1
|
Wang S, Qi X, Liu D, Xie D, Jiang B, Wang J, Wang X, Wu G. The implications for urological malignancies of non-coding RNAs in the the tumor microenvironment. Comput Struct Biotechnol J 2024; 23:491-505. [PMID: 38249783 PMCID: PMC10796827 DOI: 10.1016/j.csbj.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/08/2023] [Accepted: 12/16/2023] [Indexed: 01/23/2024] Open
Abstract
Urological malignancies are a major global health issue because of their complexity and the wide range of ways they affect patients. There's a growing need for in-depth research into these cancers, especially at the molecular level. Recent studies have highlighted the importance of non-coding RNAs (ncRNAs) – these don't code for proteins but are crucial in controlling genes – and the tumor microenvironment (TME), which is no longer seen as just a background factor but as an active player in cancer progression. Understanding how ncRNAs and the TME interact is key for finding new ways to diagnose and predict outcomes in urological cancers, and for developing new treatments. This article reviews the basic features of ncRNAs and goes into detail about their various roles in the TME, focusing specifically on how different ncRNAs function and act in urological malignancies.
Collapse
Affiliation(s)
- Shijin Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Xiaochen Qi
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Dequan Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Deqian Xie
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Bowen Jiang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Jin Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Xiaoxi Wang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| |
Collapse
|
2
|
SUR SUBHAYAN, DAVRAY DIMPLE, BASU SOUMYA, KHEUR SUPRIYA, PAL JAYANTAKUMAR, NAGAR SHUCHI, SANAP AVINASH, RUDAGI BHIMAPPAM, GUPTA SAMIR. Novel insights on oral squamous cell carcinoma management using long non-coding RNAs. Oncol Res 2024; 32:1589-1612. [PMID: 39308526 PMCID: PMC11413828 DOI: 10.32604/or.2024.052120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/11/2024] [Indexed: 09/25/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most prevalent forms of head and neck squamous cell carcinomas (HNSCC) with a poor overall survival rate (about 50%), particularly in cases of metastasis. RNA-based cancer biomarkers are a relatively advanced concept, and non-coding RNAs currently have shown promising roles in the detection and treatment of various malignancies. This review underlines the function of long non-coding RNAs (lncRNAs) in the OSCC and its subsequent clinical implications. LncRNAs, a class of non-coding RNAs, are larger than 200 nucleotides and resemble mRNA in numerous ways. However, unlike mRNA, lncRNA regulates multiple druggable and non-druggable signaling molecules through simultaneous interaction with DNA, RNA, proteins, or microRNAs depending on concentration and localization in cells. Upregulation of oncogenic lncRNAs and down-regulation of tumor suppressor lncRNAs are evident in OSCC tissues and body fluids such as blood and saliva indicating their potential as valuable biomarkers. Targeted inhibition of candidate oncogenic lncRNAs or over-expression of tumor suppressor lncRNAs showed potential therapeutic roles in in-vivo animal models. The types of lncRNAs that are expressed differentially in OSCC tissue and bodily fluids have been systematically documented with specificity and sensitivity. This review thoroughly discusses the biological functions of such lncRNAs in OSCC cell survival, proliferation, invasion, migration, metastasis, angiogenesis, metabolism, epigenetic modification, tumor immune microenvironment, and drug resistance. Subsequently, we addressed the diagnostic and therapeutic importance of lncRNAs in OSCC pre-clinical and clinical systems, providing details on ongoing research and outlining potential future directions for advancements in this field. In essence, this review could be a valuable resource by offering comprehensive and current insights into lncRNAs in OSCC for researchers in fundamental and clinical domains.
Collapse
Affiliation(s)
- SUBHAYAN SUR
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune, 411033, India
| | - DIMPLE DAVRAY
- Bioinformatics Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, 411033, India
| | - SOUMYA BASU
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune, 411033, India
| | - SUPRIYA KHEUR
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College & Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, 411018, India
| | - JAYANTA KUMAR PAL
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune, 411033, India
| | - SHUCHI NAGAR
- Bioinformatics Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, 411033, India
| | - AVINASH SANAP
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College & Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, 411018, India
| | - BHIMAPPA M. RUDAGI
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College & Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, 411018, India
| | - SAMIR GUPTA
- Department of Surgical Oncology, Dr. D. Y. Patil Medical College, Hospital & Research Centre, Dr. D. Y. Patil Vidyapeeth, Pune, 411018, India
| |
Collapse
|
3
|
Wei X, Li Z, Zheng H, Li X, Lin Y, Yang H, Shen Y. Long non-coding RNA MAGEA4-AS1 binding to p53 enhances MK2 signaling pathway and promotes the proliferation and metastasis of oral squamous cell carcinoma. Funct Integr Genomics 2024; 24:158. [PMID: 39249547 PMCID: PMC11384635 DOI: 10.1007/s10142-024-01436-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/10/2024]
Abstract
Long non-coding RNAs (lncRNAs) regulate the occurrence, development and progression of oral squamous cell carcinoma (OSCC). We elucidated the expression features of MAGEA4-AS1 in patients with OSCC and its activity as an OSCC biomarker. Furthermore, the impact of up-regulation of MAGEA4-AS1 on the cellular behaviors (proliferation, migration and invasion) of OSCC cells and intrinsic signal mechanisms were evaluated. Firstly, we analyzed MAGEA4-AS1 expression data in The Cancer Genome Atlas (TCGA) OSCC using a bioinformatics approach and in 45 pairs of OSCC tissues using qPCR. Then CCK-8, ethynyl deoxyuridine, colony formation, transwell and wound healing assays were conducted to assess changes in the cell proliferation, migration and invasion protential of shMAGEA4-AS1 HSC3 and CAL27 cells. The RNA sequence of MAGEA4-AS1 was identified using the rapid amplification of cDNA ends (RACE) assay. And whole-transcriptome sequencing was used to identify MAGEA4-AS1 affected genes. Additionally, dual-luciferase reporter system, RNA-binding protein immunoprecipitation (RIP), and rescue experiments were performed to clarify the role of the MAGEA4-AS1-p53-MK2 signaling pathway. As results, we found MAGEA4-AS1 was up-regulated in OSCC tissues. We identified a 418 nucleotides length of the MAGEA4-AS1 transcript and it primarily located in the cell nucleus. MAGEA4-AS1 stable knockdown weakened the proliferation, migration and invasion abilities of OSCC cells. Mechanistically, p53 protein was capable to activate MK2 gene transcription. RIP assay revealed an interaction between p53 and MAGEA4-AS1. MK2 up-regulation in MAGEA4-AS1 down-regulated OSCC cells restored MK2 and epithelial-to-mesenchymal transition related proteins' expression levels. In conclusion, MAGEA4-AS1-p53 complexes bind to MK2 promoter, enhancing the transcription of MK2 and activating the downstream signaling pathways, consequently promoting the proliferation and metastasis of OSCC cells. MAGEA4-AS1 may serve as a diagnostic marker and therapeutic target for OSCC patients.
Collapse
Affiliation(s)
- Xiaoxiao Wei
- Peking University Shenzhen Hospital Clinical College, The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, 230032, China
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital, Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, The Institute of Stomatology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, 518036, China
| | - Zhangfu Li
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital, Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, The Institute of Stomatology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, 518036, China
| | - Heng Zheng
- Peking University Shenzhen Hospital Clinical College, The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, 230032, China
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital, Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, The Institute of Stomatology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, 518036, China
| | - Xiaolian Li
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital, Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, The Institute of Stomatology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, 518036, China
| | - Yuntao Lin
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital, Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, The Institute of Stomatology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, 518036, China
| | - Hongyu Yang
- Peking University Shenzhen Hospital Clinical College, The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, 230032, China.
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital, Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, The Institute of Stomatology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, 518036, China.
| | - Yuehong Shen
- Peking University Shenzhen Hospital Clinical College, The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, 230032, China.
