1
|
Lv T, Fan R, Wu J, Gong H, Gao X, Liu X, Gong Y, Luo B, Zhang Y, Peng X, Liang G. Tumor-Associated Macrophages: Key Players in the Non-Small Cell Lung Cancer Tumor Microenvironment. Cancer Med 2025; 14:e70670. [PMID: 39927632 DOI: 10.1002/cam4.70670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND Lung cancer is among the most common and deadliest malignant tumors worldwide. It is often detected at late stages, resulting in unfavorable outcomes, with tumor cell heterogeneity and medication resistance. Tumor-associated macrophages are among the key cells contributing to cancer progression. They are categorized into two primary phenotypes: Proinflammatory (M1) and anti-inflammatory (M2) which are involved in the onset and progression of NSCLC. The role of common cytokines secreted by macrophages in the progression of lung cancer are described, and the effects of various substances such as RNA or protein on the differentiation and polarization of two phenotypes of macrophages are highlighted to characterize the impact of the immune state of tumors on therapeutic effect of treatments and patient prognosis. Researchers have primarily aimed to investigate innovative carriers and strategies based on macrophages to modify the tumor microenvironment. OBJECTIVES These approaches are often integrated with other treatments, particularly immunotherapy, to enhance therapeutic efficacy. METHODS A comprehensive review was carried out by systematically synthesizing existing literature on PubMed, using the combination of the keywords "TAMs", "NSCLC", "Drug resistance", and "therapy". The available studies were screened for selection based on quality and relevance. CONCLUSIONS TAMs promote tumor invasion, growth, and metastasis by promoting angiogenesis and EMT. In addition, they contribute to the development of drug resistance and the immunosuppressive microenvironment establishment. The immunosuppressive factors secreted by TAM can weaken the activity of immune cells, inhibit their killing effect on tumors, leading to immune suppression and hindering the effectiveness of treatment. Therefore, TAM is a key target for the development of cancer immunotherapy. Various strategies are being explored, including reducing the recruitment of TAMs and influencing their polarization to treat NSCLC. In addition, TAMs based treatment systems can achieve precise delivery of drugs or gene interfering molecules without causing side effects.
Collapse
Affiliation(s)
- Tongtong Lv
- Department of Hematology, The First Affiliated Hospital of Yangtze University, Jingzhou, China
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Rui Fan
- Department of Hematology, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Jiaqi Wu
- Department of Hematology, The First Affiliated Hospital of Yangtze University, Jingzhou, China
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Haolan Gong
- Department of Hematology, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Xiaoru Gao
- Department of Hematology, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Xin Liu
- Department of Hematology, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Yixin Gong
- Department of Hematology, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Bo Luo
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanhua Zhang
- Department of Hematology, The First Affiliated Hospital of Yangtze University, Jingzhou, China
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Xiaochun Peng
- Department of Hematology, The First Affiliated Hospital of Yangtze University, Jingzhou, China
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Gai Liang
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Xia S, Lu X, Wang W, Pan X, Cui J, Wang S, Wang Z. The regulatory role and therapeutic potential of long non-coding RNA in non-small cell lung cancer. J Cancer 2025; 16:1137-1148. [PMID: 39895777 PMCID: PMC11786035 DOI: 10.7150/jca.103182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/24/2024] [Indexed: 02/04/2025] Open
Abstract
Lung cancer remains the leading cause of cancer-related mortality worldwide, with non-small cell lung cancer (NSCLC) being the predominant subtype. Recent advances in transcriptome sequencing have highlighted the critical role of long non-coding RNAs (lncRNAs) in NSCLC, with lncRNAs influencing gene expression through epigenetic, transcriptional, and post-transcriptional mechanisms. Despite the growing understanding of lncRNAs, challenges such as delayed diagnosis and drug resistance continue to complicate NSCLC management. This review explores novel findings in the role of lncRNAs (e.g., MALAT1, HOTAIR, and GAS5) in NSCLC, with a particular focus on their encoded small peptides and N6-methyladenosine (m6A) modifications. We further discuss how the interplay between lncRNAs, their encoded peptides, and m6A modifications can provide new strategies for improving NSCLC diagnosis, treatment, and overcoming drug resistance. This review also highlights emerging research avenues that could lead to innovative clinical interventions in NSCLC.
Collapse
Affiliation(s)
- Sunming Xia
- Donghai County People's Hospital affiliated to Kangda College of Nanjing Medical University, Lianyungang 222300, Jiangsu, China
- Department of General Surgery, Donghai County People's Hospital, Lianyungang 222300, Jiangsu, China
| | - Xuean Lu
- Donghai County People's Hospital affiliated to Kangda College of Nanjing Medical University, Lianyungang 222300, Jiangsu, China
- Department of General Surgery, Donghai County People's Hospital, Lianyungang 222300, Jiangsu, China
| | - Weier Wang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Xinyi Pan
- Department of Basic Medicine, Kangda College of Nanjing Medical University, Lianyungang 222000, Jiangsu, China
| | - Jiaqi Cui
- Department of Basic Medicine, Kangda College of Nanjing Medical University, Lianyungang 222000, Jiangsu, China
| | - Shengjie Wang
- Donghai County People's Hospital affiliated to Kangda College of Nanjing Medical University, Lianyungang 222300, Jiangsu, China
- Department of Basic Medicine, Kangda College of Nanjing Medical University, Lianyungang 222000, Jiangsu, China
| | - Zhao Wang
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| |
Collapse
|
3
|
Jalali-Zefrei F, Mousavi SM, Delpasand K, Shourmij M, Farzipour S. Role of Non-coding RNAs on the Radiotherapy Sensitivity and Resistance in Cancer Cells. Curr Gene Ther 2025; 25:113-135. [PMID: 38676526 DOI: 10.2174/0115665232301727240422092311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/29/2024]
Abstract
Radiotherapy (RT) is an integral part of treatment management in cancer patients. However, one of the limitations of this treatment method is the resistance of cancer cells to radiotherapy. These restrictions necessitate the introduction of modalities for the radiosensitization of cancer cells. It has been shown that Noncoding RNAs (ncRNAs), along with modifiers, can act as radiosensitivity and radioresistant regulators in a variety of cancers by affecting double strand break (DSB), wnt signaling, glycolysis, irradiation induced apoptosis, ferroptosis and cell autophagy. This review will provide an overview of the latest research on the roles and regulatory mechanisms of ncRNA after RT in in vitro and preclinical researches.
Collapse
Affiliation(s)
- Fatemeh Jalali-Zefrei
- Department of Cardiology, Cardiovascular Diseases Research Center, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Seyed Mehdi Mousavi
- Department of Cardiology, Cardiovascular Diseases Research Center, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Kourosh Delpasand
- Razi Clinical Research Development Unit, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Shourmij
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Soghra Farzipour
- Department of Cardiology, Cardiovascular Diseases Research Center, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
4
|
Ge X, Shen Z, Yin Y. Comprehensive review of LncRNA-mediated therapeutic resistance in non-small cell lung cancer. Cancer Cell Int 2024; 24:369. [PMID: 39522033 PMCID: PMC11549762 DOI: 10.1186/s12935-024-03549-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) are emerging as crucial regulators of gene expression through diverse mechanisms, including regulation of protein localization, sequestration of miRNAs, recruitment of chromatin modifiers, and modulation of signaling pathways. Accumulating evidence highlights their pivotal roles in tumor initiation, progression, and the development of therapeutic resistance. In this review, we comprehensively summarized the existing literature to identify lncRNAs associated with treatment responses in non-small cell lung cancer (NSCLC). Specifically, we categorized these lncRNAs based on their mechanisms of action in mediating resistance to chemotherapy, targeted therapy, and radiotherapy. Our analysis revealed that aberrant expression of various lncRNAs contributes to the development, metastasis, and therapeutic resistance in NSCLC, ultimately leading to poor clinical outcomes. By elucidating the intricate mechanisms through which lncRNAs modulate therapeutic responses, this review aims to provide mechanistic insights into the heterogeneous treatment outcomes observed in NSCLC patients and unveil potential therapeutic targets for overcoming drug resistance.
Collapse
Affiliation(s)
- Xin Ge
- Peking University First Hospital, Beijing, 100034, China
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Zichu Shen
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yuxin Yin
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing, 100191, China.
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| |
Collapse
|
5
|
Al-Hawary SIS, Abdalkareem Jasim S, Altalbawy FMA, Kumar A, Kaur H, Pramanik A, Jawad MA, Alsaad SB, Mohmmed KH, Zwamel AH. miRNAs in radiotherapy resistance of cancer; a comprehensive review. Cell Biochem Biophys 2024; 82:1665-1679. [PMID: 38805114 DOI: 10.1007/s12013-024-01329-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2024] [Indexed: 05/29/2024]
Abstract
While intensity-modulated radiation therapy-based comprehensive therapy increases outcomes, cancer patients still have a low five-year survival rate and a high recurrence rate. The primary factor contributing to cancer patients' poor prognoses is radiation resistance. A class of endogenous non-coding RNAs, known as microRNAs (miRNAs), controls various biological processes in eukaryotes. These miRNAs influence tumor cell growth, death, migration, invasion, and metastasis, which controls how human carcinoma develops and spreads. The correlation between the unbalanced expression of miRNAs and the prognosis and sensitivity to radiation therapy is well-established. MiRNAs have a significant impact on the regulation of DNA repair, the epithelial-to-mesenchymal transition (EMT), and stemness in the tumor radiation response. But because radio resistance is a complicated phenomena, further research is required to fully comprehend these mechanisms. Radiation response rates vary depending on the modality used, which includes the method of delivery, radiation dosage, tumor stage and grade, confounding medical co-morbidities, and intrinsic tumor microenvironment. Here, we summarize the possible mechanisms through which miRNAs contribute to human tumors' resistance to radiation.
Collapse
Affiliation(s)
| | | | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Ashwani Kumar
- Department of Life Sciences, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, Karnataka, 560069, India
- Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Divison of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | | | - Salim Basim Alsaad
- Department of Pharmaceutics, Al-Hadi University College, Baghdad, 10011, Iraq
| | | | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
6
|
Tang W, Huang C, Jiang B, Lin J, Lu Y. MBNL3 Acts as a Target of miR-302e to Facilitate Cell Proliferation, Invasion and Angiogenesis of Gastric Adenocarcinoma via AKT/VEGFA Pathway. J Microbiol Biotechnol 2024; 34:1433-1442. [PMID: 38955795 PMCID: PMC11294653 DOI: 10.4014/jmb.2401.01027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/24/2024] [Accepted: 05/09/2024] [Indexed: 07/04/2024]
Abstract
Gastric adenocarcinoma (GAC) is a common, malignant type of tumor in human, and is accompanied with higher mortality. Muscleblind-like 3 (MBNL3) was found to be a pivotal participator in aggravating this cancer's progression. However, the regulatory effects of MBNL3 on GAC development have not been investigated. We therefore sought to study the functions of MBNL3 in GAC progression. In this study, it was demonstrated that MBNL3 exhibited higher expression, and GAC patients with higher MBNL3 expression had poor prognosis. Overexpression of MBNL3 facilitated, and knockdown of MBNL3 suppressed cell proliferation, invasion, and angiogenesis in GAC. Further experiments showed that miR-302e targets MBNL3. Rescue assays then uncovered that the miR-302e/MBNL3 axis aggravated GAC progression. In addition, MBNL3 activated the AKT/VEGFA pathway, and the suppressive regulatory impacts of MBNL3 knockdown on GAC cell proliferation, invasion, and angiogenesis could be rescued after 740 Y-P treatment. Through in vivo assay, it was proved that MBNL3 accelerated tumor growth in vivo. In conclusion, MBNL3 acted as a target of miR-302e to facilitate cell proliferation, invasion, and angiogenesis of gastric adenocarcinoma through the AKT/VEGFA pathway. Our findings illustrate that MBNL3 may be an available bio-target for GAC treatment.
