1
|
Baechler SA, Saha LK, Factor VM, Chitnis C, Dhall A, Becker D, Marquardt JU, Pommier Y. Mitochondrial topoisomerase I (Top1MT) prevents the onset of metabolic dysfunction-associated steatohepatitis (MASH) in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611454. [PMID: 39372760 PMCID: PMC11451593 DOI: 10.1101/2024.09.05.611454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
High fat (HF) diet is a major factor in the development of metabolic dysfunction-associated steatotic liver disease (MASLD) and steatohepatis (MASH), and mitochondria have been proposed to play a role in the pathogenesis of HF diet-induced MASH. Because Mitochondrial topoisomerase I (Top1MT) is exclusively present in mitochondria and Top1MT knock-out mice are viable, we were able to assess the role of Top1MT in the development of MASH. We show that after 16 weeks of HF diet, mice lacking Top1MT are prone to the development of severe MASH characterized by liver steatosis, lobular inflammation and hepatocyte damage. Mice lacking Top1MT also show prominent mitochondrial dysfunction, ROS production and mitochondrial DNA (mtDNA) release, accompanied by hepatic inflammation and fibrosis. In summary, our study demonstrates the importance of Top1MT in sustaining hepatocyte functions and suppressing MASH.
Collapse
Affiliation(s)
- SA Baechler
- Laboratory of Molecular Pharmacology & Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, 20892, USA
| | - LK Saha
- Laboratory of Molecular Pharmacology & Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, 20892, USA
| | - VM Factor
- Laboratory of Molecular Pharmacology & Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, 20892, USA
| | - C Chitnis
- Laboratory of Molecular Pharmacology & Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, 20892, USA
| | - A Dhall
- Laboratory of Molecular Pharmacology & Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, 20892, USA
| | - D Becker
- Department of Medicine I, Johannes Gutenberg-University, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - JU Marquardt
- Department of Medicine I, Johannes Gutenberg-University, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Y Pommier
- Laboratory of Molecular Pharmacology & Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, 20892, USA
| |
Collapse
|
2
|
Xiao Y, Gao L, Zhao X, Zhao W, Mai L, Ma C, Han Y, Li X. Novel prognostic alternative splicing events in colorectal Cancer: Impact on immune infiltration and therapy response. Int Immunopharmacol 2024; 139:112603. [PMID: 39043103 DOI: 10.1016/j.intimp.2024.112603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/06/2024] [Accepted: 06/29/2024] [Indexed: 07/25/2024]
Abstract
OBJECTIVE This study aims to comprehensively analyze alternative splicing (AS) features in colorectal cancer (CRC) using integrative multi-omics and to elucidate their relationship with the CRC immune microenvironment. METHODS Transcriptomic data, clinical information, and Percent Spliced In (PSI) values of AS events for CRC patients were obtained from The Cancer Genome Atlas (TCGA) and TCGA SpliceSeq databases. Differentially expressed AS events were identified. Univariate Cox analysis was used to pinpoint prognosis-related AS events. A prognostic risk model was developed and validated using multivariate Cox analysis, patient survival analysis, and the area under the receiver operating characteristic (ROC) curve (AUC). Gene Set Enrichment Analysis (GSEA), immune infiltration, immunotherapy, chemotherapy sensitivity analyses, and regulatory relationships between AS events and splicing factors (SFs) were conducted. Single-cell sequencing was used to study the distribution of key factors. siRNA and overexpression vectors were utilized to silence/overexpress BCAS1 in CRC cells and evaluate their effects on cell growth, migration, and invasion. Furthermore, the interaction between BCAS1 and ANO7 pre-mRNA was investigated using RIP-PCR. RESULTS 82 prognosis-related AS events were identified in CRC patients. A 15-AS prognostic model was constructed, which correlated with immune cell infiltration and showed differences in immunotherapy and chemotherapy sensitivity. BCAS1 was identified as a potential regulator of the ANO7|58341|AT splicing event in CRC. Single-cell sequencing analysis revealed the distribution of BCAS1 and ANO7 in cancer stem cells. In vitro experiments demonstrated that overexpression of BCAS1 and silencing of ANO7 inhibit the proliferation, migration, and invasion of CRC cells. Moreover, BCAS1 suppresses the progression of CRC by modulating ANO7 alternative splicing. CONCLUSION This study provides new insights into the role of alternative splicing in colorectal cancer, particularly the potential regulatory action of BCAS1 on the ANO7|58341|AT splicing event. It also identifies the impact of alternative splicing on the tumor microenvironment and potential implications for immunotherapy, highlighting its relevance for the in-depth study and treatment of CRC.