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital, Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, The Institute of Stomatology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, 518036, China.
| |
Collapse
|
4
|
Lu X, Yang Y, Chen J, Zhao T, Zhao X. RUNX1/miR-429 feedback loop promotes growth, metastasis, and epithelial-mesenchymal transition in oral squamous cell carcinoma by targeting ITGB1. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5289-5302. [PMID: 38277041 DOI: 10.1007/s00210-024-02960-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Abstract
This study aimed to explore the role of miR-429 on the progression of oral squamous cell carcinoma (OSCC). OSCC cell lines were transfected with miR-429 mimic, pcDNA3.1-RUNX1, or pcDNA3.1-ITGB1, and their cell viability, apoptosis, migration, and invasion abilities were analyzed by cell counting, terminal deoxynucleotidyl transferase dUTP nick-end labeling staining, wound healing, and transwell assays, respectively. Furthermore, luciferase reporter assay, RNA pull-down, and ChIP were used to assess the regulation of miR-429, RUNX1, and ITGB1 expression in OSCC. Lastly, the biological role of the RUNX1/miR-429 feedback loop was explored in nude mice. The results revealed that miR-429 level was down-regulated, while RUNX1 and ITGB1 levels were up-regulated in OSCC tissues and that miR-429 was negatively correlated with RUNX1 and ITGB1 in OSCC tissues. Transfection of miR-429 mimic suppressed OSCC cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT). Moreover, we found that miR-429 participated in OSCC progression by directly targeting ITGB1. Additionally, we found that RUNX1 negatively regulated miR-429 expression by binding to its promoter. Our results also revealed that the RUNX1/miR-429 feedback loop regulated ITGB1 expression and that RUNX1 overexpression rescued the inhibitory effects of miR-429 mimic on OSCC cells. In addition, miR-429 mimic significantly suppressed tumor growth, inflammatory cell infiltration, EMT, and ITGB1 expression in vivo, which were inhibited by RUNX1 overexpression. Altogether, these results indicate that the RUNX1/miR-429 feedback loop promoted growth, metastasis, and EMT in OSCC by targeting ITGB1.
Collapse
Affiliation(s)
- Xun Lu
- Hospital of Stomatology, General Hospital of Ningxia Medical University, 804 Shengli South Street, Xingqing District, Yinchuan City, Ningxia, 750004, China
| | - Yiqiang Yang
- Hospital of Stomatology, General Hospital of Ningxia Medical University, 804 Shengli South Street, Xingqing District, Yinchuan City, Ningxia, 750004, China
| | - Jia Chen
- Hospital of Stomatology, General Hospital of Ningxia Medical University, 804 Shengli South Street, Xingqing District, Yinchuan City, Ningxia, 750004, China
| | - Tian Zhao
- Hospital of Stomatology, General Hospital of Ningxia Medical University, 804 Shengli South Street, Xingqing District, Yinchuan City, Ningxia, 750004, China
| | - Xiaofan Zhao
- Hospital of Stomatology, General Hospital of Ningxia Medical University, 804 Shengli South Street, Xingqing District, Yinchuan City, Ningxia, 750004, China.
| |
Collapse
|
5
|
Umapathy VR, Natarajan PM, Swamikannu B. Molecular and Therapeutic Roles of Non-Coding RNAs in Oral Cancer-A Review. Molecules 2024; 29:2402. [PMID: 38792263 PMCID: PMC11123887 DOI: 10.3390/molecules29102402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Oral cancer (OC) is among the most common malignancies in the world. Despite advances in therapy, the worst-case scenario for OC remains metastasis, with a 50% survival rate. Therefore, it is critical to comprehend the pathophysiology of the condition and to create diagnostic and treatment plans for OC. The development of high-throughput genome sequencing has revealed that over 90% of the human genome encodes non-coding transcripts, or transcripts that do not code for any proteins. This paper describes the function of these different kinds of non-coding RNAs (ncRNAs) in OC as well as their intriguing therapeutic potential. The onset and development of OC, as well as treatment resistance, are linked to dysregulated ncRNA expression. These ncRNAs' potentially significant roles in diagnosis and prognosis have been suggested by their differing expression in blood or saliva. We have outlined every promising feature of ncRNAs in the treatment of OC in this study.
Collapse
Affiliation(s)
- Vidhya Rekha Umapathy
- Department of Public Health Dentistry, Dr. M.G.R. Educational and Research Institute, Thai Moogambigai Dental College and Hospital, Chennai 600107, Tamil Nadu, India
| | - Prabhu Manickam Natarajan
- Department of Clinical Sciences, Centre of Medical and Bio-Allied Health Sciences and Research Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Bhuminathan Swamikannu
- Department of Prosthodontics, Sree Balaji Dental College and Hospital, Pallikaranai, BIHER, Chennai 600100, Tamil Nadu, India;
| |
Collapse
|
6
|
Sun Y, Sun J, Ying K, Chen J, Chen T, Tao L, Bian W, Qiu L. EP300 regulates the SLC16A1-AS1-AS1/TCF3 axis to promote lung cancer malignancies through the Wnt signaling pathway. Heliyon 2024; 10:e27727. [PMID: 38515708 PMCID: PMC10955305 DOI: 10.1016/j.heliyon.2024.e27727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 03/23/2024] Open
Abstract
Objective To investigate the regulatory mechanism of EP300 in the interaction between SLC16A1-AS1 and TCF3 to activate the Wnt pathway, thereby promoting malignant progression in lung cancer. Methods In lung cancer cell lines, SLC16A1-AS1 was knocked down, and the impact of this knockdown on the malignant progression of lung cancer cells was assessed through clonogenic assays, Transwell assays, and apoptosis experiments. The regulatory relationship between EP300 and SLC16A1-AS1 was investigated through bioinformatic analysis and ChIP experiments. The expression of SLC16A1-AS1 and TCF3 in 56 paired lung cancer tissues was examined using RT-qPCR, and their correlation was analyzed. The interaction between TCF3 and SLC16A1-AS1 was explored through bioinformatic analysis and CoIP experiments. Activation of the Wnt/β-catenin pathway was assessed by detecting the accumulation of β-catenin in the nucleus through Western blotting. The role of EP300 in regulating the effect of SLC16A1-AS1/TCF3-mediated Wnt/β-catenin signaling on lung cancer malignant progression was validated through in vitro and in vivo experiments. Results SLC16A1-AS1 is highly expressed in lung cancer and regulates its malignant progression. EP300 mediates histone modifications on the SLC16A1-AS1 promoter, thus controlling its expression. SLC16A1-AS1 exhibits specific interactions with TCF3, and the SLC16A1-AS1/TCF3 complex activates the Wnt/β-catenin pathway. EP300 plays a critical role in regulating the impact of SLC16A1-AS1/TCF3-mediated Wnt/β-catenin signaling on lung cancer malignant progression. Conclusion EP300 regulates the SLC16A1-AS1/TCF3-mediated Wnt/β-catenin signaling pathway, influencing the malignant progression of lung cancer.
Collapse
Affiliation(s)
- Yunhao Sun
- Department of Thoracic Surgery, The First People's Hospital of Yancheng City, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, Jiangsu, 224005, PR China
| | - Jian Sun
- Department of Thoracic Surgery, The First People's Hospital of Yancheng City, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, Jiangsu, 224005, PR China
| | - Kaijun Ying
- Department of Thoracic Surgery, The First People's Hospital of Yancheng City, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, Jiangsu, 224005, PR China
| | - Jinjin Chen
- Oncology Department, The First People's Hospital of Yancheng City, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, Jiangsu, 224005, PR China
| | - Tingting Chen
- Department of Emergency, The First People's Hospital of Yancheng City, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, Jiangsu, 224005, PR China
| | - Leilei Tao
- Oncology Department, The First People's Hospital of Yancheng City, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, Jiangsu, 224005, PR China
| | - Weigang Bian
- Oncology Department, The First People's Hospital of Yancheng City, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, Jiangsu, 224005, PR China
| | - Limin Qiu
- Department of Thoracic Surgery, The First People's Hospital of Yancheng City, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, Jiangsu, 224005, PR China
| |
Collapse
|
7
|
Liao B, Wang J, Yuan Y, Luo H, Ouyang X. Biological roles of SLC16A1-AS1 lncRNA and its clinical impacts in tumors. Cancer Cell Int 2024; 24:122. [PMID: 38555465 PMCID: PMC10981830 DOI: 10.1186/s12935-024-03285-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/27/2024] [Indexed: 04/02/2024] Open
Abstract
Recent studies have increasingly highlighted the aberrant expression of SLC16A1-AS1 in a variety of tumor types, where it functions as either an oncogene or a tumor suppressor in the pathogenesis of different cancers. The expression levels of SLC16A1-AS1 have been found to significantly correlate with clinical features and the prognosis of cancer patients. Furthermore, SLC16A1-AS1 modulates a range of cellular functions, including proliferation, migration, and invasion, through its interactions with diverse molecules and signaling pathways. This review examines the latest evidence regarding the role of SLC16A1-AS1 in the progression of various tumors and explores its potential clinical applications as a novel prognostic and diagnostic biomarker. Our comprehensive review aims to deepen the understanding of SLC16A1-AS1's multifaceted role in oncology, underscoring its potential as a significant biomarker and therapeutic target.
