1
|
Li D, Chen Y, Zhang B, Heng X, Yin J, Zhao P, Sun N, Shao C. Praeruptorin A screened by a ferrous ion probe inhibited DMT1 and ferroptosis to attenuate Doxorubicin-induced cardiomyopathy. Eur J Med Chem 2025; 283:117108. [PMID: 39615370 DOI: 10.1016/j.ejmech.2024.117108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/15/2024] [Accepted: 11/24/2024] [Indexed: 01/03/2025]
Abstract
Doxorubicin (DOX)-induced cardiomyopathy (DIC) greatly limits its clinical application of the anticancer drug. Therefore, there is an immediate necessity to undertake intervention studies to minimize DIC, encompassing the screening of regulatory compounds and delving into the underlying regulatory mechanisms. A growing body of research suggests that ferroptosis is an essential process in the development of DIC. Here, we demonstrated that DOX causes elevated iron levels in cardiomyocytes and mouse hearts, and leads to ferroptosis and cardiac insufficiency. Next, we performed high-throughput screening of a library of herbal small molecule compounds for novel compounds that inhibit ferroptosis, using Fe2+ levels as a screening index for DIC prevention and treatment drugs. We found that Praeruptorin A (PA) was able to reduce Fe2+ concentration in cardiomyocytes, inhibit ferroptosis, and alleviate DIC and cardiac dysfunction in mice. Concurrently, PA exhibits a synergistic effect with DOX in suppressing the proliferation of carcinoma of breast MCF-7 cell in nude mice. Mechanistically, we found that PA inhibited the expression of divalent metal transporter protein 1 (DMT1), suppressed Fe2+ overload in cardiomyocytes, and inhibited ferroptosis, thereby alleviating DIC. Our study demonstrated the feasibility of high-throughput screening targeting the Fe2+ concentration, and elucidated the role and mechanism of PA in alleviating DIC, which provides a new possibility.
Collapse
Affiliation(s)
- Dujuan Li
- Wuxi School of Medicine & Wuxi Mental Health Center, Jiangnan University, Wuxi, 214122, China
| | - Yan Chen
- Wuxi School of Medicine & Wuxi Mental Health Center, Jiangnan University, Wuxi, 214122, China
| | - Bo Zhang
- School of Pharmacy, Changzhou University, Changzhou, 213164, China
| | - Xinyu Heng
- Wuxi School of Medicine & Wuxi Mental Health Center, Jiangnan University, Wuxi, 214122, China
| | - Jiajun Yin
- Wuxi School of Medicine & Wuxi Mental Health Center, Jiangnan University, Wuxi, 214122, China
| | - Peilin Zhao
- Wuxi School of Medicine & Wuxi Mental Health Center, Jiangnan University, Wuxi, 214122, China
| | - Ning Sun
- Wuxi School of Medicine & Wuxi Mental Health Center, Jiangnan University, Wuxi, 214122, China
| | - Chenwen Shao
- Wuxi School of Medicine & Wuxi Mental Health Center, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
2
|
Zeng H, Zou P, Chen Y, Zhang P, Shao L. NOX4 aggravates doxorubicin-induced cardiomyocyte pyroptosis by increasing reactive oxygen species content and activating the NLRP3 inflammasome. Cardiovasc Diagn Ther 2024; 14:84-100. [PMID: 38434559 PMCID: PMC10904297 DOI: 10.21037/cdt-23-142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 11/24/2023] [Indexed: 03/05/2024]
Abstract
Background Nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4)-mediated reactive oxygen species (ROS) has been reported to induce cardiomyocyte apoptosis, but its effect on pyroptosis of cardiomyocytes has been rarely reported. This paper aimed to explore the effects of NOX4-mediated ROS production on doxorubicin (DOX)-induced myocardial injury and pyroptosis through nucleotide-binding and oligomerization domain-like receptor protein 3 (NLRP3) inflammasome. Methods HL-1 cells were treated with DOX or mice (30 mice were divided into five groups with six mice/group) underwent intraperitoneal injection with DOX (5 mg/kg, once a week, five times) to induce myocardial injury, followed by assessment of NOX4 and NLRP3 expression in cell supernatant and myocardial tissues. In cardiomyocyte HL-1 cells, cell proliferation was tested by MTT assay and the activity of ROS by probes. The superoxide dismutase (SOD) activity, malondialdehyde (MDA) content, and glutathione (GSH) activity were evaluated by kits. The