Collapse
Affiliation(s)
- Yizhi Xiao
- Department of Gastroenterology, Fifth Affiliated Hospital of Sun Yat-sen University, No. 52, Meihua East Road, Xiangzhou District, Zhuhai 519000, Guangdong Province, China
| | - Liangqing Gao
- Department of Gastroenterology, Fifth Affiliated Hospital of Sun Yat-sen University, No. 52, Meihua East Road, Xiangzhou District, Zhuhai 519000, Guangdong Province, China
| | - Xiaojuan Zhao
- Department of Gastroenterology, Fifth Affiliated Hospital of Sun Yat-sen University, No. 52, Meihua East Road, Xiangzhou District, Zhuhai 519000, Guangdong Province, China
| | - Wang Zhao
- Department of Gastroenterology, Fifth Affiliated Hospital of Sun Yat-sen University, No. 52, Meihua East Road, Xiangzhou District, Zhuhai 519000, Guangdong Province, China
| | - Lei Mai
- Department of Gastroenterology, Fifth Affiliated Hospital of Sun Yat-sen University, No. 52, Meihua East Road, Xiangzhou District, Zhuhai 519000, Guangdong Province, China
| | - Chengmin Ma
- Department of Gastroenterology, Fifth Affiliated Hospital of Sun Yat-sen University, No. 52, Meihua East Road, Xiangzhou District, Zhuhai 519000, Guangdong Province, China
| | - Yanzhi Han
- Department of Gastroenterology, Fifth Affiliated Hospital of Sun Yat-sen University, No. 52, Meihua East Road, Xiangzhou District, Zhuhai 519000, Guangdong Province, China.
| | - Xiaofeng Li
- Department of Gastroenterology, Fifth Affiliated Hospital of Sun Yat-sen University, No. 52, Meihua East Road, Xiangzhou District, Zhuhai 519000, Guangdong Province, China.
| |
Collapse
|
3
|
Wang H, Sun X, Yang C, Li Z, Jin D, Zhu W, Yu Z. Deficiency of TOP1MT enhances glycolysis through the stimulation of PDK4 expression in gastric cancer. Cancer Metab 2024; 12:2. [PMID: 38200513 PMCID: PMC10777619 DOI: 10.1186/s40170-024-00330-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Abnormal glucose metabolism is one of the determinants of maintaining malignant characteristics of cancer. Targeting cancer metabolism is regarded as a new strategy for cancer treatment. Our previous studies have found that TOP1MT is a crucial gene that inhibits glycolysis and cell metastasis of gastric cancer (GC) cells, but the mechanism of its regulation of glycolysis remains unclear. METHODS Transcriptome sequencing data, clinic-pathologic features of GC from a variety of public databases, and WGCNA were used to identify novel targets of TOP1MT. Immunohistochemical results of 250 patients with GC were used to analyze the relative expression relationship between TOP1MT and PDK4. The function of TOP1MT was investigated by migration assays and sea-horse analysis in vitro. RESULTS We discovered a mitochondrial topoisomerase I, TOP1MT, which correlated with a higher risk of metastasis. Functional experiments revealed that TOP1MT deficiency promotes cell migration and glycolysis through increasing PDK4 expression. Additionally, the stimulating effect of TOP1MT on glycolysis may be effectively reversed by PDK4 inhibitor M77976. CONCLUSIONS In brief, our work demonstrated the critical function of TOP1MT in the regulation of glycolysis by PDK4 in gastric cancer. Inhibiting glycolysis and limiting tumor metastasis in GC may be accomplished by suppressing PDK4.