Collapse
Affiliation(s)
- Bing Liao
- Department of Otorhinolaryngology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330008, Jiangxi, China
| | - Jialing Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330008, Jiangxi, China
| | - Yalin Yuan
- Second School of Clinical Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330008, Jiangxi, China
| | - Hongliang Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330008, Jiangxi, China
| | - Xi Ouyang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330008, Jiangxi, China.
| |
Collapse
|
8
|
Ding Q, Lin F, Huang Z, Li Y, Cai S, Chen X, Liu H, Qiu S. Non-coding RNA-related FCGBP downregulation in head and neck squamous cell carcinoma: a novel biomarker for predicting paclitaxel resistance and immunosuppressive microenvironment. Sci Rep 2024; 14:4426. [PMID: 38396056 PMCID: PMC10891054 DOI: 10.1038/s41598-024-55210-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/21/2024] [Indexed: 02/25/2024] Open
Abstract
In head and neck squamous cell carcinoma (HNSC), chemoresistance is a major reason for poor prognosis. Nevertheless, there is a lack of validated biomarkers to screen for patients for categorical chemotherapy. Fc gamma binding protein (FCGBP) is a mucus protein associated with mucosal epithelial cells and has immunological functions that protect against tumors and metastasis. However, the effect of FCGBP on HNSC is unclear. In pan-cancer tissues, the expression of FCGBP and the survival status of patients were analyzed using information from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). Correlation analysis and Cox regression analysis were conducted to confirm the relationship and survival outcome. Bioinformatics analysis was utilized to predict the probable upstream non-coding RNA. FCGBP functioned as a potential tumor suppressor gene in HNSC. Notably, FCGBP expression was negatively correlated with enriched tumor-infiltrating macrophages and paclitaxel resistance. Cox regression with gene, clinical, and immune factors showed that FCGBP was a risk factor acting in an independent manner. In HNSC, the utmost possibly upstream non-coding RNA-related pathway of FCGBP was also discovered to be the PART1/AC007728.2/LINC00885/hsa-miR-877-5p/FCGBP axis. According to the present study, non-coding RNA-related low levels of FCGBP are a prognostic indicator and are linked to an HNSC-related immunosuppressive state.
Collapse
Affiliation(s)
- Qin Ding
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, China
| | - Fengjie Lin
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, China
| | - Zongwei Huang
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, China
| | - Ying Li
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, China
| | - Sunqin Cai
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, China
| | - Xin Chen
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, China
| | - Hui Liu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China.
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, China.
| | - Sufang Qiu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China.
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, China.
| |
Collapse
|
9
|
Hu Y, Wang Y, Hu W, Hu C, Wang B, Liu C, Deng A, Shen B, Wu K, Liu Y. USP39 Promotes the Viability and Migration of Head and Neck Squamous Cell Carcinoma Cell by Regulating STAT1. Technol Cancer Res Treat 2024; 23:15330338241250298. [PMID: 38706215 PMCID: PMC11072062 DOI: 10.1177/15330338241250298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/22/2024] [Accepted: 04/08/2024] [Indexed: 05/07/2024] Open
Abstract
Objective: Ubiquitin-specific peptidase 39 (USP39) plays a carcinogenic role in many cancers, but little research has been conducted examining whether it is involved in head and neck squamous cell carcinoma (HNSCC). Therefore, this study explored the functional role of USP39 in HNSCC. Method: Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to identify differentially expressed proteins (DEPs) between the HNSCC tumor and adjacent healthy tissues. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were used to assess the functional enrichment of DEPs. Immunohistochemistry was used to detect protein expression. The viability and migration of two HNSCC cell lines, namely CAL27 and SCC25, were detected using the cell counting kit-8 assay and a wound healing assay, respectively. Quantitative real-time PCR was used to detect the expression level of signal transducer and activator of transcription 1 (STAT1) mRNA. Results: LC-MS/MS results identified 590 DEPs between HNSCC and adjacent tissues collected from 4 patients. Through GO and KEGG pathway analyses, 34 different proteins were found to be enriched in the spliceosome pathway. The expression levels of USP39 and STAT1 were significantly higher in HNSCC tumor tissue than in adjacent healthy tissue as assessed by LC-MS/MS analysis, and the increased expression of USP39 and STAT1 protein was confirmed by immunohistochemistry in clinical samples collected from 7 additional patients with HNSCC. Knockdown of USP39 or STAT1 inhibited the viability and migration of CAL27 and SCC25 cells. In addition, USP39 knockdown inhibited the expression of STAT1 mRNA in these cells. Conclusion: Our findings indicated that USP39 knockdown may inhibit HNSCC viability and migration by suppressing STAT1 expression. The results of this study suggest that USP39 may be a potential new target for HNSCC clinical therapy or a new biomarker for HNSCC.
Collapse
Affiliation(s)
- Yu Hu
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Otorhinolaryngology, Head and Neck Surgery, Lu’an People's Hospital, Lu’an Hospital Affiliated to Anhui Medical University, Lu’an, China
| | - Yang Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Lu’an People's Hospital, Lu’an Hospital Affiliated to Anhui Medical University, Lu’an, China
| | - Wenrui Hu
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Chenrui Hu
- Department of Otorhinolaryngology, Head and Neck Surgery, Lu’an People's Hospital, Lu’an Hospital Affiliated to Anhui Medical University, Lu’an, China
| | - Bin Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Lu’an People's Hospital, Lu’an Hospital Affiliated to Anhui Medical University, Lu’an, China
| | - Congli Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, Lu’an People's Hospital, Lu’an Hospital Affiliated to Anhui Medical University, Lu’an, China
| | - Anqi Deng
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Bing Shen
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Kaile Wu
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yehai Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
10
|
Zhou Y, Tan F, Wang Z, Zhou G, Yuan C. The Pivotal Function of SLC16A1 and SLC16A1-AS1 in Cancer Progress: Molecular Pathogenesis and Prognosis. Mini Rev Med Chem 2024; 24:1685-1700. [PMID: 38616756 DOI: 10.2174/0113895575284780240327103039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/15/2024] [Accepted: 03/06/2024] [Indexed: 04/16/2024]
Abstract
More than 300 membranes make up the SLC family of transporters, utilizing an ion gradient or electrochemical potential difference to move their substrates across biological membranes. The SLC16 gene family contains fourteen members. Proton-linked transportation of monocarboxylates can be promoted by the transporters MCT1, which the SLC16A1 gene family encodes. Glycolysis is constitutively up-regulated in cancer cells, and the amount of lactate produced as a result is correlated with prognosis. Further speaking, SLC16A1 plays an essential role in controlling the growth and spread of tumors, according to mounting evidence. Additionally, LncRNAs are the collective term for all genes that produce RNA transcripts longer than 200 nucleotides but do not convert into proteins. It has steadily developed into a hub for research, offering an innovative approach to tumor study as technology related to molecular biology advances. The growing study has uncovered SLC16A1-AS1, an RNA that acts as an antisense to SLC16A1, which is erroneously expressed in various types of cancers. Therefore, we compiled the most recent information on the physiological functions and underlying processes of SLC16A1 and the LncRNA SLC16A1-AS1 during tumor development to explore their impact on cancer treatment and prognosis. We compiled the most recent information on the physiological functions and underlying processes of SLC16A1 and the LncRNA SLC16A1-AS1 during tumor development to explore their impact on cancer treatment and prognosis. Relevant studies were retrieved and collected through the PubMed system. After determining SLC16A1 and SLC16A1-AS1 as the research object, we found a close relationship between SLC16A1 and tumorigenesis as well as the influencing factors through the analysis of the research articles. SLC16A1 regulates lactate chemotaxis while uncovering SLC16A1- AS1 as an antisense RNA acting through multiple pathways; they affect the metabolism of tumor cells and have an impact on the prognosis of patients with various cancers.