Collapse
Affiliation(s)
- Weiping Tang
- Department of Gastrointestinal Surgery, Chaohu Hospital of Anhui Medical University, Chaohu 238000, Anhui, P.R. China
| | - Can Huang
- Department of Gastrointestinal Surgery, Chaohu Hospital of Anhui Medical University, Chaohu 238000, Anhui, P.R. China
| | - Bing Jiang
- Department of Gastrointestinal Surgery, Chaohu Hospital of Anhui Medical University, Chaohu 238000, Anhui, P.R. China
| | - Junjun Lin
- Department of Gastrointestinal Surgery, Chaohu Hospital of Anhui Medical University, Chaohu 238000, Anhui, P.R. China
| | - Yecai Lu
- Department of Gastrointestinal Surgery, Chaohu Hospital of Anhui Medical University, Chaohu 238000, Anhui, P.R. China
| |
Collapse
|
7
|
Naseer QA, Malik A, Zhang F, Chen S. Exploring the enigma: history, present, and future of long non-coding RNAs in cancer. Discov Oncol 2024; 15:214. [PMID: 38847897 PMCID: PMC11161455 DOI: 10.1007/s12672-024-01077-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Long noncoding RNAs (lncRNAs), which are more than 200 nucleotides in length and do not encode proteins, play crucial roles in governing gene expression at both the transcriptional and posttranscriptional levels. These molecules demonstrate specific expression patterns in various tissues and developmental stages, suggesting their involvement in numerous developmental processes and diseases, notably cancer. Despite their widespread acknowledgment and the growing enthusiasm surrounding their potential as diagnostic and prognostic biomarkers, the precise mechanisms through which lncRNAs function remain inadequately understood. A few lncRNAs have been studied in depth, providing valuable insights into their biological activities and suggesting emerging functional themes and mechanistic models. However, the extent to which the mammalian genome is transcribed into functional noncoding transcripts is still a matter of debate. This review synthesizes our current understanding of lncRNA biogenesis, their genomic contexts, and their multifaceted roles in tumorigenesis, highlighting their potential in cancer-targeted therapy. By exploring historical perspectives alongside recent breakthroughs, we aim to illuminate the diverse roles of lncRNA and reflect on the broader implications of their study for understanding genome evolution and function, as well as for advancing clinical applications.
Collapse
Affiliation(s)
- Qais Ahmad Naseer
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Abdul Malik
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Fengyuan Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Shengxia Chen
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China.
| |
Collapse
|
8
|
Zafra J, Onieva JL, Oliver J, Garrido-Barros M, González-Hernández A, Martínez-Gálvez B, Román A, Ordóñez-Marmolejo R, Pérez-Ruiz E, Benítez JC, Mesas A, Vera A, Chicas-Sett R, Rueda-Domínguez A, Barragán I. Novel Blood Biomarkers for Response Prediction and Monitoring of Stereotactic Ablative Radiotherapy and Immunotherapy in Metastatic Oligoprogressive Lung Cancer. Int J Mol Sci 2024; 25:4533. [PMID: 38674117 PMCID: PMC11050102 DOI: 10.3390/ijms25084533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Up to 80% of patients under immune checkpoint inhibitors (ICI) face resistance. In this context, stereotactic ablative radiotherapy (SABR) can induce an immune or abscopal response. However, its molecular determinants remain unknown. We present early results of a translational study assessing biomarkers of response to combined ICI and SABR (I-SABR) in liquid biopsy from oligoprogressive patients in a prospective observational multicenter study. Cohort A includes metastatic patients in oligoprogression to ICI maintaining the same ICI due to clinical benefit and who receive concomitant SABR. B is a comparative group of oligometastatic patients receiving only SABR. Blood samples are extracted at baseline (T1), after the first (T2) and last (T3) fraction, two months post-SABR (T4) and at further progression (TP). Response is evaluated by iRECIST and defined by the objective response rate (ORR)-complete and partial responses. We assess peripheral blood mononuclear cells (PBMCs), circulating cell-free DNA (cfDNA) and small RNA from extracellular vesicles. Twenty-seven patients could be analyzed (cohort A: n = 19; B: n = 8). Most were males with non-small cell lung cancer and one progressing lesion. With a median follow-up of 6 months, the last ORR was 63% (26% complete and 37% partial response). A decrease in cfDNA from T2 to T3 correlated with a good response. At T2, CD8+PD1+ and CD8+PDL1+ cells were increased in non-responders and responders, respectively. At T2, 27 microRNAs were differentially expressed. These are potential biomarkers of response to I-SABR in oligoprogressive disease.
Collapse
Affiliation(s)
- Juan Zafra
- Group of Translational Research in Cancer Immunotherapy (CIMO2), Department of Radiation Oncology, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA), 29010 Málaga, Spain;
- Faculty of Medicine, University of Malaga (UMA), 29071 Málaga, Spain; (J.L.O.); (M.G.-B.); (A.G.-H.)
| | - Juan Luis Onieva
- Faculty of Medicine, University of Malaga (UMA), 29071 Málaga, Spain; (J.L.O.); (M.G.-B.); (A.G.-H.)
- Group of Translational Research in Cancer Immunotherapy (CIMO2), Medical Oncology Intercenter Unit, Regional and Virgen de la Victoria Hospitals, Institute of Biomedical Research in Malaga (IBIMA), 29010 Málaga, Spain; (J.O.); (B.M.-G.); (E.P.-R.); (J.C.B.)
| | - Javier Oliver
- Group of Translational Research in Cancer Immunotherapy (CIMO2), Medical Oncology Intercenter Unit, Regional and Virgen de la Victoria Hospitals, Institute of Biomedical Research in Malaga (IBIMA), 29010 Málaga, Spain; (J.O.); (B.M.-G.); (E.P.-R.); (J.C.B.)
| | - María Garrido-Barros
- Faculty of Medicine, University of Malaga (UMA), 29071 Málaga, Spain; (J.L.O.); (M.G.-B.); (A.G.-H.)
- Group of Translational Research in Cancer Immunotherapy (CIMO2), Medical Oncology Intercenter Unit, Regional and Virgen de la Victoria Hospitals, Institute of Biomedical Research in Malaga (IBIMA), 29010 Málaga, Spain; (J.O.); (B.M.-G.); (E.P.-R.); (J.C.B.)
| | - Andrea González-Hernández
- Faculty of Medicine, University of Malaga (UMA), 29071 Málaga, Spain; (J.L.O.); (M.G.-B.); (A.G.-H.)
- Group of Translational Research in Cancer Immunotherapy (CIMO2), Medical Oncology Intercenter Unit, Regional and Virgen de la Victoria Hospitals, Institute of Biomedical Research in Malaga (IBIMA), 29010 Málaga, Spain; (J.O.); (B.M.-G.); (E.P.-R.); (J.C.B.)
| | - Beatriz Martínez-Gálvez
- Group of Translational Research in Cancer Immunotherapy (CIMO2), Medical Oncology Intercenter Unit, Regional and Virgen de la Victoria Hospitals, Institute of Biomedical Research in Malaga (IBIMA), 29010 Málaga, Spain; (J.O.); (B.M.-G.); (E.P.-R.); (J.C.B.)
| | - Alicia Román
- Department of Radiation Oncology, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA), 29010 Málaga, Spain; (A.R.); (R.O.-M.)
| | - Rafael Ordóñez-Marmolejo
- Department of Radiation Oncology, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA), 29010 Málaga, Spain; (A.R.); (R.O.-M.)
| | - Elisabeth Pérez-Ruiz
- Group of Translational Research in Cancer Immunotherapy (CIMO2), Medical Oncology Intercenter Unit, Regional and Virgen de la Victoria Hospitals, Institute of Biomedical Research in Malaga (IBIMA), 29010 Málaga, Spain; (J.O.); (B.M.-G.); (E.P.-R.); (J.C.B.)
| | - José Carlos Benítez
- Group of Translational Research in Cancer Immunotherapy (CIMO2), Medical Oncology Intercenter Unit, Regional and Virgen de la Victoria Hospitals, Institute of Biomedical Research in Malaga (IBIMA), 29010 Málaga, Spain; (J.O.); (B.M.-G.); (E.P.-R.); (J.C.B.)
| | - Andrés Mesas
- Medical Oncology Intercenter Unit, Regional and Virgen de la Victoria Hospitals, 29010 Málaga, Spain;
| | - Andrés Vera
- Department of Radiation Oncology, Dr Negrín University Hospital, 35010 Las Palmas de Gran Canaria, Spain;
| | - Rodolfo Chicas-Sett
- Department of Radiation Oncology, La Fe University Hospital, 46026 Valencia, Spain;
- Group of Clinical and Translational Cancer Research, Le Fe Health Research Institute, 46026 Valencia, Spain
| | - Antonio Rueda-Domínguez
- Group of Translational Research in Cancer Immunotherapy (CIMO2), Medical Oncology Intercenter Unit, Regional and Virgen de la Victoria Hospitals, Institute of Biomedical Research in Malaga (IBIMA), 29010 Málaga, Spain; (J.O.); (B.M.-G.); (E.P.-R.); (J.C.B.)
| | - Isabel Barragán
- Group of Translational Research in Cancer Immunotherapy (CIMO2), Medical Oncology Intercenter Unit, Regional and Virgen de la Victoria Hospitals, Institute of Biomedical Research in Malaga (IBIMA), 29010 Málaga, Spain; (J.O.); (B.M.-G.); (E.P.-R.); (J.C.B.)
- Group of Pharmacoepigenetics, Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
9
|
Huang Z, Xiao Z, Yu L, Liu J, Yang Y, Ouyang W. Tumor-associated macrophages in non-small-cell lung cancer: From treatment resistance mechanisms to therapeutic targets. Crit Rev Oncol Hematol 2024; 196:104284. [PMID: 38311012 DOI: 10.1016/j.critrevonc.2024.104284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/20/2024] [Accepted: 01/31/2024] [Indexed: 02/06/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) remains one of the leading causes of cancer-related deaths worldwide. Different treatment approaches are typically employed based on the stage of NSCLC. Common clinical treatment methods include surgical resection, drug therapy, and radiation therapy. However, with the introduction and utilization of immune checkpoint inhibitors, cancer treatment has entered a new era, completely revolutionizing the treatment landscape for various cancers and significantly improving overall patient survival. Concurrently, treatment resistance often poses a critical challenge, with many patients experiencing disease progression following an initial response due to treatment resistance. Increasing evidence suggests that the tumor microenvironment (TME) plays a pivotal role in treatment resistance. Tumor-associated macrophages (TAMs) within the TME can promote treatment resistance in NSCLC by secreting various cytokines activating signaling pathways, and interacting with other immune cells. Therefore, this article will focus on elucidating the key mechanisms of TAMs in treatment resistance and analyze how targeting TAMs can reduce the levels of treatment resistance in NSCLC, providing a comprehensive understanding of the principles and approaches to overcome treatment resistance in NSCLC.
Collapse
Affiliation(s)
- Zhenjun Huang
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Ziqi Xiao
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Liqing Yu
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Jiayu Liu
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Yihan Yang
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China; Jiangxi Clinical Research Center for Respiratory Diseases, Nanchang 330006, Jiangxi Province, China.
| | - Wenhao Ouyang
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| |
Collapse
|
10
|
Ao YQ, Gao J, Jiang JH, Wang HK, Wang S, Ding JY. Comprehensive landscape and future perspective of long noncoding RNAs in non-small cell lung cancer: it takes a village. Mol Ther 2023; 31:3389-3413. [PMID: 37740493 PMCID: PMC10727995 DOI: 10.1016/j.ymthe.2023.09.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/01/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are a distinct subtype of RNA that lack protein-coding capacity but exert significant influence on various cellular processes. In non-small cell lung cancer (NSCLC), dysregulated lncRNAs act as either oncogenes or tumor suppressors, contributing to tumorigenesis and tumor progression. LncRNAs directly modulate gene expression, act as competitive endogenous RNAs by interacting with microRNAs or proteins, and associate with RNA binding proteins. Moreover, lncRNAs can reshape the tumor immune microenvironment and influence cellular metabolism, cancer cell stemness, and angiogenesis by engaging various signaling pathways. Notably, lncRNAs have shown great potential as diagnostic or prognostic biomarkers in liquid biopsies and therapeutic strategies for NSCLC. This comprehensive review elucidates the significant roles and diverse mechanisms of lncRNAs in NSCLC. Furthermore, we provide insights into the clinical relevance, current research progress, limitations, innovative research approaches, and future perspectives for targeting lncRNAs in NSCLC. By summarizing the existing knowledge and advancements, we aim to enhance the understanding of the pivotal roles played by lncRNAs in NSCLC and stimulate further research in this field. Ultimately, unraveling the complex network of lncRNA-mediated regulatory mechanisms in NSCLC could potentially lead to the development of novel diagnostic tools and therapeutic strategies.
Collapse
Affiliation(s)
- Yong-Qiang Ao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Gao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jia-Hao Jiang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hai-Kun Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Shuai Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Jian-Yong Ding
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
11
|
Liu W, Zuo B, Liu W, Huo Y, Zhang N, Yang M. Long non-coding RNAs in non-small cell lung cancer: implications for preventing therapeutic resistance. Biochim Biophys Acta Rev Cancer 2023; 1878:188982. [PMID: 37734560 DOI: 10.1016/j.bbcan.2023.188982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 09/23/2023]
Abstract
Lung cancer has the highest mortality and morbidity rates among all cancers worldwide. Despite many complex treatment options, including radiotherapy, chemotherapy, targeted drugs, immunotherapy, and combinations of these treatments, efficacy is low in cases of resistance to therapy, metastasis, and advanced disease, contributing to low overall survival. There is a pressing need for the discovery of novel biomarkers and therapeutic targets for the early diagnosis of lung cancer and to determine the efficacy and outcomes of drug treatments. There is now substantial evidence for the diagnostic and prognostic value of long noncoding RNAs (lncRNAs). This review briefly discusses recent findings on the roles and mechanisms of action of lncRNAs in the responses to therapy in non-small cell lung cancer.