expression of pyroptosis proteins was assessed by western blotting. Subsequently, the expression of NOX4 or NLRP3 was altered to determine the effect of NOX4 or NLRP3 expression on cardiomyocyte injury and pyroptosis. The animal models were utilized to evaluate the changes in the cardiac function of mice using an echocardiographic system, with these parameters measured including left ventricular ejection fraction (LVEF), left ventricular fractional shortening (LVFS), and left ventricular end-diastolic diameter (LVEDD). Furthermore, the content of myocardial injury markers and the protein expression of pyroptosis proteins were determined to evaluate myocardial injury in the mice. Results DOX treatment led to cardiomyocyte injury and pyroptosis, as evidenced by weakened LVEF, LVFS, and cell proliferation (P<0.05), elevated LVEDD, ROS, and MDA (P<0.05), increased expression of pyroptosis proteins (P<0.05), and decreased SOD and GSH (P<0.05). Additionally, NOX4 and NLRP3 were highly-expressed (P<0.05) in cell supernatant and myocardial tissues. In DOX-induced HL-1 cells, the overexpression of NOX4 intensified ROS levels to aggravate cardiomyocyte injury and pyroptosis, which was reversed by treatment of the ROS scavenger N-acetyl-cysteine. Furthermore, it was revealed that the combination of short hairpin RNA (sh)-NOX4 and overexpressed (oe)-NLRP3 reversed the cardioprotective effects of sh-NOX4 and increased myocardial tissue or cell injury and pyroptosis in vitro and in vivo. No mice died during the animal experiments, and only two were ruled out due to a weight loss greater than 20%. Conclusions NOX4-mediated ROS production activated NLRP3 inflammasome, thereby aggravating DOX-induced myocardial injury in vitro and in vivo.
Collapse
Affiliation(s)
- Hong Zeng
- Department of Cardiology, Jiangxi Provincial People’s Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Pengtao Zou
- Department of Cardiology, Jiangxi Provincial People’s Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Yanmei Chen
- Department of Cardiology, Jiangxi Provincial People’s Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Ping Zhang
- Department of Neurology, Jiangxi Provincial People’s Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Liang Shao
- Department of Cardiology, Jiangxi Provincial People’s Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| |
Collapse
|
3
|
Chen X, Ma J, Wang ZW, Wang Z. The E3 ubiquitin ligases regulate inflammation in cardiovascular diseases. Semin Cell Dev Biol 2024; 154:167-174. [PMID: 36872193 DOI: 10.1016/j.semcdb.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023]
Abstract
Accumulating evidence has illustrated that the E3 ubiquitin ligases critically participate in the development and progression of cardiovascular diseases. Dysregulation of E3 ubiquitin ligases exacerbates cardiovascular diseases. Blockade or activation of E3 ubiquitin ligases mitigates cardiovascular performance. Therefore, in this review, we mainly introduced the critical role and underlying molecular mechanisms of E3 ubiquitin ligase NEDD4 family in governing the initiation and progression of cardiovascular diseases, including ITCH, WWP1, WWP2, Smurf1, Smurf2, Nedd4-1 and Nedd4-2. Moreover, the functions and molecular insights of other E3 ubiquitin ligases, such as F-box proteins, in cardiovascular disease development and malignant progression are described. Furthermore, we illustrate several compounds that alter the expression of E3 ubiquitin ligases to alleviate cardiovascular diseases. Therefore, modulation of E3 ubiquitin ligases could be a novel and promising strategy for improvement of therapeutic efficacy of deteriorative cardiovascular diseases.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Jia Ma
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Zhi-Wei Wang
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Zhiting Wang
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
4
|