Collapse
Affiliation(s)
- Hongqiang Wang
- Cancer Chemotherapy Center, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, China
| | - Xutao Sun
- Department of General Surgery, Zhoushan Hospital, Wenzhou Medical University, No. 739 Dingshen Road, Lincheng New District, Zhoushan, Zhejiang, 316021, China
| | - Chen Yang
- Department of General Surgery, Zhoushan Hospital, Wenzhou Medical University, No. 739 Dingshen Road, Lincheng New District, Zhoushan, Zhejiang, 316021, China
| | - Ziqi Li
- The Laboratory of Cytobiology and Molecular Biology, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, China
| | - Danwen Jin
- Department of Pathology, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, China
| | - Wenwen Zhu
- Cancer Chemotherapy Center, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, China
| | - Ze Yu
- Department of General Surgery, Zhoushan Hospital, Wenzhou Medical University, No. 739 Dingshen Road, Lincheng New District, Zhoushan, Zhejiang, 316021, China.
- The Laboratory of Cytobiology and Molecular Biology, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, China.
| |
Collapse
|
4
|
Al Khatib I, Deng J, Symes A, Kerr M, Zhang H, Huang SYN, Pommier Y, Khan A, Shutt TE. Functional characterization of two variants of mitochondrial topoisomerase TOP1MT that impact regulation of the mitochondrial genome. J Biol Chem 2022; 298:102420. [PMID: 36030054 PMCID: PMC9513266 DOI: 10.1016/j.jbc.2022.102420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/21/2022] Open
Abstract
TOP1MT encodes a mitochondrial topoisomerase that is important for mtDNA regulation and is involved in mitochondrial replication, transcription, and translation. Two variants predicted to affect TOP1MT function (V1 - R198C and V2 - V338L) were identified by exome sequencing of a newborn with hypertrophic cardiomyopathy. As no pathogenic TOP1MT variants had been confirmed previously, we characterized these variants for their ability to rescue several TOP1MT functions in KO cells. Consistent with these TOP1MT variants contributing to the patient phenotype, our comprehensive characterization suggests that both variants had impaired activity. Critically, we determined neither variant was able to restore steady state levels of mitochondrial-encoded proteins nor to rescue oxidative phosphorylation when re-expressed in TOP1MT KO cells. However, we found the two variants behaved differently in some respects; while the V1 variant was more efficient in restoring transcript levels, the V2 variant showed better rescue of mtDNA copy number and replication. These findings suggest that the different TOP1MT variants affect distinct TOP1MT functions. Altogether, these findings begin to provide insight into the many roles that TOP1MT plays in the maintenance and expression of the mitochondrial genome and how impairments in this important protein may lead to human pathology.