Collapse
Affiliation(s)
- Wenjuan Liu
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province 250117, China
| | - Bingli Zuo
- Human Resources Department, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province 250117, China
| | - Wenting Liu
- Department of Neurology, Weifang People's Hospital, Weifang, Shandong Province 261041, China
| | - Yanfei Huo
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province 250117, China
| | - Nasha Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province 250117, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province 211166, China.
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province 250117, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province 211166, China.
| |
Collapse
|
12
|
Tang P, Sun D, Xu W, Li H, Chen L. Long non‑coding RNAs as potential therapeutic targets in non‑small cell lung cancer (Review). Int J Mol Med 2023; 52:68. [PMID: 37350412 PMCID: PMC10413047 DOI: 10.3892/ijmm.2023.5271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 05/02/2023] [Indexed: 06/24/2023] Open
Abstract
Non‑small cell lung cancer (NSCLC) is one of the most common malignancies with a high morbidity and mortality rate. Long non‑coding RNAs (lncRNAs) have been reported to be closely associated with the occurrence and progression of NSCLC. In addition, lncRNAs have been documented to participate in the development of drug resistance and radiation sensitivity in patients with NSCLC. Due to their extensive functional characterization, high tissue specificity and sex specificity, lncRNAs have been proposed to be novel biomarkers and therapeutic targets for NSCLC. Therefore, in the current review, the functional classification of lncRNAs were presented, whilst the potential roles of lncRNAs in NSCLC were also summarized. Various physiological aspects, including proliferation, invasion and drug resistance, were all discussed. It is anticipated that the present review will provide a perspective on lncRNAs as potential diagnostic molecular biomarkers and therapeutic targets for NSCLC.
Collapse
Affiliation(s)
- Peiyu Tang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016
| | - Dejuan Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016
| | - Wei Xu
- Institute of Structural Pharmacology and TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016
- Institute of Structural Pharmacology and TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016
| |
Collapse
|
13
|
Cao J, Yang S, Luo T, Yang R, Zhu H, Zhao T, Jiang K, Xu B, Wang Y, Chen F. TATA-box-binding protein promotes hepatocellular carcinoma metastasis through epithelial-mesenchymal transition. Hepatol Commun 2023; 7:e00155. [PMID: 37314767 DOI: 10.1097/hc9.0000000000000155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/02/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND HCC characterizes malignant metastasis with high incidence and recurrence. Thus, it is pivotal to discover the mechanisms of HCC metastasis. TATA-box-binding protein (TBP), a general transcriptional factor (TF), couples with activators and chromatin remodelers to sustain the transcriptional activity of target genes. Here, we investigate the key role of TBP in HCC metastasis. METHODS TBP expression was measured by PCR, western blot, and immunohistochemistry. RNA-sequencing was performed to identify downstream proteins. Functional assays of TBP and downstream targets were identified in HCC cell lines and xenograft models. Luciferase reporter and chromatin immunoprecipitation assays were used to demonstrate the mechanism mediated by TBP. RESULTS HCC patients showed high expression of TBP, which correlated with poor prognosis. Upregulation of TBP increased HCC metastasis in vivo and in vitro, and muscleblind-like-3 (MBNL3) was the effective factor of TBP, positively related to TBP expression. Mechanically, TBP transactivated and enhanced MBNL3 expression to stimulate exon inclusion of lncRNA-paxillin (PXN)-alternative splicing (AS1) and, thus, activated epithelial-mesenchymal transition for HCC progression through upregulation of PXN. CONCLUSIONS Our data revealed that TBP upregulation is an HCC enhancer mechanism that increases PXN expression to drive epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Jiayi Cao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Shaanxi, Xi'an, China
| | - Suzhen Yang
- Department of Gastroenterology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu, Nanjing, China
- Department of Gastroenterology and Hepatology, Jinling Hospital, Medical School of Nanjing University, Jiangsu, Nanjing, China
| | - Tingting Luo
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Shaanxi, Xi'an, China
| | - Rui Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Shaanxi, Xi'an, China
| | - Hanlong Zhu
- Department of Gastroenterology and Hepatology, Jinling Hospital, Medical School of Nanjing University, Jiangsu, Nanjing, China
| | - Tianming Zhao
- Department of Gastroenterology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu, Nanjing, China
| | - Kang Jiang
- Department of Gastroenterology and Hepatology, Jinling Hospital, Medical School of Nanjing University, Jiangsu, Nanjing, China
| | - Bing Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Shaanxi, Xi'an, China
| | - Yingchun Wang
- Department of Gastroenterology, the Affiliated Zhongshan Hospital of Dalian University, Liaoning, Dalian, China
| | - Fulin Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Shaanxi, Xi'an, China
| |
Collapse
|
14
|
Hui P, Ni F, Zheng L, Jia L, Wang Z. Identification of immunotherapy-related lncRNA signature for predicting prognosis, immunotherapy responses and drug candidates in bladder cancer. BMC Cancer 2023; 23:355. [PMID: 37072750 PMCID: PMC10111848 DOI: 10.1186/s12885-023-10828-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/08/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND Bladder cancer (BC) is one of the most common malignant diseases and the most common causes of cancer death worldwide. Immunotherapy has opened new avenues for precision treatment of bladder tumours, and immune checkpoint inhibitors (ICIs) have revolutionized the clinical treatment strategy of bladder tumours. In addition, long non-coding RNA (lncRNA) plays an important role in regulating tumour development and immunotherapy efficacy. METHODS We obtained genes with significant differences between anti-PD-L1 response and non-response from the Imvogor210 data set and combined with the bladder cancer expression data in the TCGA cohort to obtain immunotherapy-related lncRNA. Based on these lncRNAs, the prognostic risk model of bladder cancer was constructed and verified by GEO external data set. The characterization of immune cell infiltration and immunotherapy effects between high-risk and low-risk groups were then analysed. We predicted the ceRNA network and performed molecular docking of key target proteins. The functional experiments verified the function of SBF2-AS1. RESULTS Three immunotherapy-related lncRNAs were identified as independent prognostic biomarkers for bladder cancer and a prognostic model of immunotherapy-related prognosis was constructed. Prognosis, immune cell infiltration, and immunotherapy efficacy were significantly different between high- and low-risk groups based on risk scores. Additionally, we established a ceRNA network of lncRNA(SBF2-AS1)-miRNA(has-miR-582-5p)-mRNA (HNRNPA2B1). Targeting the protein HNRNPA2B1 identified the top eight small molecule drugs with the highest affinity. CONCLUSION We developed a prognostic risk score model based on immune-therapy-related lncRNA, which was subsequently determined to be significantly associated with immune cell infiltration and immunotherapy response. This study not only helps to promote our understanding of immunotherapy-related lncRNA in the prognosis of BC, but also provides new ideas for clinical immunotherapy and the development of novel therapeutic drugs for patients.
Collapse
Affiliation(s)
- Pengyu Hui
- Department of Urology, The Second Affiliated Hospital of Xi'an Medical University, No.167 Fangzhicheng East Road, Baqiao District, Xi'an, Shaanxi, 710038, China
| | - Feng Ni
- Department of Urology, The Second Affiliated Hospital of Xi'an Medical University, No.167 Fangzhicheng East Road, Baqiao District, Xi'an, Shaanxi, 710038, China
| | - Liang Zheng
- Department of Urology, The Second Affiliated Hospital of Xi'an Medical University, No.167 Fangzhicheng East Road, Baqiao District, Xi'an, Shaanxi, 710038, China
| | - Lei Jia
- Department of Urology, The Second Affiliated Hospital of Xi'an Medical University, No.167 Fangzhicheng East Road, Baqiao District, Xi'an, Shaanxi, 710038, China
| | - Zhe Wang
- Department of Urology, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning, China.
- Department of Urology, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning, China.
| |
Collapse
|
15
|
Workman S, Jabbour SK, Deek MP. A narrative review of genetic biomarkers in non-small cell lung cancer: an update and future perspectives. AME MEDICAL JOURNAL 2023; 8:6. [PMID: 37025121 PMCID: PMC10072845 DOI: 10.21037/amj-2022-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background and Objective Lung cancer has long been the leading cause of cancer deaths in the United States. Lung cancer has a poor prognosis, and our understanding of who will maximally benefit from different therapies is incomplete. This article discusses genetic biomarkers that may help in this regard. Methods From origin until February 25, 2022, PubMed database was searched for terms "non-small cell lung cancer", "genomics" and "biomarker", with special attention paid to literature published within the past 10 years. Search was language restricted to English. Additional literature was identified through hand searches of the references of retrieved literature. Key Content and Findings The most robustly described biomarkers for non-small cell lung cancer (NSCLC) are assessment of specific gene mutations. These are currently used in clinical practice for both prediction and prognostication. Abnormal mutation status of STK11/LKB1 and KEAP1-NFE2L2 are associated with poor response to radiotherapy (RT), and STK11/LKB1 is further associated with resistance to PD-L1 immunotherapy. Abnormal TP53 is associated with decreased benefit from cisplatin in squamous cell carcinoma (SCC). In terms of prognostication, RB1 mutations are associated with decreased overall survival (OS) in NSCLC and KEAP1-NFE2L2 mutations are associated with increased local recurrence (LR).Additional work has focused on gene expression levels, as well as analysis of genetic factors and signaling molecules affecting the tumor microenvironment (TME). High levels of Rad51c and NFE2L2 are associated with resistance to chemotherapy, and high Rad51c levels are further associated with resistance to RT. High nuclear expression of β-catenin has additionally been associated with poor RT response. Further, there is increasing evidence that some long non-coding RNAs (lncRNAs) may play a crucial role in regulation of tumor radiosensitivity. Much of this work has had promising early results but will require further validation before routine clinical use. Finally, there is evidence that quantification of some signaling molecules and microRNAs (miRNAs) may have clinical utility in predicting adverse outcomes in RT. Conclusions An improved understanding of tumor genetics in NSCLC has led to the development of targeted therapies and improved prognostication. As more work is done in this field, more and more genetic biomarkers will become candidates for clinical use. Much work will be required to validate these findings in the clinical setting.
Collapse
Affiliation(s)
- Samuel Workman
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Salma K Jabbour
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Matthew P Deek
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
16
|
Hussain SA, Venkatesh T. YBX1/lncRNA SBF2-AS1 interaction regulates proliferation and tamoxifen sensitivity via PI3K/AKT/MTOR signaling in breast cancer cells. Mol Biol Rep 2023; 50:3413-3428. [PMID: 36754932 DOI: 10.1007/s11033-023-08308-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/26/2023] [Indexed: 02/10/2023]
Abstract
BACKGROUND Y-box binding protein 1 (YBX1) is a multifunctional oncoprotein that can interact with several long non-coding RNAs (lncRNAs) to regulate metastasis in malignancies including breast cancer (BC). In the present study, we demonstrated the association of YBX1 with oncogenic lncRNA SBF2-AS1 (SET-binding factor 2 antisense RNA 1) via PI3K/AKT/mTOR signaling to regulate BC cell proliferation. We further explored the involvement of the YBX1/SBF2-AS1/PI3K/AKT/mTOR axis in the restoration of tamoxifen (TAM) sensitivity. METHODS AND RESULTS YBX1-SBF2-AS1 association was predicted in silico and verified by RNA immunoprecipitation (RIP)-qPCR assay. Transfection experiments, Real-time RT PCR, Western blots, Phospho AKT/mTOR antibody array kit, and cell proliferation/apoptosis assays were employed to detect the YBX1/SBF2-AS1/ PI3K/AKT/mTOR axis and its effects upon TAM treatment in vitro. We identified that the YBX1 protein specifically binds to lncRNA SBF2-AS1. Our transfection experiments in MCF-7 and MDA-MB-468 cells with SBF2-AS1 silenced or overexpressed YBX1 plasmids, and their negative controls revealed that YBX1 regulates the expression of SBF2-AS1 by forming a positive feedback loop for its activation. We further demonstrated YBX1-SBF2-AS1 association exerts its effects on cell proliferation via PI3K/AKT/mTOR signaling pathway. Furthermore, we observed an increase in TAM sensitivity in BC cells after the knockdown of YBX1-SBF2-AS1 marked by decreased cell proliferation through disruption of the PI3K/AKT/mTOR axis. CONCLUSION Our study has identified a novel YBX1/SBF2-AS1/PI3K/AKT/mTOR regulatory axis which may serve as a potential target to improve the effectiveness and efficacy of TAM treatment in BC.