Collapse
Affiliation(s)
- Yunxi Zhou
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Tichang 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Thirdgrade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, China
| | - Fangshun Tan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Tichang 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Thirdgrade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, China
| | - Zhuowei Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Tichang 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Thirdgrade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, China
| | - Gang Zhou
- College of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- Yichang Hospital of Traditional Chinese Medicine, Yichang, 443002, China
| | - Chengfu Yuan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Tichang 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Thirdgrade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, China
| |
Collapse
|
11
|
Kalmatte A, Rekha PD, Ratnacaram CK. Emerging cell cycle related non-coding RNA biomarkers from saliva and blood for oral squamous cell carcinoma. Mol Biol Rep 2023; 50:9479-9496. [PMID: 37717257 DOI: 10.1007/s11033-023-08791-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/30/2023] [Indexed: 09/19/2023]
Abstract
The unnotified or undifferentiable early stages of oral squamous cell carcinoma (OSCC) progression are the prime reasons for late-stage detection and poor survival outcomes of oral cancer. This review summarizes the prior research and recent advancements on the influence of dysregulated non-coding RNA (ncRNA) on cell cycle and their employability as diagnostic and prognostic biomarkers of oral cancer. The literature search was performed using the following keywords: 'serum/saliva non-coding RNAs' and 'serum/saliva non-coding RNAs and cell cycle', 'serum/saliva dysregulated ncRNAs and cell cycle', 'Cdk/CKI and ncRNAs', 'tissue ncRNAs' concerning 'oral cancer''. The compiled data focuses mainly on the diagnostic and prognostic significance of MicroRNAs (miRNAs), Circular RNAs (circRNAs), and Long noncoding RNAs (lncRNAs) on oral cancer and all other cancers as well as subject-relevant articles published in languages other than English are beyond the scope of this review and excluded from the study. Moreover, articles focusing on DNA, protein, and metabolite markers are eliminated from the study. While there exist various potential biomolecules such as DNA, RNA, proteins, metabolites, and specific antigens representing predictive biomarkers in body fluids for oral cancer, this review completely focuses on non-coding RNAs restricted to saliva and blood, picking out a few of the reliable ones amongst the recent investigations based on the sophisticated techniques, cohort, and sensitivity as well as specificity, i.e., salivary miR-1307-5p, miR-3928, hsa_circ_0001874 and ENST00000412740, NR_131012, ENST00000588803, NR_038323, miR-21 in circulation. Thus, further studies are required to clinically confirm the usage of these non-invasive biomarkers in oral cancer.
Collapse
Affiliation(s)
- Asrarunissa Kalmatte
- Srinivas College Of Physiotherapy, City Campus, Pandeshwar, Mangaluru, Karnataka, 575001, India
- Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangaluru, Karnataka, 575018, India
| | - Punchappady Devasya Rekha
- Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangaluru, Karnataka, 575018, India
| | - Chandrahas Koumar Ratnacaram
- Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangaluru, Karnataka, 575018, India.
| |
Collapse
|
12
|
Huang J, Zhang JL, Ang L, Li MC, Zhao M, Wang Y, Wu Q. Proposing a novel molecular subtyping scheme for predicting distant recurrence-free survival in breast cancer post-neoadjuvant chemotherapy with close correlation to metabolism and senescence. Front Endocrinol (Lausanne) 2023; 14:1265520. [PMID: 37900131 PMCID: PMC10602753 DOI: 10.3389/fendo.2023.1265520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/12/2023] [Indexed: 10/31/2023] Open
Abstract
Background High relapse rates remain a clinical challenge in the management of breast cancer (BC), with distant recurrence being a major driver of patient deterioration. To optimize the surveillance regimen for distant recurrence after neoadjuvant chemotherapy (NAC), we conducted a comprehensive analysis using bioinformatics and machine learning approaches. Materials and methods Microarray data were retrieved from the GEO database, and differential expression analysis was performed with the R package 'Limma'. We used the Metascape tool for enrichment analyses, and 'WGCNA' was utilized to establish co-expression networks, selecting the soft threshold power with the 'pickSoftThreshold' algorithm. We integrated ten machine learning algorithms and 101 algorithm combinations to identify key genes associated with distant recurrence in BC. Unsupervised clustering was performed with the R package 'ConsensusCluster Plus'. To further screen the key gene signature of residual cancer burden (RCB), multiple knockdown studies were analyzed with the Genetic Perturbation Similarity Analysis (GPSA) database. Single-cell RNA sequencing (scRNA-seq) analysis was conducted through the Tumour Immune Single-cell Hub (TISCH) database, and the XSum algorithm was used to screen candidate small molecule drugs based on the Connectivity Map (CMAP) database. Molecular docking processes were conducted using Schrodinger software. GMT files containing gene sets associated with metabolism and senescence were obtained from GSEA MutSigDB database. The GSVA score for each gene set across diverse samples was computed using the ssGSEA function implemented in the GSVA package. Results Our analysis, which combined Limma, WGCNA, and machine learning approaches, identified 16 RCB-relevant gene signatures influencing distant recurrence-free survival (DRFS) in BC patients following NAC. We then screened GATA3 as the key gene signature of high RCB index using GPSA analysis. A novel molecular subtyping scheme was developed to divide patients into two clusters (C1 and C2) with different distant recurrence risks. This molecular subtyping scheme was found to be closely associated with tumor metabolism and cellular senescence. Patients in cluster C2 had a poorer DRFS than those in cluster C1 (HR: 4.04; 95% CI: 2.60-6.29; log-rank test p < 0.0001). High GATA3 expression, high levels of resting mast cell infiltration, and a high proportion of estrogen receptor (ER)-positive patients contributed to better DRFS in cluster C1. We established a nomogram based on the N stage, RCB class, and molecular subtyping. The ROC curve for 5-year DRFS showed excellent predictive value (AUC=0.91, 95% CI: 0.95-0.86), with a C-index of 0.85 (95% CI: 0.81-0.90). Entinostat was identified as a potential small molecule compound to reverse high RCB after NAC. We also provided a comprehensive review of the EDCs exposures that potentially impact the effectiveness of NAC among BC patients. Conclusion This study established a molecular classification scheme associated with tumor metabolism and cancer cell senescence to predict RCB and DRFS in BC patients after NAC. Furthermore, GATA3 was identified and validated as a key gene associated with BC recurrence.
Collapse
Affiliation(s)
- Jin Huang
- Department of Pathology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jian-Lin Zhang
- Department of Emergency Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Lin Ang
- Department of Pathology, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Ming-Cong Li
- Department of Pathology, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Min Zhao
- Department of Pathology, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Yao Wang
- Digestive Endoscopy Department, Jiangsu Provincial People’s Hospital, The First Afliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiang Wu
- Department of Pathology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
13
|
Dey S, Biswas B, Manoj Appadan A, Shah J, Pal JK, Basu S, Sur S. Non-Coding RNAs in Oral Cancer: Emerging Roles and Clinical Applications. Cancers (Basel) 2023; 15:3752. [PMID: 37568568 PMCID: PMC10417002 DOI: 10.3390/cancers15153752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/29/2023] [Accepted: 07/12/2023] [Indexed: 08/13/2023] Open
Abstract
Oral cancer (OC) is among the most prevalent cancers in the world. Certain geographical areas are disproportionately affected by OC cases due to the regional differences in dietary habits, tobacco and alcohol consumption. However, conventional therapeutic methods do not yield satisfying treatment outcomes. Thus, there is an urgent need to understand the disease process and to develop diagnostic and therapeutic strategies for OC. In this review, we discuss the role of various types of ncRNAs in OC, and their promising clinical implications as prognostic or diagnostic markers and therapeutic targets. MicroRNA (miRNA), long ncRNA (lncRNA), circular RNA (circRNA), PIWI-interacting RNA (piRNA), and small nucleolar RNA (snoRNA) are the major ncRNA types whose involvement in OC are emerging. Dysregulated expression of ncRNAs, particularly miRNAs, lncRNAs, and circRNAs, are linked with the initiation, progression, as well as therapy resistance of OC via modulation in a series of cellular pathways through epigenetic, transcriptional, post-transcriptional, and translational modifications. Differential expressions of miRNAs and lncRNAs in blood, saliva or extracellular vesicles have indicated potential diagnostic and prognostic importance. In this review, we have summarized all the promising aspects of ncRNAs in the management of OC.
