination of viruses is emphasized by occurrence via aerosolization from toilets, the collection system and WWTP aeration, which might have a vital role in the transmission and spread of viruses. Finally, the frequency and concentration of viruses in reclaimed water, the probability of infection are also reviewed for discussing the potential health risks.
Collapse
Affiliation(s)
- Jianju Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jing Liu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
- School of Geosciences, China University of Petroleum, Qingdao 266580, China
| | - Hang Yu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Weixin Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xinhui Xia
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shijie You
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Zhang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hailong Tong
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
4
|
Weng SC, Shiao SH. SUMOylation Is Essential for Dengue Virus Replication and Transmission in the Mosquito Aedes aegypti. Front Microbiol 2022; 13:801284. [PMID: 35572621 PMCID: PMC9093690 DOI: 10.3389/fmicb.2022.801284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 04/04/2022] [Indexed: 11/22/2022] Open
Abstract
Small ubiquitin-like modifier (SUMO) is a reversible post-translational protein modifier. Protein SUMOylation regulates a wide variety of cellular processes and is important for controlling virus replication. Earlier studies suggest that dengue virus envelope protein interacts with Ubc9, the sole E2-conjugating enzyme required for protein SUMOylation in mammalian cells. However, little is known about the effect of protein SUMOylation on dengue virus replication in the major dengue vector, Aedes aegypti. Thus, in this study, we investigated the impact of protein SUMOylation on dengue virus replication in A. aegypti. The transcription of A. aegypti Ubc9 was significantly increased in the midgut after a normal blood meal. Silencing AaUbc9 resulted in significant inhibition of dengue virus NS1 protein production, viral genome transcription, and reduced viral titer in the mosquito saliva. In addition, we showed that dengue virus E proteins and prM proteins were SUMOylated post-infection. The amino acid residues K51 and K241 of dengue virus E protein were essential for protein SUMOylation. Taken together, our results reveal that protein SUMOylation contributes to dengue virus replication and transmission in the mosquito A. aegypti. This study introduces the possibility that protein SUMOylation is beneficial for virus replication and facilitates virus transmission from the mosquito.
Collapse
Affiliation(s)
- Shih-Che Weng
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shin-Hong Shiao
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
5
|
Zhao X, Wang J, Wang Y, Zhang M, Zhao W, Zhang H, Zhao L. Interferon‑stimulated gene 15 promotes progression of endometrial carcinoma and weakens antitumor immune response. Oncol Rep 2022; 47:110. [PMID: 35445736 PMCID: PMC9073416 DOI: 10.3892/or.2022.8321] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/14/2021] [Indexed: 11/24/2022] Open
Abstract
Endometrial carcinoma (EC) is one of the most common gynecological cancers with a poor prognosis. Therefore, clarifying the details of the molecular mechanisms is of great importance for EC diagnosis and clinical management. Interferon-stimulated gene 15 (ISG15) plays an important role in the development of various cancers. However, its role in EC remains unclear. High ISG15 expression was observed in EC, which was associated with poor clinical outcomes and pathological stage of patients with EC, thus representing a promising marker for EC progression. Further exploratory analysis revealed that the elevated ISG15 levels in EC were driven by aberrant DNA methylation, independent of copy number variation and specific transcription factor aberrations. Accordingly, knockdown of ISG15 by small interfering RNA attenuated the malignant cellular phenotype of EC cell lines, including proliferation and colony formation in vitro. Finally, investigation of the molecular mechanisms indicated that ISG15 promoted the cell cycle G1/S transition in EC. Furthermore, ISG15 promoted EC progression by activating the MYC proto-oncogene protein signaling pathway. Moreover, ECs with high levels of ISG15 harbored a more vital immune escape ability, evidenced not only by significantly less invasive CD8+ T cells, but also higher expression of T cell inhibitory factors, such as programmed death-ligand 1. These results suggest a tumor-promoting role of ISG15 in EC, which may be a promising marker for diagnosis, prognosis and therapeutic immunity.