Collapse
Affiliation(s)
- Shaharbhanu A Hussain
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Kasaragod, Kerala, 671316, India
| | - Thejaswini Venkatesh
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Kasaragod, Kerala, 671316, India.
| |
Collapse
|
17
|
Zhu C, Jiang J, Feng G, Fan S. The exciting encounter between lncRNAs and radiosensitivity in IR-induced DNA damage events. Mol Biol Rep 2023; 50:1829-1843. [PMID: 36507968 DOI: 10.1007/s11033-022-07966-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 09/22/2022] [Indexed: 12/14/2022]
Abstract
Radiation therapy is a commonly used tool in cancer management due to its ability to destroy malignant tumors. Mechanically, the efficacy of radiotherapy mainly depends on the inherent radiosensitivity of cancer cells and surrounding normal tissues, which mostly accounts for molecular dynamics associated with radiation-induced DNA damage. However, the relationship between radiosensitivity and DNA damage mechanism deserves to be further probed. As the well-established RNA regulators or effectors, long noncoding RNAs (lncRNAs) dominate vital roles in modulating ionizing radiation response by targeting crucial molecular pathways, including DNA damage repair. Recently, emerging evidence has constantly confirmed that overexpression or inhibition of lncRNAs can greatly influence the sensitivity of radiotherapy for many kinds of cancers, by driving a diverse array of DNA damage-associated signaling cascades. In conclusion, this review critically summarizes the recent progress in the molecular mechanism of IR-responsive lncRNAs in the context of radiation-induced DNA damage. The different response of lncRNAs when IR exposure. IR exposure can trigger the changes in expression pattern and subcellular localization of lncRNAs that influences the different radiology processes.
Collapse
Affiliation(s)
- Changchun Zhu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, 300192, Tianjin, PR China
| | - Jin Jiang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, 300192, Tianjin, PR China
| | - Guoxing Feng
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, 300192, Tianjin, PR China.
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, 300192, Tianjin, PR China.
| |
Collapse
|
18
|
Zhu H, Wang X, Zhou X, Lu S, Gu G, Liu C. E3 ubiquitin ligase FBXW7 enhances radiosensitivity of non-small cell lung cancer cells by inhibiting SOX9 regulation of CDKN1A through ubiquitination. J Transl Med 2022; 102:1203-1213. [PMID: 36775446 DOI: 10.1038/s41374-022-00812-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 11/09/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) has high rates of morbidity and mortality. E3 ubiquitin ligase usually has antitumor effects. This study evaluated the mechanism of E3 ligase FBXW7 (F-box and WD repeat domain containing 7) in the radiosensitivity of NSCLC. NCI-H1299 and NCI-H1299R cells were irradiated by 0, 2, 4, and 6 Gy doses of X-ray, respectively. In addition to the measurement of cell proliferation, apoptosis, and γ-H2AX, FBXW7 expression was measured and the interaction between FBXW7 and SOX9 (SRY-box transcription factor 9) was evaluated. Ubiquitination level and protein stability of SOX9 were examined after FBXW7 overexpression. The binding relationship between SOX9 and CDKN1A (cyclin-dependent kinase inhibitor 1A) was verified. Xenograft tumor model was established to evaluate the effect of FBXW7 on radiosensitivity in vivo. FBXW7 was under-expressed in radioresistant cells. Overexpression of FBXW7 repressed NCI-H1299 and NCI-H1299R cell proliferation and colony formation and increased γ-H2AX-positive foci. Overexpression of FBXW7 increased the ubiquitination level and reduced the protein stability of SOX9. SOX9 bound to the CDKN1A promoter to inhibit CDKN1A expression. FBXW7 inhibited tumorigenesis and apoptosis and enhanced radiosensitivity of NSCLC cells in vivo via the SOX9/CDKN1A axis. Overall, FBXW7 inhibited SOX9 expression by promoting SOX9 ubiquitination and proteasome degradation, suppressing the binding of SOX9 to CDKN1A, and upregulating CDKN1A, thereby improving the radiosensitivity of NSCLC cells.
Collapse
Affiliation(s)
- Hongge Zhu
- The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Xiuli Wang
- The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Xin Zhou
- The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Suqiong Lu
- The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Guomin Gu
- The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Chunling Liu
- The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China.
| |
Collapse
|
19
|
miR-302a-3p Promotes Radiotherapy Sensitivity of Hepatocellular Carcinoma by Regulating Cell Cycle via MCL1. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:1450098. [PMID: 36262872 PMCID: PMC9576429 DOI: 10.1155/2022/1450098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 09/09/2022] [Indexed: 11/18/2022]
Abstract
Background. The relationship between tumor suppressor gene miR-302a-3p and radiotherapy for hepatocellular carcinoma (HCC) remains unclear. This study intended to illustrate the molecular mechanism how miR-302a-3p regulated radiotherapy sensitivity of HCC. Methods. miR-302a-3p expression in HCC tissues and cells was examined by qRT-PCR. The effect of miR-302a-3p on HCC radiotherapy sensitivity were detected by CCK-8, colony formation, and flow cytometry assays. The expression levels of cell cycle-related proteins were detected by Western blot. The influence of miR-302a-3p on radiotherapy sensitivity of HCC was further investigated via cell cycle inhibitor (Caudatin) treatment. The target gene (MCL1) of miR-302a-3p was obtained by bioinformatics analysis, and their binding relationship was confirmed by RNA-binding protein immunoprecipitation assay. The mechanisms of miR-302a-3p regulating cell cycle and affecting radiotherapy sensitivity of HCC cells through MCL1 were further explored through the rescue experiments. Results. miR-302a-3p expression was remarkably reduced in radiotherapy-resistant tissues and cells of HCC. miR-302a-3p overexpression restored sensitivity of radiotherapy-resistant HCC cells to radiotherapy. Treatment with cell cycle inhibitor Caudatin could reverse suppressive effect of miR-302a-3p downregulation on sensitivity of HCC to radiotherapy. Additionally, miR-302a-3p could restrain MCL1 expression. In vitro cell assays further revealed that miR-302a-3p/MCL1 axis could enhance radiotherapy sensitivity of HCC cells by inducing G0/G1 arrest. Conclusions. miR-302a-3p facilitated radiotherapy sensitivity of HCC cells by regulating cell cycle via MCL1, which provided a new underlying target for radiotherapy resistance of HCC patients.
Collapse
|
20
|
Entezari M, Taheriazam A, Orouei S, Fallah S, Sanaei A, Hejazi ES, Kakavand A, Rezaei S, Heidari H, Behroozaghdam M, Daneshi S, Salimimoghadam S, Mirzaei S, Hashemi M, Samarghandian S. LncRNA-miRNA axis in tumor progression and therapy response: An emphasis on molecular interactions and therapeutic interventions. Biomed Pharmacother 2022; 154:113609. [PMID: 36037786 DOI: 10.1016/j.biopha.2022.113609] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 02/06/2023] Open
Abstract
Epigenetic factors are critical regulators of biological and pathological mechanisms and they could interact with different molecular pathways. Targeting epigenetic factors has been an idea approach in disease therapy, especially cancer. Accumulating evidence has highlighted function of long non-coding RNAs (lncRNAs) as epigenetic factors in cancer initiation and development and has focused on their association with downstream targets. microRNAs (miRNAs) are the most well-known targets of lncRNAs and present review focuses on lncRNA-miRNA axis in malignancy and therapy resistance of tumors. LncRNA-miRNA regulates cell death mechanisms such as apoptosis and autophagy in cancers. This axis affects tumor metastasis via regulating EMT and MMPs. Besides, lncRNA-miRNA axis determines sensitivity of tumor cells to chemotherapy, radiotherapy and immunotherapy. Based on the studies, lncRNAs can be affected by drugs and genetic tools in cancer therapy and this may affect expression level of miRNAs as their downstream targets, leading to cancer suppression/progression. LncRNAs have both tumor-promoting and tumor-suppressor functions in cancer and this unique function of lncRNAs has complicated their implication in tumor therapy. LncRNA-miRNA axis can also affect other signaling networks in cancer such as PI3K/Akt, STAT3, Wnt/β-catenin and EZH2 among others. Notably, lncRNA/miRNA axis can be considered as a signature for diagnosis and prognosis in cancers.
Collapse
Affiliation(s)
- Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Sima Orouei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Islamic Republic of Iran
| | - Shayan Fallah
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Arezoo Sanaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Elahe Sadat Hejazi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Shamin Rezaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Hajar Heidari
- Department of Biomedical Sciences School of Public Health University at Albany State University of New York, Albany, NY 12208, USA
| | - Mitra Behroozaghdam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Islamic Republic of Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Islamic Republic of Iran
| | - Sepideh Mirzaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Islamic Republic of Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Islamic Republic of Iran.
| |
Collapse
|
21
|
Long Noncoding RNA SBF2-AS1 Promotes Abdominal Aortic Aneurysm Formation through the miRNA-520f-3p/SMARCD1 Axis. DISEASE MARKERS 2022; 2022:4782361. [PMID: 35968497 PMCID: PMC9374557 DOI: 10.1155/2022/4782361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/07/2022] [Accepted: 06/16/2022] [Indexed: 12/02/2022]
Abstract
Abdominal aortic aneurysm (AAA) is a chronic vascular inflammatory disease. The regulatory mechanisms during AAA formation remain unclear. Bone marrow stem cells (BMSCs) are pluripotent cells capable of regulating the progression of various diseases by delivering exosomes and exosomal lncRNAs. In this study, we investigated its function in AAA by isolating BMSC exosome-derived lncRNA SBF2-AS1. The results showed that BF2-AS1 could be transferred to vascular smooth muscle cells (VSMCs) and human aortic VSMCs (HASMCs) via BMSC-derived exosomes. Depletion of SBF2-AS1 enhanced the cell viability and proliferation of VSMCs. Conversely, SBF2-AS1 knockdown inhibited VSMC apoptosis. Caspase-3 activity was inhibited by depletion of SBF2-AS1, whereas overexpression of SBF2-AS1 in VSMC promoted Caspase-3 activity. SBF2-AS1 enhances SMARCD1 expression by forming miR-520f-3p in VSMC and HASMC. Overexpression of SMARCD1 or miR-520f-3p inhibitor reversed cell viability and caspase-3 activity mediated by SBF2-AS1 depletion in VSMC and HASMC. Therefore, BMSC exosome-derived SBF2-AS1 promotes AAA formation through the miRNA-520f-3p/SMARCD1 axis. Targeting SBF2-AS1 could serve as a promising therapeutic strategy for AAA.
Collapse
|
22
|
The role of long non-coding RNAs in angiogenesis and anti-angiogenic therapy resistance in cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 28:397-407. [PMID: 35505957 PMCID: PMC9038520 DOI: 10.1016/j.omtn.2022.03.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
It is well known that long non-coding RNAs (lncRNAs) play an important role in the regulation of tumor genesis and development. They can modulate gene expression of transcriptional regulation, epigenetic regulation of chromatin modification, and post-transcriptional regulation, thus influencing the biological behavior of tumors, such as cell proliferation, apoptosis, cell cycle, invasion, and migration. Tumor angiogenesis not only provides nutrients and helps excrete metabolites, but it also opens a pathway for tumor metastasis. Anti-angiogenic therapy has become one of the effective treatment methods for tumor. But its drug resistance leads to the limitation of clinical application. Recent studies have shown that lncRNAs are closely related to tumor angiogenesis and anti-angiogenic therapy resistance, which provides a new direction for tumor research. lncRNAs are expected to be new targets for tumor therapy. For the first time to our knowledge, this paper reviews advancement of lncRNAs in tumor angiogenesis and anti-angiogenic therapy resistance and further discusses their potential clinical application.
Collapse
|
23
|
Entezari M, Ghanbarirad M, Taheriazam A, Sadrkhanloo M, Zabolian A, Goharrizi MASB, Hushmandi K, Aref AR, Ashrafizadeh M, Zarrabi A, Nabavi N, Rabiee N, Hashemi M, Samarghandian S. Long non-coding RNAs and exosomal lncRNAs: Potential functions in lung cancer progression, drug resistance and tumor microenvironment remodeling. Biomed Pharmacother 2022; 150:112963. [PMID: 35468579 DOI: 10.1016/j.biopha.2022.112963] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022] Open
Abstract
Among the different kinds of tumors threatening human life, lung cancer is one that is commonly observed in both males and females. The aggressive behavior of lung cancer and interactions occurring in tumor microenvironment enhances the malignancy of this tumor. The lung tumor cells have demonstrated capacity in developing chemo- and radio-resistance. LncRNAs are a category of non-coding RNAs that do not encode proteins, but their aberrant expression is responsible for tumor development, especially lung cancer. In the present review, we focus on both lncRNAs and exosomal lncRNAs in lung cancer, and their ability in regulating proliferation and metastasis. Cell cycle progression and molecular mechanisms related to lung cancer metastasis such as EMT and MMPs are regulated by lncRNAs. LncRNAs interact with miRNAs, STAT, Wnt, EZH2, PTEN and PI3K/Akt signaling pathways to affect progression of lung cancer cells. LncRNAs demonstrate both tumor-suppressor and tumor-promoting functions in lung cancer. They can be considered as biomarkers in lung cancer and especially exosomal lncRNAs present in body fluids are potential tools for minimally invasive diagnosis. Furthermore, we discuss regulation of lncRNAs by anti-cancer drugs and genetic tools as well as the role of these factors in therapy response of lung cancer cells.