Ritter A, Lötterle L, Han J, Kalbitz M, Henrich D, Marzi I, Leppik L, Weber B. Evaluation of New Cardiac Damage Biomarkers in Polytrauma: GDF-15, HFABP and uPAR for Predicting Patient Outcomes. J Clin Med 2024; 13:961. [PMID: 38398274 PMCID: PMC10888743 DOI: 10.3390/jcm13040961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Background: Polytrauma is one of the leading mortality factors in younger patients, and in particular, the presence of cardiac damage correlates with a poor prognosis. Currently, troponin T is the gold standard, although troponin is limited as a biomarker. Therefore, there is a need for new biomarkers of cardiac damage early after trauma. Methods: Polytraumatized patients (ISS ≥ 16) were divided into two groups: those with cardiac damage (troponin T > 50 pg/mL, n = 37) and those without cardiac damage (troponin T < 12 pg/mL, n = 32) on admission to the hospital. Patients' plasma was collected in the emergency room 24 h after trauma, and plasma from healthy volunteers (n = 10) was sampled. The plasma was analyzed for the expression of HFABP, GDF-15 and uPAR proteins, as well as miR-21, miR-29, miR-34, miR-122, miR-125b, miR-133, miR-194, miR-204, and miR-155. Results were correlated with patients' outcomes. Results: HFABP, uPAR, and GDF-15 were increased in polytraumatized patients with cardiac damage (p < 0.001) with a need for catecholamines. HFABP was increased in non-survivors. Analysis of systemic miRNA concentrations showed a significant increase in miR-133 (p < 0.01) and miR-21 (p < 0.05) in patients with cardiac damage. Conclusion: All tested plasma proteins, miR-133, and miR-21 were found to reflect the cardiac damage in polytrauma patients. GDF-15 and HFABP were shown to strongly correlate with patients' outcomes.
Collapse
Affiliation(s)
- Aileen Ritter
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Goethe-University, 60596 Frankfurt am Main, Germany; (L.L.); (J.H.); (D.H.); (I.M.); (L.L.); (B.W.)
| | - Lorenz Lötterle
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Goethe-University, 60596 Frankfurt am Main, Germany; (L.L.); (J.H.); (D.H.); (I.M.); (L.L.); (B.W.)
| | - Jiaoyan Han
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Goethe-University, 60596 Frankfurt am Main, Germany; (L.L.); (J.H.); (D.H.); (I.M.); (L.L.); (B.W.)
| | - Miriam Kalbitz
- Department of Trauma and Orthopedic Surgery, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, 91054 Erlangen, Germany;
| | - Dirk Henrich
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Goethe-University, 60596 Frankfurt am Main, Germany; (L.L.); (J.H.); (D.H.); (I.M.); (L.L.); (B.W.)
| | - Ingo Marzi
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Goethe-University, 60596 Frankfurt am Main, Germany; (L.L.); (J.H.); (D.H.); (I.M.); (L.L.); (B.W.)
| | - Liudmila Leppik
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Goethe-University, 60596 Frankfurt am Main, Germany; (L.L.); (J.H.); (D.H.); (I.M.); (L.L.); (B.W.)
| | - Birte Weber
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Goethe-University, 60596 Frankfurt am Main, Germany; (L.L.); (J.H.); (D.H.); (I.M.); (L.L.); (B.W.)
| |
Collapse
|
5
|
Kuang Z, Wu J, Tan Y, Zhu G, Li J, Wu M. MicroRNA in the Diagnosis and Treatment of Doxorubicin-Induced Cardiotoxicity. Biomolecules 2023; 13:biom13030568. [PMID: 36979503 PMCID: PMC10046787 DOI: 10.3390/biom13030568] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/12/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Doxorubicin (DOX), a broad-spectrum chemotherapy drug, is widely applied to the treatment of cancer; however, DOX-induced cardiotoxicity (DIC) limits its clinical therapeutic utility. However, it is difficult to monitor and detect DIC at an early stage using conventional detection methods. Thus, sensitive, accurate, and specific methods of diagnosis and treatment are important in clinical practice. MicroRNAs (miRNAs) belong to non-coding RNAs (ncRNAs) and are stable and easy to detect. Moreover, miRNAs are expected to become biomarkers and therapeutic targets for DIC; thus, there are currently many studies focusing on the role of miRNAs in DIC. In this review, we list the prominent studies on the diagnosis and treatment of miRNAs in DIC, explore the feasibility and difficulties of using miRNAs as diagnostic biomarkers and therapeutic targets, and provide recommendations for future research.