Collapse
Affiliation(s)
| | | | | | | | | | - Soumya Basu
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth (DPU), Pimpri 411033, India; (S.D.)
| | - Subhayan Sur
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth (DPU), Pimpri 411033, India; (S.D.)
| |
Collapse
|
14
|
Dholariya S, Singh RD, Sonagra A, Yadav D, Vajaria BN, Parchwani D. Integrating Cutting-Edge Methods to Oral Cancer Screening, Analysis, and Prognosis. Crit Rev Oncog 2023; 28:11-44. [PMID: 37830214 DOI: 10.1615/critrevoncog.2023047772] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Oral cancer (OC) has become a significant barrier to health worldwide due to its high morbidity and mortality rates. OC is among the most prevalent types of cancer that affect the head and neck region, and the overall survival rate at 5 years is still around 50%. Moreover, it is a multifactorial malignancy instigated by genetic and epigenetic variabilities, and molecular heterogeneity makes it a complex malignancy. Oral potentially malignant disorders (OPMDs) are often the first warning signs of OC, although it is challenging to predict which cases will develop into malignancies. Visual oral examination and histological examination are still the standard initial steps in diagnosing oral lesions; however, these approaches have limitations that might lead to late diagnosis of OC or missed diagnosis of OPMDs in high-risk individuals. The objective of this review is to present a comprehensive overview of the currently used novel techniques viz., liquid biopsy, next-generation sequencing (NGS), microarray, nanotechnology, lab-on-a-chip (LOC) or microfluidics, and artificial intelligence (AI) for the clinical diagnostics and management of this malignancy. The potential of these novel techniques in expanding OC diagnostics and clinical management is also reviewed.
Collapse
Affiliation(s)
- Sagar Dholariya
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rajkot, Gujarat, India
| | - Ragini D Singh
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rajkot, Gujarat, India
| | - Amit Sonagra
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rajkot, Gujarat, India
| | | | | | - Deepak Parchwani
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rajkot, Gujarat, India
| |
Collapse
|
15
|
Li T, Wang D, Yang S. Analysis of the subcellular location of lncRNA SLC16A1-AS1 and its interaction with premature miR-5088-5p in oral squamous cell carcinoma. Odontology 2023; 111:41-48. [PMID: 35829849 DOI: 10.1007/s10266-022-00712-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 04/20/2022] [Indexed: 01/11/2023]
Abstract
SLC16A1-AS1 is a newly identified lncRNA with different roles in different cancers. MiR-5088-5p is an oncogenic miRNA in breast cancer. However, their participation in oral squamous cell carcinoma (OSCC) is unknown. We predicted the interaction between SLC16A1-AS1 and miR-5088-5p, and this study was carried out to explore the crosstalk between them in OSCC. A total of 56 OSCC patients donated OSCC and paired non-tumor tissues, which were used to detect the differential expression of SLC16A1-AS1 and miR-5088-5p (mature and premature). Analysis of the subcellular location of SLC16A1-AS1 in OSCC cells and its direct interaction with premature miR-5088-5p was performed with cellular fractionation assay and RNA pull-down assay, respectively. The involvement of SLC16A1-AS1 in miR-5088-5p maturation was studied with overexpression assay. BrdU assay was performed to detect cell proliferation after transfection. OSCC tissue samples exhibited decreased expression levels of SLC16A1-AS1 and premature miR-5088-5p, but increased the expression levels of mature miR-5088-5p. SLC16A1-AS1 was detected in both nucleus and cytoplasm samples of OSCC cells and its direct interaction with premature miR-5088-5p was confirmed. Overexpression of SLC16A1-AS1 in OSCC cells resulted in inhibited maturation of miR-5088-5p. SLC16A1-AS1 suppressed the enhancing effects of miR-5088-5p on cell proliferation. SLC16A1-AS1 was downregulated in OSCC and it may inhibit cell proliferation by suppressing maturation of miR-5088-5p.
Collapse
Affiliation(s)
- Tiecheng Li
- Department of Stomatology, Daqing Oilfiled General Hospital, Daqing, 163000, Heilongjiang, People's Republic of China
| | - Di Wang
- Department of Prosthodontics, Daqing Oilfiled General Hospital, Daqing, 163000, Heilongjiang, People's Republic of China
| | - Shuo Yang
- Department of Geriatrics, Daqing Oilfiled General Hospital, No. 9, Sartu District, Daqing, 163000, Heilongjiang, People's Republic of China.
| |
Collapse
|
16
|
Lindemann A, Brandes F, Borrmann M, Meidert AS, Kirchner B, Steinlein OK, Schelling G, Pfaffl MW, Reithmair M. Anesthetic‑specific lncRNA and mRNA profile changes in blood during colorectal cancer resection: A prospective, matched‑case pilot study. Oncol Rep 2022; 49:28. [PMID: 36562401 PMCID: PMC9813548 DOI: 10.3892/or.2022.8465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/03/2022] [Indexed: 12/23/2022] Open
Abstract
Prometastatic and antitumor effects of different anesthetics have been previously analyzed in several studies with conflicting results. Thus, the underlying perioperative molecular mechanisms mediated by anesthetics potentially affecting tumor phenotype and metastasis remain unclear. It was hypothesized that anesthetic‑specific long non‑coding RNA (lncRNA) expression changes are induced in the blood circulation and play a crucial role in tumor outcome. In the present study, high‑throughput sequencing and quantitative PCR were performed in order to identify lncRNA and mRNA expression changes affected by two therapeutic regimes, total intravenous anesthesia (TIVA) and volatile anesthetic gas (VAG) in patients undergoing colorectal cancer (CRC) resection. Total blood RNA was isolated prior to and following resection and characterized using RNA sequencing. mRNA‑lncRNA interactions and their roles in cancer‑related signaling of differentially expressed lncRNAs were identified using bioinformatics analyses. The comparison of these two time points revealed 35 differentially expressed lncRNAs in the TIVA‑group, and 25 in the VAG‑group, whereas eight were shared by both groups. Two lncRNAs in the TIVA‑group, and 23 in the VAG‑group of in silico identified target‑mRNAs were confirmed as differentially regulated in the NGS dataset of the present study. Pathway analysis was performed and cancer relevant canonical pathways for TIVA were identified. Target‑mRNA analysis of VAG revealed a markedly worsened immunological response against cancer. In this proof‑of‑concept study, anesthesic‑specific expression changes in lncRNA and mRNA profiles in blood were successfully identified. Moreover, the data of the present study provide the first evidence that anesthesia‑induced lncRNA pattern changes may contribute further in the observed differences in CRC outcome following tumor resection.
Collapse
Affiliation(s)
- Anja Lindemann
- Institute of Human Genetics, University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| | - Florian Brandes
- Department of Anesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Melanie Borrmann
- Department of Anesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Agnes S. Meidert
- Department of Anesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Benedikt Kirchner
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Ortrud K. Steinlein
- Institute of Human Genetics, University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| | - Gustav Schelling
- Department of Anesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Michael W. Pfaffl
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Marlene Reithmair
- Institute of Human Genetics, University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany,Correspondence to: Dr Marlene Reithmair, Institute of Human Genetics, University Hospital, Ludwig-Maximilians-University Munich, Goethestraße 29, 80336 Munich, Germany, E-mail:
| |
Collapse
|
17
|
Circulating Long Non-Coding RNAs Could Be the Potential Prognostic Biomarker for Liquid Biopsy for the Clinical Management of Oral Squamous Cell Carcinoma. Cancers (Basel) 2022; 14:cancers14225590. [PMID: 36428681 PMCID: PMC9688117 DOI: 10.3390/cancers14225590] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Long non-coding RNA (lncRNA) have little or no coding potential. These transcripts are longer than 200 nucleotides. Since lncRNAs are master regulators of almost all biological processes, recent evidence proves that aberrantly expressed lncRNAs are pathogenic for oral squamous cell carcinoma (OSCC) and other diseases. LncRNAs influence chromatin modifications, transcriptional modifications, post-transcriptional modifications, genomic imprinting, cell proliferation, invasion, metastasis, and apoptosis. Consequently, they have an impact on the disease transformation, progression, and morbidity in OSCC. Therefore, circulating lncRNAs could be the potential cancer biomarker for the better clinical management (diagnosis, prognosis, and monitoring) of OSCC to provide advanced treatment strategies and clinical decisions. In this review, we report and discuss the recent understandings and perceptions of dysregulated lncRNAs with a focus on their clinical significance in OSCC-disease monitoring and treatment. Evidence clearly indicates that a specific lncRNA expression signature could act as an indicator for the early prediction of diagnosis and prognosis for the initiation, progression, recurrence, metastasis and other clinical prognostic-factors (overall survival, disease-free survival, etc.) in OSCC. The present review demonstrates the current knowledge that all potential lncRNA expression signatures are molecular biomarkers for the early prediction of prognosis in OSCC. Finally, the review provides information about the clinical significance, challenges and limitations of the clinical usage of circulating lncRNAs in a liquid biopsy method in early, pre-symptomatic, sub-clinical, accurate OSCC prognostication. More studies on lncRNA are required to unveil the biology of the inherent mechanisms involved in the process of the development of differential prognostic outcomes in OSCC.