Collapse
Affiliation(s)
- Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Ghanbarirad
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Amirhossein Zabolian
- Department of Orthopedics, School of Medicine, 5th Azar Hospital, Golestan University of Medical Sciences, Golestan, Iran
| | | | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonosis, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Translational Sciences, Xsphera Biosciences Inc., 6 Tide Street, Boston, MA 02210, USA
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Turkey
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada V6H3Z6
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
24
|
Wu W, Zhang S, He J. The Mechanism of Long Non-coding RNA in Cancer Radioresistance/Radiosensitivity: A Systematic Review. Front Pharmacol 2022; 13:879704. [PMID: 35600868 PMCID: PMC9117703 DOI: 10.3389/fphar.2022.879704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/04/2022] [Indexed: 12/15/2022] Open
Abstract
Background and purpose: Radioresistance remains a significant challenge in tumor therapy. This systematic review aims to demonstrate the role of long non-coding RNA (lncRNA) in cancer radioresistance/radiosensitivity. Material and methods: The electronic databases Pubmed, Embase, and Google Scholar were searched from January 2000 to December 2021 to identify studies addressing the mechanisms of lncRNAs in tumor radioresistance/sensitivity, each of which required both in vivo and in vitro experiments. Results: Among the 87 studies identified, lncRNAs were implicated in tumor radioresistance/sensitivity mainly in three paradigms. 1) lncRNAs act on microRNA (miRNA) by means of a sponge, and their downstream signals include some specific molecular biological processes (DNA repair and chromosome stabilization, mRNA or protein stabilization, cell cycle and proliferation, apoptosis-related pathways, autophagy-related pathways, epithelial-mesenchymal transition (EMT), cellular energy metabolism) and some signaling mediators (transcription factors, kinases, some important signal transduction pathways) that regulate various biological processes. 2) lncRNAs directly interact with proteins, affecting the cell cycle and autophagy to contribute to tumor radioresistance. 3) lncRNAs act like transcription factors to initiate downstream signaling pathways and participate in tumor radioresistance. Conclusion: lncRNAs are important regulators involved in tumor radioresistance\sensitivity. Different lncRNAs may participate in the radioresistance with the same regulatory paradigm, and the same lncRNAs may also participate in the radioresistance in different ways. Future research should focus more on comprehensively characterizing the mechanisms of lncRNAs in tumor radioresistance to help us identify corresponding novel biomarkers and develop new lncRNA-based methods to improve radioresistance.
Collapse
Affiliation(s)
- Wenhan Wu
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Wenhan Wu,
| | - Shijian Zhang
- School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Jia He
- Faculty Affairs and Human Resources Management Department, Southwest Medical University, Luzhou, China
| |
Collapse
|
25
|
Tan F, Chen J, Wang B, Du Z, Mou J, Wu Y, Liu Y, Zhao F, Yuan C. LncRNA SBF2-AS1: A Budding Star in Various Cancers. Curr Pharm Des 2022; 28:1513-1522. [PMID: 35440300 DOI: 10.2174/1381612828666220418131506] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/03/2022] [Indexed: 11/22/2022]
Abstract
Long non-coding RNA (lncRNA) is a new kind of RNA with lengths over 200 nucleotides. Current frontiers revealed that lncRNAs implicate in various tumor progression, including tumorigenesis, proliferation, migration, invasion, metastasis and angiogenesis. Recently discovered long non-coding RNA SET-binding factor 2 antisense RNA 1 (lncRNA SBF2-AS1), an oncogenic antisense RNA to SBF2, locates at 11p15.1 locus and is 2708 nt long. Accumulating evidences have demonstrated that lncRNA SBF2-AS1 participates in various tumor progression including pathogenesis, diagnosis, treatment and prognosis of acute myeloid leukemia (AML), breast cancer (BC), cervical cancer (CC), clear cell renal cell carcinoma (ccRCC), colorectal cancer (CRC), diffuse large B-cell lymphoma (DLBCL), esophageal squamous cell carcinoma (ESCC), gastric cancer (GC), glioma, glioblastoma (GBM), hepatocellular carcinoma (HCC), lung cancer (LC), lung adenocarcinoma (LUAD), non-small cell lung cancer (NSCLC), osteosarcoma (OS), pancreatic cancer (PC), papillary thyroid cancer (PTC), small cell lung cancer (SCLC). Therefore, we summarized the underlying mechanisms about lncRNA SBF2-AS1 in various cancers to utilize its therapeutic function in target-selective treatment modality.
Collapse
Affiliation(s)
- Fangshun Tan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine,State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China.,Medical College,China Three Gorges University, Yichang 443002, China
| | - Jinlan Chen
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine,State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China.,Medical College,China Three Gorges University, Yichang 443002, China
| | - Bei Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine,State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China.,Medical College,China Three Gorges University, Yichang 443002, China
| | - Zhuoying Du
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine,State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China.,Medical College,China Three Gorges University, Yichang 443002, China
| | - Jie Mou
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine,State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China.,Medical College,China Three Gorges University, Yichang 443002, China
| | - Yinxin Wu
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine,State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China.,Medical College,China Three Gorges University, Yichang 443002, China
| | - Yuling Liu
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine,State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China.,Medical College,China Three Gorges University, Yichang 443002, China
| | - Fangnan Zhao
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine,State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China.,Medical College,China Three Gorges University, Yichang 443002, China
| | - Chengfu Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine,State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China.,Medical College,China Three Gorges University, Yichang 443002, China
| |
Collapse
|
26
|
Ghahramani Almanghadim H, Ghorbian S, Khademi NS, Soleymani Sadrabadi M, Jarrahi E, Nourollahzadeh Z, Dastani M, Shirvaliloo M, Sheervalilou R, Sargazi S. New Insights into the Importance of Long Non-Coding RNAs in Lung Cancer: Future Clinical Approaches. DNA Cell Biol 2021; 40:1476-1494. [PMID: 34931869 DOI: 10.1089/dna.2021.0563] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In mammals, a large part of the gene expression products come from the non-coding ribonucleotide sequences of the protein. These short and long sequences are within the range of tens to hundreds of nucleotides, encompassing more than 200 RNA molecules, and their function is known as the molecular structure of long non-coding RNA (lncRNA). LncRNA molecules are unique nucleotides that have a substantial role in epigenetic regulation, transcription, and post-transcriptional modifications in different ways. According to the results of recent studies, lncRNAs have been shown to assume various roles, including tumor suppression or oncogenic functions in common types of cancer such as lung and breast cancer. These non-coding RNAs (ncRNAs) play a pivotal role in activating transcription factors, managing the ribonucleoproteins, the framework for collecting co-proteins, intermittent processing regulations, chromatin status alterations, and maintaining the control within the cell. Cutting-edge technologies have been introduced to disclose several types of lncRNAs within the nucleus and the cytoplasm, which have accomplished important achievements that are applicable in medicine. Due to these efforts, various data centers have been created to facilitate and modify scientific information related to these molecules, including detection, classification, biological evolution, gene status, spatial structure, status, and location of these small molecules. In the present study, we attempt to present the impacts of these ncRNAs on lung cancer with an emphasis on their mechanisms and functions.
Collapse
Affiliation(s)
| | - Saeed Ghorbian
- Department of Molecular Genetics, Ahar Branch, Islamic Azad University, Ahar, Iran
| | - Nazanin Sadat Khademi
- Department of Genetics, Faculty of Biological Science, Shahid Beheshti University, Tehran, Iran
| | | | - Esmaeil Jarrahi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zahra Nourollahzadeh
- Department of Biological Science, Ahar Branch, Islamic Azad University, Ahar, Iran
| | - Masomeh Dastani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Milad Shirvaliloo
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
27
|
Luan AA, Hou LL, Zhang FY. Silencing of SBF2-AS1 inhibits cell growth and invasion by sponging microRNA-338-3p in serous ovarian carcinoma. Kaohsiung J Med Sci 2021; 38:302-311. [PMID: 34850542 DOI: 10.1002/kjm2.12479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/07/2021] [Accepted: 10/25/2021] [Indexed: 12/24/2022] Open
Abstract
Long noncoding RNA SET-binding factor 2 (SBF2) antisense RNA 1 (AS1) is associated with the growth and metastasis of multiple cancer types, but its biological roles in serous ovarian carcinoma (SOC) remain unclear. In this study, the aberrant upregulation of SBF2-AS1 is detected in SOC after analysis of differentially expressed genes between SOC tissues and normal fallopian tubes from the public Gene Expression Omnibus (GEO) database. We determine that knockdown of SBF2-AS1 inhibits SOC cell proliferation and invasion by sponging miR-338-3p. MiR-338-3p acts as a tumor suppressor in SOC, and E26 transformation specific-1 (ETS1) is identified as a potential target of miR-338-3p regulation. Furthermore, SBF2-AS1 could modulate ETS1 by operating as a competing endogenous RNA for miR-338-3p. This finding elucidates a new mechanism for SBF2-AS1 in SOC development and provides a potential target for SOC therapeutic intervention.
Collapse
Affiliation(s)
- Ai-Ai Luan
- Department of Gynecology, Weifang Maternal and Child Health Hospital, Weifang, China
| | - Ling-Ling Hou
- Department of Gynecology, Weifang Maternal and Child Health Hospital, Weifang, China
| | - Fang-Yuan Zhang
- Department of Gynecology, Weifang Maternal and Child Health Hospital, Weifang, China
| |
Collapse
|
28
|
LINC01342 silencing upregulates microRNA-508-5p to inhibit progression of lung cancer by reducing cysteine-rich secretory protein 3. Cell Death Discov 2021; 7:238. [PMID: 34504061 PMCID: PMC8429695 DOI: 10.1038/s41420-021-00613-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/27/2021] [Accepted: 07/19/2021] [Indexed: 12/27/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are critical players during cancer progression. Nevertheless, the effect of most lncRNAs in lung cancer (LC) remains unclear. We aimed to explore the role of LINC01342 in LC development through the microRNA-508-5p (miR-508-5p)/cysteine-rich secretory protein 3 (CRISP3) axis. LINC01342, miR-508-5p, and CRISP3 expression in clinical samples and cell lines were determined, and their correlations in LC were analyzed. The prognostic role of LINC01342 in LC patients was evaluated. LC cells were screened and, respectively, transfected to alter the expression of LINC01342, miR-508-5p, and CRISP3. Then, proliferation, migration, invasion, and apoptosis of transfected LC cells were determined, and the in vivo tumor growth was observed as well. Binding relationships between LINC01342 and miR-508-5p, and between miR-508-5p and CRISP3 were identified. LINC01342 and CRISP3 were upregulated and miR-508-5p was downregulated in LC tissues and cells. High LINC01342 expression indicated a poor prognosis of LC patients. The LINC01342/CRISP3 silencing or miR-508-5p elevation inhibited proliferation, migration, and invasion of LC cells and promoted LC cell apoptosis, and also suppressed the in vivo tumor growth. LINC01342 bound to miR-508-5p and miR-508-5p targeted CRISP3. LINC01342 plays a prognostic role in LC and LINC01342 silencing upregulates miR-508-5p to inhibit the progression of LC by reducing CRISP3.
Collapse
|
29
|
Liu B, Xiang W, Liu J, Tang J, Wang J, Liu B, Long Z, Wang L, Yin G, Liu J. The regulatory role of antisense lncRNAs in cancer. Cancer Cell Int 2021; 21:459. [PMID: 34461912 PMCID: PMC8404292 DOI: 10.1186/s12935-021-02168-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/20/2021] [Indexed: 12/24/2022] Open
Abstract
Antisense long non-coding RNAs (antisense lncRNAs), transcribed from the opposite strand of genes with either protein coding or non-coding function, were reported recently to play a crucial role in the process of tumor onset and development. Functionally, antisense lncRNAs either promote or suppress cancer cell proliferation, migration, invasion, and chemoradiosensitivity. Mechanistically, they exert their regulatory functions through epigenetic, transcriptional, post-transcriptional, and translational modulations. Simultaneously, because of nucleotide sequence complementarity, antisense lncRNAs have a special role on its corresponding sense gene. We highlight the functions and molecular mechanisms of antisense lncRNAs in cancer tumorigenesis and progression. We also discuss the potential of antisense lncRNAs to become cancer diagnostic biomarkers and targets for tumor treatment.