Collapse
Affiliation(s)
- Ziyu Kuang
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jingyuan Wu
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ying Tan
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Guanghui Zhu
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jie Li
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Min Wu
- Cardiovascular Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| |
Collapse
|
6
|
Zhu F, Chang G, Tang X, Gao L, Zhang N. Doxorubicin inhibits cholesterol efflux through the miR-33/ABCA1 pathway. Biochem Biophys Res Commun 2023; 644:149-154. [PMID: 36652766 DOI: 10.1016/j.bbrc.2023.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Doxorubicin (DOX) is extensively used for the treatment of kinds of cancers, and cardiovascular toxicity is one of the side effects. However, it is unclear whether DOX causes impairment of cardiac function by promoting atherosclerosis. Thus, we investigated the role of DOX in regulating the lipid deposition of macrophages and its molecular mechanism. RAW 264.7 cell line was stimulated with DOX in the presence or absence of low-density lipoprotein (LDL). We found that DOX increased miR-33 and reduced ATP binding cassette transporter A1 (ABCA1) protein. Moreover, cholesterol efflux was suppressed by DOX, which was more efficient under a high-cholesterol condition. After transfecting mimics or inhibitors of miR-33 into cells, ABCA1 protein was respectively decreased and increased, and intracellular lipid accumulation was correspondingly regulated. Overall, DOX suppresses the expression of ABCA1 protein by upregulating miR-33, promoting an intracellular lipid deposition in macrophages, which is a sign of early atherosclerosis. This provides new insights for clinical observation and evaluation of the side effects of DOX.
Collapse
Affiliation(s)
- Fengqing Zhu
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Guanglei Chang
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiaoqiong Tang
- Division of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Lingyun Gao
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Nan Zhang
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
7
|
Sun W, Xu J, Wang L, Jiang Y, Cui J, Su X, Yang F, Tian L, Si Z, Xing Y. Non-coding RNAs in cancer therapy-induced cardiotoxicity: Mechanisms, biomarkers, and treatments. Front Cardiovasc Med 2022; 9:946137. [PMID: 36082126 PMCID: PMC9445363 DOI: 10.3389/fcvm.2022.946137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/28/2022] [Indexed: 02/06/2023] Open
Abstract
As a result of ongoing breakthroughs in cancer therapy, cancer patients' survival rates have grown considerably. However, cardiotoxicity has emerged as the most dangerous toxic side effect of cancer treatment, negatively impacting cancer patients' prognosis. In recent years, the link between non-coding RNAs (ncRNAs) and cancer therapy-induced cardiotoxicity has received much attention and investigation. NcRNAs are non-protein-coding RNAs that impact gene expression post-transcriptionally. They include microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). In several cancer treatments, such as chemotherapy, radiotherapy, and targeted therapy-induced cardiotoxicity, ncRNAs play a significant role in the onset and progression of cardiotoxicity. This review focuses on the mechanisms of ncRNAs in cancer therapy-induced cardiotoxicity, including apoptosis, mitochondrial damage, oxidative stress, DNA damage, inflammation, autophagy, aging, calcium homeostasis, vascular homeostasis, and fibrosis. In addition, this review explores potential ncRNAs-based biomarkers and therapeutic strategies, which may help to convert ncRNAs research into clinical practice in the future for early detection and improvement of cancer therapy-induced cardiotoxicity.