Collapse
Affiliation(s)
- Xiwa Zhao
- Department of Obstetrics and Gynecology, The Fourth Hospital, Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Jingjing Wang
- The Research Center, The Fourth Hospital, Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Yaojie Wang
- The Research Center, The Fourth Hospital, Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Mengmeng Zhang
- Department of Obstetrics and Gynecology, The Fourth Hospital, Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Wei Zhao
- Department of Obstetrics and Gynecology, The Fourth Hospital, Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Hui Zhang
- Department of Obstetrics and Gynecology, The Fourth Hospital, Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Lianmei Zhao
- The Research Center, The Fourth Hospital, Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
6
|
N-Acetyltransferase 8 Promotes Viral Replication by Increasing the Stability of Enterovirus 71 Nonstructural Proteins. J Virol 2022; 96:e0011922. [PMID: 35170979 PMCID: PMC8941898 DOI: 10.1128/jvi.00119-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterovirus 71 (EV71) is deemed as a re-emergent pathogen with recent outbreaks worldwide. EV71 infection causes hand, foot and mouth disease (HFMD) and has been associated with severe cardiac and central nervous system complications and even death. Viruses need host factors to complete their life cycle, thus the identification of the host factors for EV71 infection is pivotal to new antiviral research. Emerging evidence has highlighted the importance of protein acetylation during infection of various human viruses. The endoplasmic reticulum, as the prominent organelle of EV71 replication, also has its unique acetylation regulation mechanism. However, the pathogenesis of EV71 and its relationship with the ER-based acetylation machinery are not fully understood. In this study, we demonstrated for the first time that the ER-resident acetyltransferase NAT8 is a host factor for EV71 infection. Inhibiting NAT8 with CRISPR or a small compound significantly suppressed EV71 infection in SK-N-SH cells. NAT8 promoted EV71 replication in an acetyltransferase activity-dependent manner. Additionally, we found NAT8 facilitates EV71 infection through interacting with EV71 2B,3AB and 3C proteins and increasing the stability of these proteins. These results uncovered a novel function of NAT8 and elucidated a new mechanism underlying the regulation of EV71 replication. Importance Enterovirus 71 (EV71) is one of the most common pathogens that cause hand, foot and mouth disease in young children and some patients experience severe or fatal neurologic consequences. To ensure efficient replication, the virus must hijack multiple host factors for its own benefit. Here we show that the ER-resident acetyltransferase NAT8 is a host factor for EV71 infection. EV71 fails to complete its infection in various cells in the absence of NAT8. We further show that NAT8 benefits EV71 replication in an acetyltransferase activity-dependent manner. Finally, we show that NAT8 facilitates EV71 infection through interacting with EV71 2B,3AB and 3C proteins and increasing the stability of these proteins. These results uncovered a novel function of NAT8 in EV71 infection and elucidated a new mechanism underlying the regulation of EV71 replication.
Collapse
|
7
|
Rouka E, Gourgoulianis KI, Zarogiannis SG. In silico investigation of the viroporin E as a vaccine target against SARS-CoV-2. Am J Physiol Lung Cell Mol Physiol 2021; 320:L1057-L1063. [PMID: 33822639 PMCID: PMC8203416 DOI: 10.1152/ajplung.00443.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Viroporins, integral viral membrane ion channel proteins, interact with host-cell proteins deregulating physiological processes and activating inflammasomes. Severity of COVID-19 might be associated with hyperinflammation, thus we aimed at the complete immunoinformatic analysis of the SARS-CoV-2 viroporin E, P0DTC4. We also identified the human proteins interacting with P0DTC4 and the enriched molecular functions of the corresponding genes. The complete sequence of P0DTC4 in FASTA format was processed in 10 databases relative to secondary and tertiary protein structure analyses and prediction of optimal vaccine epitopes. Three more databases were accessed for the retrieval and the molecular functional characterization of the P0DTC4 human interactors. The immunoinformatics analysis resulted in the identification of 4 discontinuous B-cell epitopes along with 1 linear B-cell epitope and 11 T-cell epitopes which were found to be antigenic, immunogenic, nonallergen, nontoxin, and unable to induce autoimmunity thus fulfilling prerequisites for vaccine design. The functional enrichment analysis showed that the predicted host interactors of P0DTC4 target the cellular acetylation network. Two of the identified host-cell proteins – BRD2 and BRD4 – have been shown to be promising targets for antiviral therapy. Thus, our findings have implications for COVID-19 therapy and indicate that viroporin E could serve as a promising vaccine target against SARS-CoV-2. Validation experiments are required to complement these in silico results.