Collapse
Affiliation(s)
- Biao Liu
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Wei Xiang
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jiahao Liu
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jin Tang
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jinrong Wang
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Bin Liu
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Zhi Long
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Long Wang
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Guangming Yin
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jianye Liu
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
30
|
Yuan JN, Hong Y, Ma ZL, Pang RP, Lei QQ, Lv XF, Zhou JG, Huang H, Zhang TT. MiR-302a Limits Vascular Inflammation by Suppressing Nuclear Factor-κ B Pathway in Endothelial Cells. Front Cell Dev Biol 2021; 9:682574. [PMID: 34409030 PMCID: PMC8365611 DOI: 10.3389/fcell.2021.682574] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/21/2021] [Indexed: 01/09/2023] Open
Abstract
The inflammatory response of endothelial cells accelerates various vascular diseases. MicroRNAs (miRNAs) participate in diverse cellular processes during inflammation. In the present study, we found that miR-302a is an effective suppressor of vascular inflammation in endothelial cells. It was revealed that miR-302a exhibited a lower level in a lipopolysaccharide (LPS)-induced mouse model and in patients with vascular inflammatory disease. Genetic haploinsufficiency of miR-302 aggravated the LPS-induced vascular inflammatory response in mice, and overexpression of miR-302a attenuated vascular inflammation in mice. Furthermore, overexpression of miR-302a inhibited the synthesis and secretion of adhesion factors in endothelial cells, and suppressed the adhesion of monocytes to endothelium. In the study of molecular mechanism, we found that miR-302a relieved vascular inflammation mainly by regulating the nuclear factor kappa-B (NF-κB) pathway in endothelial cells. The results showed that interleukin-1 receptor-associated kinase4 (IRAK4) and zinc finger protein 91 (ZFP91) were the binding targets of miR-302a. MiR-302a prevented the nuclear translocation of NF-κB by inhibiting phosphorylation of IκB kinase complex β (IKKβ) and inhibitors of κBα (IκBα) via targeting IRAK4. In addition, miR-302a downregulated the expression of NF-κB by directly binding with ZFP91. These findings indicate that miR-302a negatively regulates inflammatory responses in the endothelium via the NF-κB pathway and it may be a novel target for relieving vascular inflammation.
Collapse
Affiliation(s)
- Jia-Ni Yuan
- Program of Cardiovascular Research, The Eighth Affiliated Hospital, Zhongshan School Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Pharmacology, and Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yu Hong
- Department of Pharmacology, and Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhuo-Lin Ma
- Department of Physiology, Zhongshan School Medicine, Sun Yat-sen University, Guangzhou, China
| | - Rui-Ping Pang
- Department of Physiology, Zhongshan School Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qing-Qing Lei
- Department of Pharmacology, and Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Fei Lv
- Department of Pharmacology, and Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jia-Guo Zhou
- Program of Cardiovascular Research, The Eighth Affiliated Hospital, Zhongshan School Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Pharmacology, and Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hui Huang
- Program of Cardiovascular Research, The Eighth Affiliated Hospital, Zhongshan School Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Ting-Ting Zhang
- Program of Cardiovascular Research, The Eighth Affiliated Hospital, Zhongshan School Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Pharmacology, and Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
31
|
Lu Q, Lou J, Cai R, Han W, Pan H. Emerging roles of a pivotal lncRNA SBF2-AS1 in cancers. Cancer Cell Int 2021; 21:417. [PMID: 34372871 PMCID: PMC8351094 DOI: 10.1186/s12935-021-02123-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/29/2021] [Indexed: 12/25/2022] Open
Abstract
Long non-coding RNAs refer to transcripts over 200 nt in length that lack the ability to encode proteins, which occupy the majority of the genome and play a crucial role in the occurrence and development of human diseases, especially cancers. SBF2-AS1, a newly identified long non-coding RNA, has been verified to be highly expressed in diversiform cancers, and is involved in processes promoting tumorigenesis, tumor progression and tumor metastasis. Moreover, upregulation of SBF2-AS1 expression was significantly related to disadvantageous clinicopathologic characteristics and indicated poor prognosis. In this review, we comprehensively summarize the up-to-date knowledge of the detailed mechanisms and underlying functions of SBF2-AS1 in diverse cancer types, highlighting the potential of SBF2-AS1 as a diagnostic and prognostic biomarker and even a therapeutic target.
Collapse
Affiliation(s)
- Qian Lu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jun Lou
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ruyun Cai
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
32
|
Wu YH, Yu B, Chen WX, Ai X, Zhang W, Dong W, Shao YJ. Downregulation of lncRNA SBF2-AS1 inhibits hepatocellular carcinoma proliferation and migration by regulating the miR-361-5p/TGF-β1 signaling pathway. Aging (Albany NY) 2021; 13:19260-19271. [PMID: 34341185 PMCID: PMC8386566 DOI: 10.18632/aging.203248] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/24/2021] [Indexed: 12/24/2022]
Abstract
SBF2-AS1 is an oncogenic long non-coding RNA (lncRNA). However, its role and mechanism in hepatocellular carcinoma (HCC) is still not completely clear. The HepG2, Hep3B, Bel-7402 and HL-7702 cell lines were used in our experiments. The CCK-8 kit and EdU staining were applied to detect cell viability and multiplication. The wound healing and Boyden chamber cell migration assays were employed to test the migration ability of cells. The levels of TGF-β1 mRNA, lncRNA SBF2-AS1, and miR-361-5p were assessed by real-time PCR. TGF-β1 protein levels were evaluated by western blotting. The direct interaction between miR-361-5p and TGF-β1 was determined by luciferase reporter assays. A xenograft mouse model (XMM) was established to comprehensively study the effect and mechanisms of lncRNA SBF2-AS1. lncRNA SBF2-AS1 concentration in HCC cells exceeded that in a normal hepatocyte cell line. The downregulation of lncRNA SBF2-AS1 upregulated miR-361-5p levels in HCC cells. And, miR-361-5p negatively regulate TGF-β1 expression in HCC cells. The suppression of miR-361-5p attenuated the influence of lncRNA SBF2-AS1 downregulation on the viability, proliferation, and migration capability of HCC cells. Further, the downregulation of lncRNA SBF2-AS1 inhibited neoplasm growth in an XMM of HCC. Simultaneously, miR-361-5p was upregulated and TGF-β1 was downregulated after lncRNA SBF2-AS1 knocked down. In conclusion, downregulation of lncRNA SBF2-AS1 inhibits HCC proliferation and migration through the regulation of the miR-361-5p/TGF-β1 signaling pathway.
Collapse
Affiliation(s)
- Yan-Hui Wu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bin Yu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Wei-Xun Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xi Ai
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Dong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ya-Jie Shao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
33
|
Fu W, Zhao J, Hu W, Dai L, Jiang Z, Zhong S, Deng B, Huang Y, Wu W, Yin J. LINC01224/ZNF91 Promote Stem Cell-Like Properties and Drive Radioresistance in Non-Small Cell Lung Cancer. Cancer Manag Res 2021; 13:5671-5681. [PMID: 34285587 PMCID: PMC8286114 DOI: 10.2147/cmar.s313744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/13/2021] [Indexed: 12/22/2022] Open
Abstract
Background Radioresistance is the main reason for the failure of radiotherapy in non-small-cell lung cancer (NSCLC); however, the molecular mechanism of radioresistance is still unclear. Methods An RNA-Seq assay was used to screen differentially expressed long non-coding RNAs (lncRNAs) and genes in irradiation-resistant NSCLC cells. RT-PCR and Western blotting assays were performed to analyze the expressions of lncRNAs and genes. The chromosome conformation capture (3C) assay was performed to measure chromatin interactions. Cell cytotoxicity, cell apoptosis, sphere formation and Transwell assays were performed to assess cellular function. Results In this study, it was found that LINC01224 increased during the induction of radioresistance in NSCLC cells. LINC01224 was located within the enhancer of ZNF91, and LINC01224 could affect the transcription of ZNF91 by regulating the long-range interactions between the ZNF91 enhancer and promoter. Moreover, upregulation of LINC01224 and ZNF91 could promote irradiation resistance by regulating the stem cell-like properties of NSCLC cells. In addition, high expression levels of LINC01224 and ZNF91 in tissue samples were associated with radioresistance in NSCLC patients. Conclusion Our findings demonstrated that LINC01224/ZNF91 drove radioresistance regulation by promoting the stem cell-like properties in NSCLC.
Collapse
Affiliation(s)
- Wenfan Fu
- Departments of Chest Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, 510095, People's Republic of China
| | - Jian Zhao
- Departments of Chest Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, 510095, People's Republic of China
| | - Weimin Hu
- Departments of Chest Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, 510095, People's Republic of China
| | - Lu Dai
- Departments of Chest Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, 510095, People's Republic of China
| | - Zeyong Jiang
- Departments of Chest Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, 510095, People's Republic of China
| | - Shengpeng Zhong
- Departments of Chest Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, 510095, People's Republic of China
| | - Boyun Deng
- Departments of Chest Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, 510095, People's Republic of China
| | - Yun Huang
- Departments of Chest Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, 510095, People's Republic of China
| | - Wenjie Wu
- Departments of Chest Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, 510095, People's Republic of China
| | - Jun Yin
- Departments of Chest Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, 510095, People's Republic of China
| |
Collapse
|
34
|
Zhang Q, Liu XJ, Li Y, Ying XW, Chen L. Prognostic Value of Immune-Related lncRNA SBF2-AS1 in Diffuse Lower-Grade Glioma. Technol Cancer Res Treat 2021; 20:15330338211011966. [PMID: 34159865 PMCID: PMC8226362 DOI: 10.1177/15330338211011966] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
LncRNA SET-binding factor 2 (SBF2) antisense RNA1 (SBF2-AS1) has been proven to
play an oncogenic role in various types of tumors, but the prognostic role of
SBF2-AS1 in tumors, especially in diffuse lower-grade glioma (LGG), is still
unclear. Here, we aimed to investigate the prognostic value of SBF2-AS1 in LGG.
The LGG expression profiles from The Cancer Genome Atlas (TCGA,
n = 524) and Chinese Glioma Genome Atlas (CGGA,
n = 431) were mined by Kaplan-Meier analysis, Cox
regression analysis, Chi-square test and GSEA analysis. Through Kaplan-Meier
analysis, we found the prognosis of LGG patients with high expression of
SBF2-AS1 were worse than that of patients with low expression (Log Rank
P < 0.001). Cox analysis showed SBF2-AS1 was an
independent prognostic factor for poorer overall survival in LGG
(P < 0.05). SBF2-AS1 was found to be significantly
related to IDH mutation status and SBF2-AS1 was highly expressed in IDH wildtype
group. GSEA analysis obtained a total of 126 GO terms and 6 KEGG pathways that
were significantly enriched in SBF2-AS1 high expression phenotype (NOM
P value < 0.05). We found these 126 GO terms and KEGG
pathways were mainly related to immunity. In conclusion, lncRNA SBF2-AS1
expression is an immune-related lncRNA associated with unfavorable overall
survival in LGG. SBF2-AS1 could be a reliable prognostic biomarker for patients
with LGG.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Clinical laboratory, The People's Hospital of Lishui, Lishui, Zhejiang, China
| | - Xiao-Jun Liu
- External Liaison Office, The Central Hospital of Lishui City, Lishui, Zhejiang, China
| | - Yang Li
- The Emergency Department, The Central Hospital of Lishui City, Lishui, Zhejiang, China
| | - Xiao-Wei Ying
- Department of Hepatopancreatobiliary Surgery, The People's Hospital of Lishui, Lishui, Zhejiang, China
| | - Lu Chen
- Department of Hepatopancreatobiliary Surgery, The People's Hospital of Lishui, Lishui, Zhejiang, China
| |
Collapse
|
35
|
M2 macrophage-derived exosomal long non-coding RNA AGAP2-AS1 enhances radiotherapy immunity in lung cancer by reducing microRNA-296 and elevating NOTCH2. Cell Death Dis 2021; 12:467. [PMID: 33972506 PMCID: PMC8110970 DOI: 10.1038/s41419-021-03700-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 01/09/2023]
Abstract
Long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) play vital roles in human diseases. We aimed to identify the effect of the lncRNA AGAP2 antisense RNA 1 (AGAP2-AS1)/miR-296/notch homolog protein 2 (NOTCH2) axis on the progression and radioresistance of lung cancer. Expression of AGAP2-AS1, miR-296, and NOTCH2 in lung cancer cells and tissues from radiosensitive and radioresistant patients was determined, and the predictive role of AGAP2-AS1 in the prognosis of patients was identified. THP-1 cells were induced and exosomes were extracted, and the lung cancer cells were respectively treated with silenced AGAP2-AS1, exosomes, and exosomes upregulating AGAP2-AS1 or downregulating miR-296. The cells were radiated under different doses, and the biological processes of cells were assessed. Moreover, the natural killing cell-mediated cytotoxicity on lung cancer cells was determined. The relationships between AGAP2-AS1 and miR-296, and between miR-296 and NOTCH2 were verified. AGAP2-AS1 and NOTCH2 increased while miR-296 decreased in radioresistant patients and lung cancer cells. The malignant behaviors of radioresistant cells were promoted compared with the parent cells. Inhibited AGAP2-AS1, macrophage-derived exosomes, and exosomes overexpressing AGAP2-AS1 or inhibiting miR-296 facilitated the malignant phenotypes of radioresistant lung cancer cells. Furthermore, AGAP2-AS1 negatively regulated miR-296, and NOTCH2 was targeted by miR-296. M2 macrophage-derived exosomal AGAP2-AS1 enhances radiotherapy immunity in lung cancer by reducing miR-296 and elevating NOTCH2. This study may be helpful for the investigation of radiotherapy of lung cancer.