Collapse
|
18
|
Liu Y, Yu M, Cheng X, Zhang X, Luo Q, Liao S, Chen Z, Zheng J, Long K, Wu X, Qu W, Gong M, Song Y. A novel LUAD prognosis prediction model based on immune checkpoint-related lncRNAs. Front Genet 2022; 13:1016449. [PMID: 36212122 PMCID: PMC9533213 DOI: 10.3389/fgene.2022.1016449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/05/2022] [Indexed: 12/24/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is a malignant disease with an extremely poor prognosis, and there is currently a lack of clinical methods for early diagnosis and precise treatment and management. With the deepening of tumor research, more and more attention has been paid to the role of immune checkpoints (ICP) and long non-coding RNAs (lncRNAs) regulation in tumor development. Therefore, this study downloaded LUAD patient data from the TCGA database, and finally screened 14 key ICP-related lncRNAs based on ICP-related genes using univariate/multivariate COX regression analysis and LASSO regression analysis to construct a risk prediction model and corresponding nomogram. After multi-dimensional testing of the model, the model showed good prognostic prediction ability. In addition, to further elucidate how ICP plays a role in LUAD, we jointly analyzed the immune microenvironmental changes in LAUD patients and performed a functional enrichment analysis. Furthermore, to enhance the clinical significance of this study, we performed a sensitivity analysis of common antitumor drugs. All the above works aim to point to new directions for the treatment of LUAD.
Collapse
|
19
|
Shao Z, Wang X, Li Y, Hu Y, Li K. The role of long noncoding RNAs as regulators of the epithelial–Mesenchymal transition process in oral squamous cell carcinoma cells. Front Mol Biosci 2022; 9:942636. [PMID: 36106022 PMCID: PMC9465078 DOI: 10.3389/fmolb.2022.942636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a highly invasive and relatively prevalent cancer, accounting for around 3% of all cancers diagnosed. OSCC is associated with bad outcomes, with only 50% overall survival (OS) after five years. The ability of OSCC to invade local and distant tissues relies on the induction of the epithelial–mesenchymal transition (EMT), wherein epithelial cells shed their polarity and cell-to-cell contacts and acquire mesenchymal characteristics. Consequently, a comprehensive understanding of how tumor cell EMT induction is regulated has the potential of direct attempts to prevent tumor progression and metastasis, resulting in better patient outcomes. Several recent studies have established the significance of particular long noncoding RNAs (lncRNAs) in the context of EMT induction. Moreover, lncRNAs regulate a vast array of oncogenic pathways. With a focus on the mechanisms by which the underlined lncRNAs shape the metastatic process and a discussion of their potential utility as clinical biomarkers or targets for therapeutic intervention in patients with OSCC, the present review thus provides an overview of the EMT-related lncRNAs that are dysregulated in OSCC.
Collapse
Affiliation(s)
- Zifei Shao
- Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Xiang Wang
- Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Yiyang Li
- Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Yanjia Hu
- Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Oral Major Diseases and Oral Health and Xiangya Stomatological Hospital, Changsha, China
- *Correspondence: Yanjia Hu, ; Kun Li,
| | - Kun Li
- Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Oral Major Diseases and Oral Health and Xiangya Stomatological Hospital, Changsha, China
- *Correspondence: Yanjia Hu, ; Kun Li,
| |
Collapse
|
20
|
Liu S, Yu Y, Wang Y, Zhu B, Han B. COLGALT1 is a potential biomarker for predicting prognosis and immune responses for kidney renal clear cell carcinoma and its mechanisms of ceRNA networks. Eur J Med Res 2022; 27:122. [PMID: 35842702 PMCID: PMC9287979 DOI: 10.1186/s40001-022-00745-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/28/2022] [Indexed: 12/03/2022] Open
Abstract
Background As precision medicine gradually played an inaccessible role in cancer treatment, there was an urgent need to explore biomarkers or signatures for predicting cancer prognosis. Currently, little was known about the associations between COLGALT1 and kidney renal clear cell carcinoma (KIRC). Hence, this study was performed to reveal its roles in KIRC and to identify potential mechanisms of competing endogenous RNA (ceRNA) networks. Methods R 4.1.1 software was utilized to conduct bioinformatics analyses with the data derived from online databases. Difference analysis, survival analysis, univariate/multivariate cox regression analysis and correlation analysis were carried out successively in this article. Besides, we also investigated potential effects and mechanisms of COLGALT1 in KIRC. Results COLGALT1 expression was overexpressed in KIRC samples compared with the normal samples and it was associated with poor OS (P < 0.001). COLGALT1 was also found to be significantly related to clinicopathological characteristics such as grade, T, N, M, stage and Cox regression analysis with univariate and multivariate data suggested it might be an independent prognostic parameter in KIRC (P < 0.001). Furthermore, Seven significantly enriched pathways were identified. Interestingly, correlation analyses revealed an association between COLGALT1 and microsatellite instability (MSI), tumor mutational burden (TMB) and immunity (P < 0.001). In addition, we used TIDE and TCIA databases to predict the immune response of COLGALT1 in KIRC and it suggested low expression of COLGALT1 is more likely to benefit from immunotherapy. Besides, we identified a ceRNA network of SLC16A1-AS1/hsa-mir-502-3p/COLGALT1 for its potential mechanism. Finally, experiments in vitro indicated that COLGALT1 was significantly related to cell proliferation. Conclusions COLGALT1 could act as a valid immune-related prognostic indicator for KIRC and participated in a ceRNA network of SLC16A1-AS1/hsa-mir-502-3p/COLGALT1, offering one potential biomarker to investigate the mechanism and clinical therapeutic value of KIRC. Supplementary Information The online version contains supplementary material available at 10.1186/s40001-022-00745-5.
Collapse
Affiliation(s)
- Shiwei Liu
- Department of Urology, Shanghai General Hospital of Nanjing Medical University, Shanghai, 200080, China
| | - Yang Yu
- Department of Urology, Shanghai General Hospital of Nanjing Medical University, Shanghai, 200080, China
| | - Yi Wang
- Department of Urology, Affiliated Hospital of Nantong University, Jiangsu Province, Nantong, 226001, China.,Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Bingye Zhu
- Department of Urology, Affiliated Nantong Hospital of Shanghai University, The Sixth People's Hospital of Nantong), Jiangsu Province, Nantong, 226001, China.
| | - Bangmin Han
- Department of Urology, Shanghai General Hospital of Nanjing Medical University, Shanghai, 200080, China. .,Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
21
|
Jiang B, Xia J, Zhou X. Overexpression of lncRNA SLC16A1-AS1 Suppresses the Growth and Metastasis of Breast Cancer via the miR-552-5p/WIF1 Signaling Pathway. Front Oncol 2022; 12:712475. [PMID: 35372039 PMCID: PMC8964943 DOI: 10.3389/fonc.2022.712475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Background Breast cancer (BC) is the most common cancer and the fifth leading cause of cancer mortality with 685,000 deaths worldwide in 2020. Long non-coding RNAs (lncRNAs) are critical in BC carcinogenesis and progression. However, the functional roles and mechanisms of SLC16A1-AS1 in BC are unknown. Methods The expression profile of SLC16A1-AS1 in BC patients was investigated using data from The Cancer Genome Atlas (TCGA) database and checked in 80 BC patients, followed by analyzing the prognostic value of SLC16A1-AS1 in the 80 BC patients. The biological functions of SLC16A1-AS1 were further examined in vivo and in vitro after overexpression of SLC16A1-AS1 in BC cells. Possible binding sites between SLC16A1-AS1 and miR-552-5p were predicted by miRDB and those between miR-552-5p and Wnt inhibitory factor-1 (WIF1) were predicted by miRanda, which were confirmed using dual-luciferase reporter assay with mutation. Spearman correlation assay was applied to evaluate the association between genes. Rescue experiments were further applied to investigate the molecular mechanisms involved. Results Lower SLC16A1-AS1 expression in BC tissues was related to poor prognosis of BC patients. Upregulation of SLC16A1-AS1 suppressed BC cell viability, colony formation, invasion, and migration in vitro and growth in vivo via sponging miR-552-5p to release WIF1. Conclusion SLC16A1-AS1 is a tumor suppressor in BC, and lower SLC16A1-AS1 expression is an indicator of poor prognosis in BC patients. SLC16A1-AS1 inhibits BC carcinogenesis and progression via the SLC16A1-AS1/miR-552-5p/WIF1 pathway. SLC16A1-AS1 represents a novel diagnostic, therapeutic, and prognostic target for BC management.