Collapse
Affiliation(s)
- Iman Al Khatib
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jingti Deng
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Andrew Symes
- Department of Geomatics Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| | | | - Hongliang Zhang
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland, USA
| | - Shar-Yin Naomi Huang
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland, USA
| | - Yves Pommier
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland, USA
| | - Aneal Khan
- Discovery DNA, Calgary, Alberta, Canada; M.A.G.I.C. Clinic Ltd (Metabolics and Genetics in Calgary), Department of Pediatrics, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Timothy E Shutt
- Departments of Biochemistry & Molecular Biology and Medical Genetics, Cumming School of Medicine, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
5
|
Tong T, Qin X, Jiang Y, Guo H, Wang X, Li Y, Xie F, Lu H, Zhai P, Ma H, Zhang J. A novel CREB5/TOP1MT axis confers cisplatin resistance through inhibiting mitochondrial apoptosis in head and neck squamous cell carcinoma. BMC Med 2022; 20:231. [PMID: 35773668 PMCID: PMC9248137 DOI: 10.1186/s12916-022-02409-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cisplatin resistance is one of the main causes of treatment failure and death in head and neck squamous cell carcinoma (HNSCC). A more comprehensive understanding of the cisplatin resistance mechanism and the development of effective treatment strategies are urgent. METHODS RNA sequencing, RT-PCR, and immunoblotting were used to identify differentially expressed genes associated with cisplatin resistance. Gain- and loss-of-function experiments were performed to detect the effect of CREB5 on cisplatin resistance and mitochondrial apoptosis in HNSCC. Chromatin immunoprecipitation (ChIP) assay, dual-luciferase reporter assay, and immunoblotting experiments were performed to explore the underlying mechanisms of CREB5. RESULTS CREB5 was significantly upregulated in cisplatin-resistant HNSCC (CR-HNSCC) patients, which was correlated with poor prognosis. CREB5 overexpression strikingly facilitated the cisplatin resistance of HNSCC cells in vitro and in vivo, while CREB5 knockdown enhanced cisplatin sensitivity in CR-HNSCC cells. Interestingly, the activation of AKT signaling induced by cisplatin promoted nucleus translocation of CREB5 in CR-HNSCC cells. Furthermore, CREB5 transcriptionally activated TOP1MT expression depending on the canonical motif. Moreover, CREB5 silencing could trigger mitochondrial apoptosis and overcome cisplatin resistance in CR-HNSCC cells, which could be reversed by TOP1MT overexpression. Additionally, double-targeting of CREB5 and TOP1MT could combat cisplatin resistance of HNSCC in vivo. CONCLUSIONS Our findings reveal a novel CREB5/TOP1MT axis conferring cisplatin resistance in HNSCC, which provides a new basis to develop effective strategies for overcoming cisplatin resistance.
Collapse
Affiliation(s)
- Tong Tong
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Rd, Shanghai, 200011, People's Republic of China.,Department of Oral and Maxillofacial Surgery, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200001, People's Republic of China.,Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200002, People's Republic of China
| | - Xing Qin
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Rd, Shanghai, 200011, People's Republic of China
| | - Yingying Jiang
- Department of Dentistry, Affiliated Hospital of Weifang Medical University, Weifang, 261000, People's Republic of China
| | - Haiyan Guo
- Department of Clinical Laboratory, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Xiaoning Wang
- Department of Oral Pathology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Yan Li
- Shanghai Institute of Immunology Center for Microbiota & Immune Related Diseases, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People's Republic of China
| | - Fei Xie
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Rd, Shanghai, 200011, People's Republic of China
| | - Hao Lu
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Rd, Shanghai, 200011, People's Republic of China
| | - Peisong Zhai
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Rd, Shanghai, 200011, People's Republic of China
| | - Hailong Ma
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Rd, Shanghai, 200011, People's Republic of China.