Collapse
Affiliation(s)
- Erasmia Rouka
- Department of Respiratory Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, Larissa, Greece.,Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, Larissa, Greece
| | - Konstantinos I Gourgoulianis
- Department of Respiratory Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, Larissa, Greece
| | - Sotirios G Zarogiannis
- Department of Respiratory Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, Larissa, Greece.,Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, Larissa, Greece
| |
Collapse
|
8
|
Fang J, Qiao S, Wang K, Li R, Wang L, Li H, Zhang G. Quantitative Proteomic Analysis of Global Protein Acetylation in PRRSV-Infected Pulmonary Alveolar Macrophages. Proteomics 2020; 21:e2000019. [PMID: 33296138 DOI: 10.1002/pmic.202000019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 11/14/2020] [Indexed: 01/24/2023]
Abstract
Porcine reproductive and respiratory syndrome (PRRS), caused by PRRS virus (PRRSV), is a serious viral disease affecting global swine industry. Due to the lack of effective vaccines, new antiviral strategies to compensate for the inefficacy of available vaccines are urgently required. Lysine acetylation, as an important post-translational modification during infection, plays a key regulatory role in host antiviral responses. In this study, the global acetylome is profiled using acetylation specific antibody-based enrichment and tandem mass tag label high-affinity purification liquid chromatography-mass spectrometry in PRRSV-infected pulmonary alveolar macrophages (PAMs). As a result, 3731 lysine acetylation sites on 1421 cellular proteins are identified. Bioinformatics analysis of the different acetylated proteins revealed their involvement in various biological processes, including the host immune response and energy metabolism. These findings will contribute to the understanding of PRRSV pathogenesis and identify new cellular targets for anti-PPRSV therapeutics.
Collapse
Affiliation(s)
- Jianyu Fang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Songlin Qiao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Keling Wang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Rui Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Lei Wang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Haili Li
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Gaiping Zhang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
9
|
Han N, Yan L, Wang X, Sun X, Huang F, Tang H. An updated literature review: how HBV X protein regulates the propagation of the HBV. Future Virol 2020. [DOI: 10.2217/fvl-2020-0251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chronic HBV infection constitutes a burden on human beings and is closely associated with hepatocellular carcinoma. The propagation of the HBV is determined by many factors, and the HBV X protein (HBx) could have a significant influence on this. HBx is a regulatory protein that can directly or indirectly interact with many cellular proteins to affect both the propagation of the HBV and the activity of the host cells. In this review, we summarized the possible mechanisms by which HBx regulates HBV replication at transcriptional and post-transcriptional levels in various experimental systems.
Collapse
Affiliation(s)
- Ning Han
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, PR China
| | - Libo Yan
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, PR China
| | - Xueer Wang
- Department of Forensic Pathology, West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China
| | - Xuehong Sun
- Department of Forensic Pathology, West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China
| | - Feijun Huang
- Department of Forensic Pathology, West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, PR China
| |
Collapse
|
10
|
Catalytic activity regulation through post-translational modification: the expanding universe of protein diversity. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 122:97-125. [PMID: 32951817 PMCID: PMC7320668 DOI: 10.1016/bs.apcsb.2020.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein composition is restricted by the genetic code to a relatively small number of natural amino acids. Similarly, the known three-dimensional structures adopt a limited number of protein folds. However, proteins exert a large variety of functions and show a remarkable ability for regulation and immediate response to intracellular and extracellular stimuli. To some degree, the wide variability of protein function can be attributed to the post-translational modifications. Post-translational modifications have been observed in all kingdoms of life and give to proteins a significant degree of chemical and consequently functional and structural diversity. Their importance is partly reflected in the large number of genes dedicated to their regulation. So far, hundreds of post-translational modifications have been observed while it is believed that many more are to be discovered along with the technological advances in sequencing, proteomics, mass spectrometry and structural biology. Indeed, the number of studies which report novel post translational modifications is getting larger supporting the notion that their space is still largely unexplored. In this review we explore the impact of post-translational modifications on protein structure and function with emphasis on catalytic activity regulation. We present examples of proteins and protein families whose catalytic activity is substantially affected by the presence of post translational modifications and we describe the molecular basis which underlies the regulation of the protein function through these modifications. When available, we also summarize the current state of knowledge on the mechanisms which introduce these modifications to protein sites.
Collapse
|
11
|
Chen N, Kong X, Zhao S, Xiaofeng W. Post-translational modification of baculovirus-encoded proteins. Virus Res 2020; 279:197865. [DOI: 10.1016/j.virusres.2020.197865] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/10/2020] [Accepted: 01/12/2020] [Indexed: 02/03/2023]
|