Collapse
|
36
|
Wang Z. LncRNA CCAT1 downregulation increases the radiosensitivity of non-small cell lung cancer cells. Kaohsiung J Med Sci 2021; 37:654-663. [PMID: 33955133 DOI: 10.1002/kjm2.12387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 03/03/2021] [Accepted: 03/21/2021] [Indexed: 01/01/2023] Open
Abstract
This study aims to investigate if the radiosensitivity of non-small cell lung cancer (NSCLC) cells can be regulated by long noncoding RNA (lncRNA) colon cancer associated transcript1 (CCAT1). CCAT1 was detected by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) in NSCLC cells (A549, H1299, SK-MES1, H460, and H647) and human bronchial epithelial cells (16HBE). H460 and A549 cells were then selected for the determination of CCAT1 expression after exposure to radiation (0, 2, 4, 6 Gy) at different time points (0, 6, 12, 24 h). Colony forming assay was performed to evaluate the effects of CCAT1 siRNA or pcDNA3.1-CCAT1 vector on the radiosensitivity of H460 and A549 cells. Then, flow cytometry, western blotting and qRT-PCR were also conducted. CCAT1 was increased in NSCLC cells when compared with 16HBE cells, which was declined in a time- and dosage-dependent manner after exposure to radiation. The H460 and A549 cell colonies were decreased and the γ-H2AX expression was elevated with the increase of radiation dosage, which was more obvious in those transfected with CCAT1 siRNA. CCAT1 downregulation arrested NSCLC cells at G2/M phase. Moreover, the enhanced apoptosis of radiotherapy-treated NSCLC cells with reductions of p-p38/p38, p-ERK/ERK, and p-JNK/JNK was promoted by siCCAT1, but it was reversed by pcDNA3.1-CCAT1 vector. Inhibiting CCAT1 regulated cell cycle, DNA damage and apoptosis of NSCLC cells, and affected MAPK pathway, eventually improving the radiosensitivity of NSCLC.
Collapse
Affiliation(s)
- Zhao Wang
- Department of Oncology Radiotherapy 2, Yantai Yantaishan Hospital, Yantai, Shandong, China
| |
Collapse
|
37
|
Wang J, Zhong P, Hua H. The Clinical Prognostic Value of lncRNA SBF2-AS1 in Cancer Patients: A Meta-Analysis. Technol Cancer Res Treat 2021; 20:15330338211004915. [PMID: 33906548 PMCID: PMC8107676 DOI: 10.1177/15330338211004915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background: The mortality and recurrence of patients with cancer is of high prevalence. SET-binding factor 2 (SBF2) antisense RNA1 (lncRNA-SBF2-AS1) is a promising long non-coding RNA. There is increasing evidence that SBF2-AS1 is abnormally expressed in various tumors and is associated with cancer prognosis. However, the identification of the effect of lncRNA SBF2-AS1 in tumors remains necessary. Materials and Methods: Up to November 2, 2020, electronic databases, including PubMed, Cochrane Library, EMBASE, Medline, and Web of Science, were searched. The results were evaluated by pooled odds ratios (ORs) and hazard ratios (HRs) with 95% confidence intervals (CIs). Results: A total of 11 literatures on cancer patients were included for the present meta-analysis. The combined results revealed that high expression of SBF2-AS1 was significantly associated with unfavorable overall survival (OS) (HR = 1.48, 95% CI: 1.34-1.62, P < 0.00001) in a variety of cancers. In additional, the increase in SBF2-AS1 expression was also correlated with tumor size ((larger vs. smaller) OR = 2.34, 95% CI: 1.47-3.70, P = 0.0003), advanced TNM stage ((III/IV vs. I/II) OR = 2.78, 95% CI: 1.75-4.41, P < 0.0001), lymph node metastasis ((Positive vs. Negative) OR = 3.06, 95% CI: 1.93-4.86, P < 0.00001), and histological grade ((poorly vs. well/moderately) OR = 2.58, 95% CI: 1.47-4.52, P = 0.001) in patients with cancer. Furthermore, The Cancer Genome Atlas (TCGA) dataset valuated that SBF2-AS1 was upregulated in a variety of tumors, and predicted the worse prognosis. Conclusions: Our results of this meta-analysis demonstrate that high SBF2-AS1 expression may become a potential target for predicting the prognosis of human cancers.
Collapse
Affiliation(s)
- Jie Wang
- Department of Hepatic-Biliary-Pancreatic Surgery, The 371971First People's Hospital of Neijiang, Neijiang, Sichuan, China
| | - Pingyong Zhong
- Department of Hepatic-Biliary-Pancreatic Surgery, The 371971First People's Hospital of Neijiang, Neijiang, Sichuan, China
| | - Hao Hua
- Department of Hepatic-Biliary-Pancreatic Surgery, The 371971First People's Hospital of Neijiang, Neijiang, Sichuan, China
| |
Collapse
|
38
|
Chen Y, Zitello E, Guo R, Deng Y. The function of LncRNAs and their role in the prediction, diagnosis, and prognosis of lung cancer. Clin Transl Med 2021; 11:e367. [PMID: 33931980 PMCID: PMC8021541 DOI: 10.1002/ctm2.367] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/22/2021] [Accepted: 03/05/2021] [Indexed: 12/24/2022] Open
Abstract
Lung cancer remains a major threat to human health. Low dose CT scan (LDCT) has become the main method of early screening for lung cancer due to the low sensitivity of chest X-ray. However, LDCT not only has a high false positive rate, but also entails risks of overdiagnosis and cumulative radiation exposure. In addition, cumulative radiation by LDCT screening and subsequent follow-up can increase the risk of lung cancer. Many studies have shown that long noncoding RNAs (lncRNAs) remain stable in blood, and profiling of blood has the advantages of being noninvasive, readily accessible and inexpensive. Serum or plasma assay of lncRNAs in blood can be used as a novel detection method to assist LDCT while improving the accuracy of early lung cancer screening. LncRNAs can participate in the regulation of various biological processes. A large number of researches have reported that lncRNAs are key regulators involved in the progression of human cancers through multiple action models. Especially, some lncRNAs can affect various hallmarks of lung cancer. In addition to their diagnostic value, lncRNAs also possess promising potential in other clinical applications toward lung cancer. LncRNAs can be used as predictive markers for chemosensitivity, radiosensitivity, and sensitivity to epidermal growth factor receptor (EGFR)-targeted therapy, and as well markers of prognosis. Different lncRNAs have been implicated to regulate chemosensitivity, radiosensitivity, and sensitivity to EGFR-targeted therapy through diverse mechanisms. Although many challenges need to be addressed in the future, lncRNAs have bright prospects as an adjunct to radiographic methods in the clinical management of lung cancer.
Collapse
Affiliation(s)
- Yu Chen
- Department of Quantitative Health SciencesJohn A. Burns School of Medicine, University of Hawaii at ManoaHonoluluHawaiiUSA
- Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human ResourcesUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | - Emory Zitello
- Department of Quantitative Health SciencesJohn A. Burns School of Medicine, University of Hawaii at ManoaHonoluluHawaiiUSA
- Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human ResourcesUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | - Rui Guo
- School of Public HealthGuangxi Medical UniversityNanningChina
| | - Youping Deng
- Department of Quantitative Health SciencesJohn A. Burns School of Medicine, University of Hawaii at ManoaHonoluluHawaiiUSA
| |
Collapse
|
39
|
Sun X, Diao X, Zhu X, Yin X, Cheng G. Nanog-mediated stem cell properties is critical for MBNL3 associated paclitaxel resistance of ovarian cancer. J Biochem 2021; 169:747-756. [PMID: 33599261 DOI: 10.1093/jb/mvab021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/11/2021] [Indexed: 01/08/2023] Open
Abstract
Paclitaxel (PTX) is the standard first-line treatment of ovarian cancer, but its efficacy is limited by multi-drug resistance. Therefore, it is crucial to identify effective drug targets to facilitate PTX-sensitivity for ovarian cancer treatment. Seventy PTX-administrated ovarian cancer patients were recruited in this study for gene expression and survival rate analyses. Muscleblind-like-3 (MBNL3) gain- and loss-of-function experiments were carried out in ovarian cancer cells (parental and PTX-resistant) and xenograft model. Cancer cell viability, apoptosis, spheroids formation, Nanog gene silencing were examined and conducted to dissect the underlying mechanism of MBNL3-mediated PTX-resistance. High expression of MBNL3 was positively correlated with PTX-resistance and poor prognosis of ovarian cancer. MBNL3 increased cell viability and decreased apoptosis in ovarian stem-like cells, through up-regulating Nanog. This study suggests the MBNL3-Nanog axis is a therapeutic target for the treatment of PTX-resistance in ovarian cancer management.
Collapse
Affiliation(s)
- Xueqin Sun
- Department of Gynecology, Zibo Central Hospital, No.54 of Gongqingtuan West Road, Zhangdian district, Zibo 255000, Shandong, China
| | - Xinghua Diao
- Department of Reproductive Medicine, Binzhou Medical University Hospital, No. 661 of Huanghe 2 Road, Binzhou 256600, Shandong, China
| | - Xiaolin Zhu
- Department of Gynecology, Zibo Central Hospital, No.54 of Gongqingtuan West Road, Zhangdian district, Zibo 255000, Shandong, China
| | - Xuexue Yin
- Department of Gynecology, Zibo Central Hospital, No.54 of Gongqingtuan West Road, Zhangdian district, Zibo 255000, Shandong, China
| | - Guangying Cheng
- Department of Gynecology, Zibo Central Hospital, No.54 of Gongqingtuan West Road, Zhangdian district, Zibo 255000, Shandong, China
| |
Collapse
|
40
|
Radiation Can Regulate the Expression of miRNAs Associated with Osteogenesis and Oxidation in Exosomes from Peripheral Blood Plasma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6646323. [PMID: 33628370 PMCID: PMC7899774 DOI: 10.1155/2021/6646323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/19/2021] [Accepted: 01/28/2021] [Indexed: 02/05/2023]
Abstract
Objectives Radiotherapy is a common therapy in head and neck tumors, which may cause a side effect radiation bone injury (RBI). Furthermore, it has been investigated that microRNA (miRNA) expression levels were altered after radiotherapy. Exosomes play a role in bone formation as miRNA containers, while radiation affects exosomes composition, secretion, and function. So, our objective is to explore changes in miRNA levels during bone formation after radiotherapy and identify the differentially expressed miRNAs (DE-miRs) in plasma exosomes during the process of osteogenesis related to irradiation. Materials and Methods In this study, we analyzed nine samples from three rabbits exposed twice to radiation (15 Gy each) and detected DE-miRs from irradiated plasma exosomes during the process of osteogenesis by RNA sequencing. Further, we identified DE-miRs with significant differences and predicted their target genes via the bioinformatics analysis tools Targetscan v7.2 and miRPathDB v2.0. Finally, we identified radiation-responsive miRNAs and predicted their target genes during osteogenesis. Results Taken together, we have identified some DE-miRs in irradiated plasma exosomes, which were involved in several vital signaling pathways related to bone physiology, such as the Wnt pathway, MAPK cascade, and calcium modulating pathway. Conclusions We have found that plasma exosomes are one of the ways by which radiation can affect bone metabolism and regeneration. However, the specific mechanisms of how these plasma exosomal miRNAs mediate the osteogenesis pathways must be further investigated. Clinical Relevance. Radiotherapy may cause radiation bone injury, and miRNA expression levels in rabbit plasma exosomes are altered after radiotherapy. High-throughput RNA sequencing can identify the differentially expressed miRNAs in irradiated plasma exosomes during the process of osteogenesis. These findings make sense to develop novel therapeutic strategies for treating radiation-induced bone injury disorders.
Collapse
|
41
|
Lei J, Chen P, Zhang F, Zhang N, Zhu J, Wang X, Jiang T. M2 macrophages-derived exosomal microRNA-501-3p promotes the progression of lung cancer via targeting WD repeat domain 82. Cancer Cell Int 2021; 21:91. [PMID: 33546686 PMCID: PMC7866732 DOI: 10.1186/s12935-021-01783-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
Background Exosomes are known to transmit microRNAs (miRNAs) to affect cancer progression, while the role of M2 macrophages-derived exosomes (M2 exosomes) conveying miR-501-3p in lung cancer (LC) remains unknown. We aim to explore the role of exosomal miR-501-3p in LC development via targeting WD repeat domain 82 (WDR82). Methods Lung cancer tissue and normal tissue specimens were collected, in which tumor-associated macrophages (TAM) were measured by immunohistochemistry. M2 macrophages were induced and treated with altered miR-501-3p, and then the exosomes were extracted and identified. MiR-501-3p and WDR82 expression in LC tissues and cell liens was determined. The predictive role of miR-501-3p in prognosis of LC patients was assessed, and the proliferation, colony formation ability, invasion, migration and apoptosis of the LC cells were determined. Targeting relationship between miR-501-3p and WDR82 was confirmed. Results TAM level was elevated in lung cancer tissues. MiR-501-3p was upregulated while WDR82 was downregulated in LC tissues and cell lines, and the M2 exosomes further upregulated miR-501-3p. M2 exosomes and exosomal miR-501-3p promoted LC cell growth. MiR-501-3p inhibition reversed the effect of M2 exosomes on LC cells. WDR82 was confirmed as a target gene of miR-501-3p. Conclusion M2 macrophages-derived exosomal miR-501-3p promotes the progression of LC via downregulating WDR82.