| | - Jianjun Zhang
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Rd, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
6
|
Carvalho G, Repolês BM, Mendes I, Wanrooij PH. Mitochondrial DNA Instability in Mammalian Cells. Antioxid Redox Signal 2022; 36:885-905. [PMID: 34015960 PMCID: PMC9127837 DOI: 10.1089/ars.2021.0091] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023]
Abstract
Significance: The small, multicopy mitochondrial genome (mitochondrial DNA [mtDNA]) is essential for efficient energy production, as alterations in its coding information or a decrease in its copy number disrupt mitochondrial ATP synthesis. However, the mitochondrial replication machinery encounters numerous challenges that may limit its ability to duplicate this important genome and that jeopardize mtDNA stability, including various lesions in the DNA template, topological stress, and an insufficient nucleotide supply. Recent Advances: An ever-growing array of DNA repair or maintenance factors are being reported to localize to the mitochondria. We review current knowledge regarding the mitochondrial factors that may contribute to the tolerance or repair of various types of changes in the mitochondrial genome, such as base damage, incorporated ribonucleotides, and strand breaks. We also discuss the newly discovered link between mtDNA instability and activation of the innate immune response. Critical Issues: By which mechanisms do mitochondria respond to challenges that threaten mtDNA maintenance? What types of mtDNA damage are repaired, and when are the affected molecules degraded instead? And, finally, which forms of mtDNA instability trigger an immune response, and how? Future Directions: Further work is required to understand the contribution of the DNA repair and damage-tolerance factors present in the mitochondrial compartment, as well as the balance between mtDNA repair and degradation. Finally, efforts to understand the events underlying mtDNA release into the cytosol are warranted. Pursuing these and many related avenues can improve our understanding of what goes wrong in mitochondrial disease. Antioxid. Redox Signal. 36, 885-905.
Collapse
Affiliation(s)
- Gustavo Carvalho
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Bruno Marçal Repolês
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Isabela Mendes
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Paulina H. Wanrooij
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| |
Collapse
|
7
|
Sun Y, Nitiss JL, Pommier Y. SUMO: A Swiss Army Knife for Eukaryotic Topoisomerases. Front Mol Biosci 2022; 9:871161. [PMID: 35463961 PMCID: PMC9019546 DOI: 10.3389/fmolb.2022.871161] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/11/2022] [Indexed: 01/03/2023] Open
Abstract
Topoisomerases play crucial roles in DNA metabolism that include replication, transcription, recombination, and chromatin structure by manipulating DNA structures arising in double-stranded DNA. These proteins play key enzymatic roles in a variety of cellular processes and are also likely to play structural roles. Topoisomerases allow topological transformations by introducing transient breaks in DNA by a transesterification reaction between a tyrosine residue of the enzyme and DNA. The cleavage reaction leads to a unique enzyme intermediate that allows cutting DNA while minimizing the potential for damage-induced genetic changes. Nonetheless, topoisomerase-mediated cleavage has the potential for inducing genome instability if the enzyme-mediated DNA resealing is impaired. Regulation of topoisomerase functions is accomplished by post-translational modifications including phosphorylation, polyADP-ribosylation, ubiquitylation, and SUMOylation. These modifications modulate enzyme activity and likely play key roles in determining sites of enzyme action and enzyme stability. Topoisomerase-mediated DNA cleavage and rejoining are affected by a variety of conditions including the action of small molecules, topoisomerase mutations, and DNA structural forms which permit the conversion of the short-lived cleavage intermediate to persistent topoisomerase DNA-protein crosslink (TOP-DPC). Recognition and processing of TOP-DPCs utilizes many of the same post-translational modifications that regulate enzyme activity. This review focuses on SUMOylation of topoisomerases, which has been demonstrated to be a key modification of both type I and type II topoisomerases. Special emphasis is placed on recent studies that indicate how SUMOylation regulates topoisomerase function in unperturbed cells and the unique roles that SUMOylation plays in repairing damage arising from topoisomerase malfunction.