Collapse
Affiliation(s)
- Bin Jiang
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Jie Xia
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xudong Zhou
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
22
|
Li YZ, Zhu HC, Du Y, Zhao HC, Wang L. Silencing lncRNA SLC16A1-AS1 Induced Ferroptosis in Renal Cell Carcinoma Through miR-143-3p/SLC7A11 Signaling. Technol Cancer Res Treat 2022; 21:15330338221077803. [PMID: 35167383 PMCID: PMC8854231 DOI: 10.1177/15330338221077803] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Introduction: Renal cancer is one of the most common cancers in the world, but the effect of therapies on advanced renal cancer has not improved for decades. Ferroptosis is an emerging type of programmed cell death and has been proved to play a vital role in many kinds of cancers. However, the mechanisms of ferroptosis regulated by long noncoding RNA (lncRNA) in the context of renal cancer was still unknown. Methods: We used bioinformation analysis to identify SLC16A1-AS1 as a survival-related lncRNA in renal cancer. The expression levels of SLC16A1-AS1 and microRNA-143-3p (miR-143-3p) were detected by quantitative reverse transcription–polymerase chain reaction. Cell counting kit-8 assay, 5-bromo-2′-deoxyuridine proliferation assay, and colony-formation assay were performed to evaluate cell viability and proliferation. Wound-healing assay and transwell assay were used to examine cell invasive and migration capacity. Dual-luciferase reporter assay and RNA-binding protein immunoprecipitation were used to identify the interaction among SLC16A1-AS1, miR-143-3p, and the target protein solute carrier family 7 membrane 11 (SLC7A11). Reduced glutathione and glutathione and lipid peroxidation measurements were carried out to evaluate the level of ferroptosis, and the expression levels of ferroptosis-related proteins were analyzed by western blot. Results: Our study revealed that SLC16A1-AS1 has high expression and was associated with overall survival in renal cancer. Knockdown SLC16A1-AS1 inhibited cell viability, proliferation, and migration of renal cancer cells. Furthermore, it was demonstrated that SLC16A1-AS1 served as a sponge of miR-143-3p, and knockdown SLC16A1-AS1 significantly increased the enrichment of miR-143-3p. And then, SLC7A11 was identified as the target protein of miR-143-3p, and overexpression miR-143-3p remarkably inhibited the expression of SLC7A11. Moreover, knockdown SLC16A1-AS1 could aggravate this effect. Finally, through inhibiting SLC7A11 expression, silencing SLC16A1-AS1 induced ferroptosis via increasing miR-143-3p. Conclusion: The present results suggest that silencing lncRNA SLC16A1-AS1 can induce ferroptosis through miR-143-3p/SLC7A11 signaling in renal cancer. Our study provided a novel view into the pathogenesis and treatment strategy of RCC.
Collapse
Affiliation(s)
- Yan Ze Li
- Department of Urology, 117921Renmin Hospital of Wuhan University, Wuhan, Hubei Province, P.R. China
| | - Heng Cheng Zhu
- Department of Urology, 117921Renmin Hospital of Wuhan University, Wuhan, Hubei Province, P.R. China
| | - Yang Du
- Department of Urology, 117921Renmin Hospital of Wuhan University, Wuhan, Hubei Province, P.R. China
| | - Hong Chao Zhao
- Department of Urology, 117921Renmin Hospital of Wuhan University, Wuhan, Hubei Province, P.R. China
| | - Lei Wang
- Department of Urology, 117921Renmin Hospital of Wuhan University, Wuhan, Hubei Province, P.R. China
| |
Collapse
|
23
|
Impact of Non-Coding RNAs on Chemotherapeutic Resistance in Oral Cancer. Biomolecules 2022; 12:biom12020284. [PMID: 35204785 PMCID: PMC8961659 DOI: 10.3390/biom12020284] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
Drug resistance in oral cancer is one of the major problems in oral cancer therapy because therapeutic failure directly results in tumor recurrence and eventually in metastasis. Accumulating evidence has demonstrated the involvement of non-coding RNAs (ncRNAs), such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), in processes related to the development of drug resistance. A number of studies have shown that ncRNAs modulate gene expression at the transcriptional or translational level and regulate biological processes, such as epithelial-to-mesenchymal transition, apoptosis, DNA repair and drug efflux, which are tightly associated with drug resistance acquisition in many types of cancer. Interestingly, these ncRNAs are commonly detected in extracellular vesicles (EVs) and are known to be delivered into surrounding cells. This intercellular communication via EVs is currently considered to be important for acquired drug resistance. Here, we review the recent advances in the study of drug resistance in oral cancer by mainly focusing on the function of ncRNAs, since an increasing number of studies have suggested that ncRNAs could be therapeutic targets as well as biomarkers for cancer diagnosis.
Collapse
|
24
|
Chen Y, Xi L, Wei L, Sun D, Zeng T. Immune-related lncRNA signature delineates an immune-excluded subtype of liver cancer with unfavorable clinical outcomes. J Clin Lab Anal 2022; 36:e24244. [PMID: 35040184 PMCID: PMC8906039 DOI: 10.1002/jcla.24244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) play crucial roles in immune regulation and, therefore, may be closely related to the tumor microenvironment (TME). However, there are few studies regarding the relationship between the lncRNAs and the TME in liver cancer. METHODS Firstly, we constructed a lncRNA signature based on the top 10 immune-inversely related lncRNAs obtained from the ImmLnc database and performed disease-free survival (DFS) and overall survival (OS) analyses for the patients included in the Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC) stratified by the lncRNA signature. Then, we explored the relationship between the lncRNA signature with distinct mutation profiles and the tumor microenvironment (TME). RESULTS The lncRNA signature was successfully constructed and verified by survival analysis. The high lncRNA signature was correlated with a decreased DFS and OS in liver cancer and other two gastrointestinal cancers. The mutation profiles showed that the Lnc_high group had a higher number of mutations on many genes, mostly enriched in p53 and WNT pathways. The TME results showed that the Lnc_high group had the highest proportion (51%) of lymphocyte depletion-characterized immune subtype, and a higher expression of immune checkpoint molecules such as LAG3, PD-L1, CTLA4. On the contrary, in the Lnc_low group, infiltrating immune-cell proportions were significantly higher, and a significant enhancement of four axes of the cancer immunity cycle immunogram was observed in this group. CONCLUSIONS The lncRNA signature we constructed identified an immune-excluded subtype of liver cancer with unfavorable clinic outcomes, which could be tested as a biomarker for immunotherapy in the future.