Collapse
Affiliation(s)
- Wanli Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Juping Xu
- The Second People's Hospital of Jiaozuo, Jiaozuo, China
| | - Li Wang
- Department of Breast Surgery, Xingtai People's Hospital, Xingtai, China
| | - Yuchen Jiang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingrun Cui
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xin Su
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fan Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Tian
- Beijing University of Chinese Medicine, Beijing, China
| | - Zeyu Si
- The First Clinical Medical College of Shaanxi University of Chinese Medicine, Taiyuan, China
- Zeyu Si
| | - Yanwei Xing
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yanwei Xing
| |
Collapse
|
8
|
The Role of HECT-Type E3 Ligase in the Development of Cardiac Disease. Int J Mol Sci 2021; 22:ijms22116065. [PMID: 34199773 PMCID: PMC8199989 DOI: 10.3390/ijms22116065] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/26/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022] Open
Abstract
Despite advances in medicine, cardiac disease remains an increasing health problem associated with a high mortality rate. Maladaptive cardiac remodeling, such as cardiac hypertrophy and fibrosis, is a risk factor for heart failure; therefore, it is critical to identify new therapeutic targets. Failing heart is reported to be associated with hyper-ubiquitylation and impairment of the ubiquitin–proteasome system, indicating an importance of ubiquitylation in the development of cardiac disease. Ubiquitylation is a post-translational modification that plays a pivotal role in protein function and degradation. In 1995, homologous to E6AP C-terminus (HECT) type E3 ligases were discovered. E3 ligases are key enzymes in ubiquitylation and are classified into three families: really interesting new genes (RING), HECT, and RING-between-RINGs (RBRs). Moreover, 28 HECT-type E3 ligases have been identified in human beings. It is well conserved in evolution and is characterized by the direct attachment of ubiquitin to substrates. HECT-type E3 ligase is reported to be involved in a wide range of human diseases and health. The role of HECT-type E3 ligases in the development of cardiac diseases has been uncovered in the last decade. There are only a few review articles summarizing recent advancements regarding HECT-type E3 ligase in the field of cardiac disease. This study focused on cardiac remodeling and described the role of HECT-type E3 ligases in the development of cardiac disease. Moreover, this study revealed that the current knowledge could be exploited for the development of new clinical therapies.
Collapse
|
9
|
Goto J, Otaki Y, Watanabe T, Kobayashi Y, Aono T, Watanabe K, Wanezaki M, Kutsuzawa D, Kato S, Tamura H, Nishiyama S, Arimoto T, Takahashi H, Shishido T, Watanabe M. HECT (Homologous to the E6-AP Carboxyl Terminus)-Type Ubiquitin E3 Ligase ITCH Attenuates Cardiac Hypertrophy by Suppressing the Wnt/β-Catenin Signaling Pathway. Hypertension 2020; 76:1868-1878. [PMID: 33131309 DOI: 10.1161/hypertensionaha.120.15487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The HECT (homologous to the E6-AP carboxyl terminus)-type ubiquitin E3 ligase ITCH is an enzyme that plays an important role in ubiquitin-proteasomal protein degradation. Disheveled proteins (Dvl1 [disheveled protein 1], Dvl2, and Dvl3) are the main components of the Wnt/β-catenin signaling pathway, which is involved in cardiac hypertrophy. The aim of this study was to examine the role of ITCH during development of cardiac hypertrophy. Thoracic transverse aortic constriction (TAC) was performed in transgenic mice with cardiac-specific overexpression of ITCH (ITCH-Tg) and wild-type mice. Cardiac hypertrophy after TAC was attenuated in ITCH-Tg mice, and the survival rate was higher for ITCH-Tg mice than for wild-type mice. Protein interaction between ITCH and Dvls was confirmed with immunoprecipitation in vivo and in vitro. Expression of key molecules of the Wnt/β-catenin signaling pathway (Dvl1, Dvl2, GSK3β [glycogen synthase kinase 3β], and β-catenin) was inhibited in ITCH-Tg mice compared with wild-type mice. Notably, the ubiquitination level of Dvl proteins increased in ITCH-Tg mice. Protein and mRNA expression levels of ITCH increased in response to Wnt3a stimulation in neonatal rat cardiomyocytes. Knockdown of ITCH using small-interfering RNA increased cardiomyocyte size and augmented protein expression levels of Dvl proteins, phospho-GSK3β, and β-catenin after Wnt3a stimulation in cardiomyocytes. Conversely, overexpression of ITCH attenuated cardiomyocyte hypertrophy and decreased protein expression levels of Dvl proteins, phospho-GSK3β and β-catenin. In conclusion, ITCH targets Dvl proteins for ubiquitin-proteasome degradation in cardiomyocytes and attenuates cardiac hypertrophy by suppressing the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Jun Goto