Collapse
Affiliation(s)
- Yilun Sun
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | - John L. Nitiss
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois, Rockford, IL, United States
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| |
Collapse
|
8
|
Pommier Y, Nussenzweig A, Takeda S, Austin C. Human topoisomerases and their roles in genome stability and organization. Nat Rev Mol Cell Biol 2022; 23:407-427. [PMID: 35228717 PMCID: PMC8883456 DOI: 10.1038/s41580-022-00452-3] [Citation(s) in RCA: 178] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2022] [Indexed: 12/15/2022]
Abstract
Human topoisomerases comprise a family of six enzymes: two type IB (TOP1 and mitochondrial TOP1 (TOP1MT), two type IIA (TOP2A and TOP2B) and two type IA (TOP3A and TOP3B) topoisomerases. In this Review, we discuss their biochemistry and their roles in transcription, DNA replication and chromatin remodelling, and highlight the recent progress made in understanding TOP3A and TOP3B. Because of recent advances in elucidating the high-order organization of the genome through chromatin loops and topologically associating domains (TADs), we integrate the functions of topoisomerases with genome organization. We also discuss the physiological and pathological formation of irreversible topoisomerase cleavage complexes (TOPccs) as they generate topoisomerase DNA–protein crosslinks (TOP-DPCs) coupled with DNA breaks. We discuss the expanding number of redundant pathways that repair TOP-DPCs, and the defects in those pathways, which are increasingly recognized as source of genomic damage leading to neurological diseases and cancer. Topoisomerases have essential roles in transcription, DNA replication, chromatin remodelling and, as recently revealed, 3D genome organization. However, topoisomerases also generate DNA–protein crosslinks coupled with DNA breaks, which are increasingly recognized as a source of disease-causing genomic damage.
Collapse
|
9
|
Menger KE, Rodríguez-Luis A, Chapman J, Nicholls TJ. Controlling the topology of mammalian mitochondrial DNA. Open Biol 2021; 11:210168. [PMID: 34547213 PMCID: PMC8455175 DOI: 10.1098/rsob.210168] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The genome of mitochondria, called mtDNA, is a small circular DNA molecule present at thousands of copies per human cell. MtDNA is packaged into nucleoprotein complexes called nucleoids, and the density of mtDNA packaging affects mitochondrial gene expression. Genetic processes such as transcription, DNA replication and DNA packaging alter DNA topology, and these topological problems are solved by a family of enzymes called topoisomerases. Within mitochondria, topoisomerases are involved firstly in the regulation of mtDNA supercoiling and secondly in disentangling interlinked mtDNA molecules following mtDNA replication. The loss of mitochondrial topoisomerase activity leads to defects in mitochondrial function, and variants in the dual-localized type IA topoisomerase TOP3A have also been reported to cause human mitochondrial disease. We review the current knowledge on processes that alter mtDNA topology, how mtDNA topology is modulated by the action of topoisomerases, and the consequences of altered mtDNA topology for mitochondrial function and human health.
Collapse
Affiliation(s)
- Katja E. Menger
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Alejandro Rodríguez-Luis
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - James Chapman
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Thomas J. Nicholls
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
10
|
He L, Xiong K, Wang L, Guan R, Chen Y, Ji L, Chao H. Iridium(iii) complexes as mitochondrial topoisomerase inhibitors against cisplatin-resistant cancer cells. Chem Commun (Camb) 2021; 57:8308-8311. [PMID: 34319315 DOI: 10.1039/d1cc02178h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Herein, we developed the first metal-based mitochondrial topoisomerase inhibitors to achieve an effective therapeutic outcome for the therapy of cisplatin-resistant tumour cells.
Collapse
Affiliation(s)
- Liting He
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
11
|
Anthracycline-induced cardiomyopathy: cellular and molecular mechanisms. Clin Sci (Lond) 2021; 134:1859-1885. [PMID: 32677679 DOI: 10.1042/cs20190653] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023]
Abstract
Despite the known risk of cardiotoxicity, anthracyclines are widely prescribed chemotherapeutic agents. They are broadly characterized as being a robust effector of cellular apoptosis in rapidly proliferating cells through its actions in the nucleus and formation of reactive oxygen species (ROS). And, despite the early use of dexrazoxane, no effective treatment strategy has emerged to prevent the development of cardiomyopathy, despite decades of study, suggesting that much more insight into the underlying mechanism of the development of cardiomyopathy is needed. In this review, we detail the specific intracellular activities of anthracyclines, from the cell membrane to the sarcoplasmic reticulum, and highlight potential therapeutic windows that represent the forefront of research into the underlying causes of anthracycline-induced cardiomyopathy.