Collapse
Affiliation(s)
- Jie Lei
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, 569 Xin Si Road, Xi'an, 710038, Shanxi, China
| | - Peng Chen
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, 569 Xin Si Road, Xi'an, 710038, Shanxi, China
| | - Feng Zhang
- Department of Oncology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710038, Shanxi, China
| | - Na Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, 569 Xin Si Road, Xi'an, 710038, Shanxi, China
| | - Jianfei Zhu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, 569 Xin Si Road, Xi'an, 710038, Shanxi, China
| | - Xiaoping Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, 569 Xin Si Road, Xi'an, 710038, Shanxi, China.
| | - Tao Jiang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, 569 Xin Si Road, Xi'an, 710038, Shanxi, China.
| |
Collapse
|
42
|
Zha W, Li X, Tie X, Xing Y, Li H, Gao F, Ye T, Du W, Chen R, Liu Y. The molecular mechanisms of the long noncoding RNA SBF2-AS1 in regulating the proliferation of oesophageal squamous cell carcinoma. Sci Rep 2021; 11:805. [PMID: 33436941 PMCID: PMC7804443 DOI: 10.1038/s41598-020-80817-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/28/2020] [Indexed: 12/24/2022] Open
Abstract
The long noncoding RNASBF2-AS1 can promote the occurrence and development of many kinds of tumours, but its role in oesophageal squamous cell carcinoma (ESCC) is unknown. We found that SBF2-AS1 was up-regulated in ESCC, and its expression was positively correlated with tumor size (P = 0.0001), but was not related to gender, age, TNM stage, histological grade, and lymphnode metastasis (P > 0.05). It was further found that the higher the expression of SBF2-AS1, the lower the survival rate. COX multivariate analysis showed that the expression of SBF2-AS1 was an independent prognostic factor. Functional experiments show that inhibition of SBF2-AS1 can inhibit the proliferation of ESCC through in vivo and in vitro, and overexpression of SBF2-AS1 can promote the proliferation of ESCC and inhibit its apoptosis. In mechanism, SBF2-AS1/miR-338-3P, miR-362-3P/E2F1 axis are involved in the regulation of ESCC growth. In general, SBF2-AS1 may be used as ceRNA to combine with miR-338-3P and miR-362-3P to up-regulate the expression ofE2F1, and ultimately play a role in promoting cancer. It may be used as a therapeutic target and a biomarker for prognosis.
Collapse
Affiliation(s)
- Wenjuan Zha
- Department of Radiotherapy, Taixing People's Hospital Affiliated with Bengbu Medical College, Bengbu, China
| | - Xiaomin Li
- Department of Radiotherapy, Taixing People's Hospital Affiliated with Bengbu Medical College, Bengbu, China
| | - Xiaowei Tie
- Department of Radiotherapy, Taixing People's Hospital Affiliated with Bengbu Medical College, Bengbu, China
| | - Yao Xing
- Department of Radiotherapy, Taixing People's Hospital Affiliated with Bengbu Medical College, Bengbu, China
| | - Hao Li
- Department of Clinical Laboratory, Taixing People's Hospital, Taixing, China
| | - Fei Gao
- Department of Radiotherapy, Taixing People's Hospital, Taixing, 225400, China
| | - Ting Ye
- Department of Clinical Laboratory, Taixing People's Hospital, Taixing, China
| | - Wangqi Du
- Department of Clinical Laboratory, Taixing People's Hospital, Taixing, China
| | - Rui Chen
- Department of Taixing People's Hospital Affiliated with Yangzhou University, Yangzhou, 225000, China.
| | - Yangchen Liu
- Department of Radiotherapy, Taixing People's Hospital, Taixing, 225400, China.
| |
Collapse
|
43
|
Qin P, Li Y, Liu J, Wang N. Knockdown of LINC00473 promotes radiosensitivity of non-small cell lung cancer cells via sponging miR-513a-3p. Free Radic Res 2020; 54:756-764. [PMID: 33103510 DOI: 10.1080/10715762.2020.1841900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Non-small cell lung cancer (NSCLC) is the most common form of lung cancer. Radioresistance is a significant obstacle in NSCLC radiotherapy. Long non-coding RNA LINC00473 has been found to impact the radiotherapy in several malignant tumours. This study aimed to investigate the underlying role and mechanism of LINC00473 in regulating radiosensitivity of NSCLC cells. The levels of LINC00473 and miR-513a-3p were measured by quantitative Real-Time PCR. The relationship of LINC00473 with overall survival was tested by the Kaplan-Meier method. The effects of LINC00473 on cell viability and cell survival were assessed by cell counting kit-8 (CCK-8) and colony survival assay in NSCLC cells exposed to different doses of radiation. A luciferase reporter assay was used to investigate the correlation between LINC00473 and miR-513a-3p. The present study showed that the relative LINC00473 expression was upregulated and miR-513a-3p expression was downregulated in radioresistant NSCLC patients compared with radiosensitive patients. And upregulated LINC00473 expression was associated with poor prognosis of NSCLC patients after radiotherapy. Radiation led to an increase in LINC00473 expression in a dose- and time-dependent manner. The knockdown of LINC00473 markedly promoted radiosensitivity in NSCLC cells under different doses of radiation. LINC00473 was a sponge of miR-513a-3p and negatively regulated the miR-513a-3p expression. In conclusion, the inhibition of miR-513a-3p markedly reversed the promoted effect of LINC00473 knockdown on cell radiosensitivity. LINC00473 inhibition enhances radiosensitivity of NSCLC by sponging miR-513a-3p, providing a promising therapeutic target to increase the sensitivity of radiotherapy in NSCLC patients.
Collapse
Affiliation(s)
- Peiyan Qin
- Department of Radiotherapy, Weifang People's Hospital, Shandong, China
| | - Yang Li
- Department of Radiotherapy, Weifang People's Hospital, Shandong, China
| | - Jinfeng Liu
- Endoscopy Center, Weifang People's Hospital, Shandong, China
| | - Nan Wang
- Department of Radiotherapy, Weifang People's Hospital, Shandong, China
| |
Collapse
|
44
|
Luo X, He X, Liu X, Zhong L, Hu W. miR-96-5p Suppresses the Progression of Nasopharyngeal Carcinoma by Targeting CDK1. Onco Targets Ther 2020; 13:7467-7477. [PMID: 32801769 PMCID: PMC7406360 DOI: 10.2147/ott.s248338] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022] Open
Abstract
Background Nasopharyngeal carcinoma (NPC) is a malignant tumor that occurs in the nasopharyngeal mucosa. Clinically, radiotherapy is the preferred treatment for NPC, and cervical lymph node metastasis is easy to emerge in the early stage. Therefore, this study aimed to investigate the role and potential molecular mechanisms of miR-96-5p in NPC cells to develop new therapeutic horizons. Methods The expression of miR-96-5p and CDK1 was measured by RT-qPCR or Western blot. The target relationship between miR-96-5p and CDK1 was confirmed by luciferase reporter assay. CCK-8, sphere formation, flow cytometry and colony formation assay were employed to examine cell viability, stem-like property, apoptosis and cycle, respectively. Male BALB/c nude mice model (6-8 weeks, weigh 18-20 g) was used to evaluate the effect of miR-96-5p on tumor growth in vivo. Results miR-96-5p was lowly expressed and CDK1 was highly expressed in NPC tissues and cell lines. CDK1 was identified as a direct target of miR-96-5p, and its expression was negatively regulated by miR-96-5p. By targeting CDK1, miR-96-5p overexpression significantly inhibited tumor sphere formation, promoted apoptosis and cell cycle arrest in CNE-2Z cells. Importantly, CCK-8 and colony formation assay demonstrated that elevated miR-96-5p enhanced the radiotherapy and chemotherapy sensitivity of CNE-2Z cells. Animal experiments showed that the overexpression of miR-96-5p reduced tumor weight and size in tumor-bearing mice and inhibited the expression of stem-like marker proteins and apoptosis-related proteins. Conclusion These results, together, suggested that miR-96-5p induced cell cycle arrest and apoptosis, inhibited stem-like property, and enhanced the radiochemical sensitivity of NPC by targeting CDK1. In short, miR-96-5p may be a diagnostic and therapeutic target for NPC.
Collapse
Affiliation(s)
- Xiaoqin Luo
- Department of Otolaryngology, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646699, People's Republic of China
| | - Xian He
- Department of Otolaryngology, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646699, People's Republic of China
| | - Xing Liu
- Department of Urology, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646699, People's Republic of China
| | - Lunkun Zhong
- Department of Otolaryngology, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646699, People's Republic of China
| | - Wenjian Hu
- Department of Otolaryngology, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646699, People's Republic of China
| |
Collapse
|
45
|
Yang X, Wang B, Chen W, Man X. MicroRNA-188 inhibits biological activity of lung cancer stem cells through targeting MDK and mediating the Hippo pathway. Exp Physiol 2020; 105:1360-1372. [PMID: 32592428 PMCID: PMC7496401 DOI: 10.1113/ep088704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022]
Abstract
New Findings What is the central question of this study? The aim was to investigate the function of microRNA‐188 in the biological characteristics of lung cancer stem cells and the molecular mechanisms involved. What is the main finding and its importance? This study highlights a new molecular mechanism involving microRNA‐188, MDK and the Hippo signalling pathway that plays a suppressive role in biological activity of lung cancer stem cells. This finding might offer new insights into gene‐based therapy for lung cancer.
Abstract MicroRNAs (miRNAs) have been implicated in lung cancer and reported as new promising diagnostic and therapeutic tools for cancer control. Here, we investigated the action of microRNA‐188 (miR‐188) in lung cancer stem cells. We first tested miR‐188 expression in clinical samples of lung cancer patients, and a low expression profile of miR‐188 was found. Next, we analysed the role of miR‐188 in lung cancer stem cells with cell growth assays. To verify the in vitro results, we used a xenograft model to validate the capability of miR‐188 in tumorigenesis. Overexpression of miR‐188 reduced viability and metastasis of cancer stem cells. Similar results were reproduced in vivo, where overexpression of miR‐188 retarded tumour growth in mice. We also identified MDK as a target of miR‐188, and overexpression of MDK was found in lung cancer samples. Overexpressed MDK promoted the malignant behaviours of lung cancer stem cells. In addition, the Hippo pathway was found to be inactivated in lung cancer tissues, presenting as increased levels of YAP and TAZ. Suppression of the Hippo pathway also enhanced lung cancer stem cell activity and promoted the growth of xenograft tumours. To sum up, our results reveal that miR‐188 inhibits the malignant behaviours of lung cancer stem cells and the growth of xenograft tumours. This study might offer new insights into gene‐based therapies for cancer.
Collapse
Affiliation(s)
- Xiaolin Yang
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, Jilin, 130021, PR China
| | - Baogang Wang
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, PR China
| | - Wenbo Chen
- Department of Emergency, The First Hospital of Jilin University, Changchun, Jilin, 130021, PR China
| | - Xiaxia Man
- Department of Oncological Gynecology, The First Hospital of Jilin University, Changchun, Jilin, 130021, PR China
| |
Collapse
|
46
|
Podralska M, Ciesielska S, Kluiver J, van den Berg A, Dzikiewicz-Krawczyk A, Slezak-Prochazka I. Non-Coding RNAs in Cancer Radiosensitivity: MicroRNAs and lncRNAs as Regulators of Radiation-Induced Signaling Pathways. Cancers (Basel) 2020; 12:E1662. [PMID: 32585857 PMCID: PMC7352793 DOI: 10.3390/cancers12061662] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 02/07/2023] Open
Abstract
Radiotherapy is a cancer treatment that applies high doses of ionizing radiation to induce cell death, mainly by triggering DNA double-strand breaks. The outcome of radiotherapy greatly depends on radiosensitivity of cancer cells, which is determined by multiple proteins and cellular processes. In this review, we summarize current knowledge on the role of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), in determining the response to radiation. Non-coding RNAs modulate ionizing radiation response by targeting key signaling pathways, including DNA damage repair, apoptosis, glycolysis, cell cycle arrest, and autophagy. Additionally, we indicate miRNAs and lncRNAs that upon overexpression or inhibition alter cellular radiosensitivity. Current data indicate the potential of using specific non-coding RNAs as modulators of cellular radiosensitivity to improve outcome of radiotherapy.
Collapse
Affiliation(s)
- Marta Podralska
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland;
| | - Sylwia Ciesielska
- Department of Systems Biology and Engineering, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Joost Kluiver
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center, Groningen, 9700RB Groningen, The Netherlands; (J.K.); (A.v.d.B.)
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center, Groningen, 9700RB Groningen, The Netherlands; (J.K.); (A.v.d.B.)
| | | | | |
Collapse
|