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Yoichiro Otaki
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Tetsu Watanabe
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Yuta Kobayashi
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Tomonori Aono
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Ken Watanabe
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Masahiro Wanezaki
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Daisuke Kutsuzawa
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Shigehiko Kato
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Harutoshi Tamura
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Satoshi Nishiyama
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Takanori Arimoto
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Hiroki Takahashi
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Tetsuro Shishido
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Masafumi Watanabe
- From the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| |
Collapse
|
10
|
Possible Susceptibility Genes for Intervention against Chemotherapy-Induced Cardiotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4894625. [PMID: 33110473 PMCID: PMC7578723 DOI: 10.1155/2020/4894625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/07/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
Recent therapeutic advances have significantly improved the short- and long-term survival rates in patients with heart disease and cancer. Survival in cancer patients may, however, be accompanied by disadvantages, namely, increased rates of cardiovascular events. Chemotherapy-related cardiac dysfunction is an important side effect of anticancer therapy. While advances in cancer treatment have increased patient survival, treatments are associated with cardiovascular complications, including heart failure (HF), arrhythmias, cardiac ischemia, valve disease, pericarditis, and fibrosis of the pericardium and myocardium. The molecular mechanisms of cardiotoxicity caused by cancer treatment have not yet been elucidated, and they may be both varied and complex. By identifying the functional genetic variations responsible for this toxicity, we may be able to improve our understanding of the potential mechanisms and pathways of treatment, paving the way for the development of new therapies to target these toxicities. Data from studies on genetic defects and pharmacological interventions have suggested that many molecules, primarily those regulating oxidative stress, inflammation, autophagy, apoptosis, and metabolism, contribute to the pathogenesis of cardiotoxicity induced by cancer treatment. Here, we review the progress of genetic research in illuminating the molecular mechanisms of cancer treatment-mediated cardiotoxicity and provide insights for the research and development of new therapies to treat or even prevent cardiotoxicity in patients undergoing cancer treatment. The current evidence is not clear about the role of pharmacogenomic screening of susceptible genes. Further studies need to done in chemotherapy-induced cardiotoxicity.
Collapse
|
11
|
MicroRNAs in Cancer Treatment-Induced Cardiotoxicity. Cancers (Basel) 2020; 12:cancers12030704. [PMID: 32192047 PMCID: PMC7140035 DOI: 10.3390/cancers12030704] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 12/20/2022] Open
Abstract
Cancer treatment has made significant progress in the cure of different types of tumors. Nevertheless, its clinical use is limited by unwanted cardiotoxicity. Aside from the conventional chemotherapy approaches, even the most newly developed, i.e., molecularly targeted therapy and immunotherapy, exhibit a similar frequency and severity of toxicities that range from subclinical ventricular dysfunction to severe cardiomyopathy and, ultimately, congestive heart failure. Specific mechanisms leading to cardiotoxicity still remain to be elucidated. For instance, oxidative stress and DNA damage are considered key players in mediating cardiotoxicity in different treatments. microRNAs (miRNAs) act as key regulators in cell proliferation, cell death, apoptosis, and cell differentiation. Their dysregulation has been associated with adverse cardiac remodeling and toxicity. This review provides an overview of the cardiotoxicity induced by different oncologic treatments and potential miRNAs involved in this effect that could be used as possible therapeutic targets.
Collapse
|