Collapse
|
12
|
Li N, Zhan X. Anti-parasite drug ivermectin can suppress ovarian cancer by regulating lncRNA-EIF4A3-mRNA axes. EPMA J 2020; 11:289-309. [PMID: 32549918 PMCID: PMC7272521 DOI: 10.1007/s13167-020-00209-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/07/2020] [Indexed: 12/16/2022]
Abstract
RELEVANCE Ivermectin, as an old anti-parasite drug, can suppress almost completely the growth of various human cancers, including ovarian cancer (OC). However, its anticancer mechanism remained to be further studied at the molecular levels. Ivermectin-related molecule-panel changes will serve a useful tool for its personalized drug therapy and prognostic assessment in OCs. PURPOSE To explore the functional significance of ivermectin-mediated lncRNA-EIF4A3-mRNA axes in OCs and ivermectin-related molecule-panel for its personalized drug therapy monitoring. METHODS Based on our previous study, a total of 16 lncRNA expression patterns were analyzed using qRT-PCR before and after ivermectin-treated different OC cell lines (TOV-21G and A2780). Stable isotope labeling with amino acids in cell culture (SILAC)-based quantitative proteomics was used to analyze the protein expressions of EIF4A3 and EIF4A3-binding mRNAs in ovarian cancer cells treated with and without ivermectin. A total of 411 OC patients from the Cancer Genome Atlas (TCGA) database with the selected lncRNA expressions and the corresponding clinical data were included. Lasso regression was constructed to examine the relationship between lncRNA signature and OC survival risk. The overall survival analysis between high-risk and low-risk groups used the Kaplan-Meier method. Heatmap showed the correlation between risk groups and clinical characteristics. The univariate and multivariate models were established with Cox regression. RESULTS SILAC-based quantitative proteomics found the protein expression levels of EIF4A3 and 116 EIF4A3-binding mRNAs were inhibited by ivermectin in OC cells. Among the analyzed 16 lncRNAs (HCG15, KIF9-AS1, PDCD4-AS1, ZNF674-AS1, ZNRF3-AS1, SOS1-IT1, LINC00565, SNHG3, PLCH1-AS1, WWTR1-AS1, LINC00517, AL109767.1, STARD13-IT1, LBX2-AS1, LEMD1-AS1, and HOXC-AS3), only 7 lncRNAs (HCG15, KIF9-AS1, PDCD4-AS1, ZNF674-AS1, ZNRF3-AS1, SOS1-IT1, and LINC00565) were obtained for further lasso regression when combined with the results of drug testing and overall survival analysis. Lasso regression identified the prognostic model of ivermectin-related three-lncRNA signature (ZNRF3-AS1, SOS1-IT1, and LINC00565). The high-risk and low-risk groups based on the prognostic model were significantly related to overall survival and clinicopathologic characteristics (survival status, lymphatic invasion, cancer status, and clinical stage) in OC patients and remained independent risk factors according to multivariate COX analysis (p < 0.05). CONCLUSION Those findings provided the potential targeted lncRNA-EIF4A3-mRNA pathways of ivermectin in OC, and constructed the effective prognostic model, which benefits discovery of novel mechanism of ivermectin to suppress ovarian cancer cells, and the ivermectin-related molecule-panel changes benefit for its personalized drug therapy and prognostic assessment towards its predictive, preventive, and personalized medicine (PPPM) in OCs.
Collapse
Affiliation(s)
- Na Li
- University Creative Research Initiatives Center, Shandong First Medical University, 6699 Qingdao Road, Jinan, 250117 Shandong People’s Republic of China
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People’s Republic of China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People’s Republic of China
| | - Xianquan Zhan
- University Creative Research Initiatives Center, Shandong First Medical University, 6699 Qingdao Road, Jinan, 250117 Shandong People’s Republic of China
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People’s Republic of China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People’s Republic of China
- Department of Oncology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People’s Republic of China
| |
Collapse
|