Collapse
Affiliation(s)
- Yawei Chen
- Genecast Biotechnology Co., Ltd, Wuxi, China
| | - Leying Xi
- Department of Pediatrics, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Lihui Wei
- Genecast Biotechnology Co., Ltd, Wuxi, China
| | - Debin Sun
- Genecast Biotechnology Co., Ltd, Wuxi, China
| | - Tianmei Zeng
- Department of Oncology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
25
|
Tang J, Fang X, Chen J, Zhang H, Tang Z. Long Non-Coding RNA (lncRNA) in Oral Squamous Cell Carcinoma: Biological Function and Clinical Application. Cancers (Basel) 2021; 13:cancers13235944. [PMID: 34885054 PMCID: PMC8656574 DOI: 10.3390/cancers13235944] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Increasing evidence has revealed the regulatory roles of long non-coding RNAs (lncRNAs) in the initiation and progress of oral squamous cell carcinoma (OSCC). As some novel lncRNA-targeted techniques combined with immune checkpoint therapies have emerged, they provide a new strategy for OSCC treatment. This review summarizes current knowledge regarding the involvement of lncRNAs in OSCC along with their possible use as diagnostic and prognostic biomarker and therapeutic targets. Abstract Oral squamous cell carcinoma (OSCC) is a type of malignancy with high mortality, leading to poor prognosis worldwide. However, the molecular mechanisms underlying OSCC carcinogenesis have not been fully understood. Recently, the discovery and characterization of long non-coding RNAs (lncRNAs) have revealed their regulatory importance in OSCC. Abnormal expression of lncRNAs has been broadly implicated in the initiation and progress of tumors. In this review, we summarize the functions and molecular mechanisms regarding these lncRNAs in OSCC. In addition, we highlight the crosstalk between lncRNA and tumor microenvironment (TME), and discuss the potential applications of lncRNAs as diagnostic and prognostic tools and therapeutic targets in OSCC. Notably, we also discuss lncRNA-targeted therapeutic techniques including CRISPR-Cas9 as well as immune checkpoint therapies to target lncRNA and the PD-1/PD-L1 axis. Therefore, this review presents the future perspectives of lncRNAs in OSCC therapy, but more research is needed to allow the applications of these findings to the clinic.
Collapse
Affiliation(s)
- Jianfei Tang
- Hunan Key Laboratory of Oral Health Research, Central South University, Changsha 410008, China; (J.T.); (X.F.); (J.C.)
- Hunan 3D Printing Engineering Research Center of Oral Care, Central South University, Changsha 410008, China
- Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Central South University, Changsha 410008, China
- Xiangya Stomatological Hospital, Central South University, Changsha 410008, China
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
| | - Xiaodan Fang
- Hunan Key Laboratory of Oral Health Research, Central South University, Changsha 410008, China; (J.T.); (X.F.); (J.C.)
- Hunan 3D Printing Engineering Research Center of Oral Care, Central South University, Changsha 410008, China
- Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Central South University, Changsha 410008, China
- Xiangya Stomatological Hospital, Central South University, Changsha 410008, China
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
| | - Juan Chen
- Hunan Key Laboratory of Oral Health Research, Central South University, Changsha 410008, China; (J.T.); (X.F.); (J.C.)
- Hunan 3D Printing Engineering Research Center of Oral Care, Central South University, Changsha 410008, China
- Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Central South University, Changsha 410008, China
- Xiangya Stomatological Hospital, Central South University, Changsha 410008, China
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
| | - Haixia Zhang
- The Oncology Department of Xiangya Second Hospital, Central South University, Changsha 410008, China
- Correspondence: (H.Z.); (Z.T.); Tel.: +86-139-7313-0429 (H.Z.); +86-139-0731-7983 (Z.T.)
| | - Zhangui Tang
- Hunan Key Laboratory of Oral Health Research, Central South University, Changsha 410008, China; (J.T.); (X.F.); (J.C.)
- Hunan 3D Printing Engineering Research Center of Oral Care, Central South University, Changsha 410008, China
- Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Central South University, Changsha 410008, China
- Xiangya Stomatological Hospital, Central South University, Changsha 410008, China
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
- Correspondence: (H.Z.); (Z.T.); Tel.: +86-139-7313-0429 (H.Z.); +86-139-0731-7983 (Z.T.)
| |
Collapse
|
26
|
Establishment of non-small-cell lung cancer risk prediction model based on prognosis-associated ADME genes. Biosci Rep 2021; 41:229783. [PMID: 34522968 PMCID: PMC8527211 DOI: 10.1042/bsr20211433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 11/17/2022] Open
Abstract
PURPOSE ADME genes are those involved in the absorption, distribution, metabolism, and excretion (ADME) of drugs. In the present study, a non-small-cell lung cancer (NSCLC) risk prediction model was established using prognosis-associated ADME genes, and the predictive performance of this model was evaluated and verified. In addition, multifaceted difference analysis was performed on groups with high and low risk scores. METHODS An NSCLC sample transcriptome and clinical data were obtained from public databases. The prognosis-associated ADME genes were obtained by univariate Cox and lasso regression analyses to build a risk model. Tumor samples were divided into high-risk and low-risk score groups according to the risk score. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses of the differentially expressed genes and the differences in the immune infiltration, mutation, and medication reactions in the two groups were studied in detail. RESULTS A risk prediction model was established with seven prognosis-associated ADME genes. Its good predictive ability was confirmed by studies of the model's effectiveness. Univariate and multivariate Cox regression analyses showed that the model's risk score was an independent prognostic factor for patients with NSCLC. The study also showed that the risk score closely correlated with immune infiltration, mutations, and medication reactions. CONCLUSION The risk prediction model established with seven ADME genes in the present study can predict the prognosis of patients with NSCLC. In addition, significant differences in immune infiltration, mutations, and therapeutic efficacy exist between the high- and low-risk score groups.
Collapse
|
27
|
Zhang L, Song ZS, Wang ZS, Guo YL, Xu CG, Shen H. High Expression of SLC16A1 as a Biomarker to Predict Poor Prognosis of Urological Cancers. Front Oncol 2021; 11:706883. [PMID: 34631536 PMCID: PMC8493816 DOI: 10.3389/fonc.2021.706883] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/12/2021] [Indexed: 11/15/2022] Open
Abstract
Objective Tumor metabolism has always been the focus of cancer research. SLC16A1, as a key factor in catalysis of monocarboxylate transport across the plasma membrane, has been found to be associated with the occurrence and metastasis of a variety of cancers, but its prognostic significance and mechanism in different tumors are still unclear. Methods Based on the gene expression matrix and clinical information of human cancer tissues acquired from TCGA and GTEX databases, the differential expression of SLC16A1 in different tumors and normal tissues was analyzed. To confirm the association between its expression, the mutation of MMRS gene, and the expression level of DNMTs. Univariate Cox regression was applied to analyze the association between SLC16A1 expression and patient prognosis. The effect of SLC16A1 expression on patient survival was examined by Kaplan Meier analysis. GSEA was used to identify related signaling pathways. Results The expression of SLC16A1 was differentially expressed in most tumors, especially in the urinary tract where it is commonly highly expressed, and differential expression of SLC16A1 in different clinical stages. SLC16A1 expression was significantly positively correlated with MMRS gene mutation and DNMTS expression. Moreover, high SLC16A1 expression was associated with poorer overall survival (OS) and progression-free survival (PFS) in urological cancers. In particular, the results of the enrichment analysis showed that SLC16A1 was associated with processes such as cell adhesion and many signaling pathways affecting cell cycle were significantly enriched in the group with high-expressed SLC16A1. Conclusion SLC16A1 expression was upregulated in urological cancer. SLC16A1 may promote tumor development by regulating the epigenetic process of urological cancer and demonstrated a great potential as a prognostic biomarker of urological cancer patients.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Pathology, Wuhan No.1 Hospital, Wuhan, China
| | - Zheng-Shuai Song
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi-Shun Wang
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong-Lian Guo
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chang-Geng Xu
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Shen
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
28
|
Lin Q, Zhang Y, Liu Y, Xu X. Effects of long noncoding RNA on prognosis of oral squamous cell carcinoma: A protocol for systematic review and meta analysis. Medicine (Baltimore) 2021; 100:e25507. [PMID: 33879685 PMCID: PMC8078265 DOI: 10.1097/md.0000000000025507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Long noncoding RNA (lncRNA) is reported to be upregulated in many tumors. Although the expression of lncRNA in oral squamous cell carcinoma has been assessed, the association between lncRNA expression and prognosis or clinicopathological feature still remains controversial. Therefore, we conducted a meta-analysis to verify whether lncRNA expression was related to prognosis or clinicopathological features in patients with oral squamous cell carcinoma. METHODS We searched Embase, PubMed, Web of Science, Cochrane library, Chinese National Knowledge Infrastructure, and Wanfang databases from inception to February 2021. The language included Chinese and English. The published literature on lncRNA expression and prognosis or clinicopathological characteristics of patients with oral squamous cell carcinoma was statistically analyzed. The combination of hazard ratios (HRs), odds ratios (OR), and 95% confidence intervals (95% CIs) were applied to evaluate the effects of lncRNA on the prognosis and clinicopathological features of oral squamous cell carcinoma. RESULTS This study could provide a comprehensive review of the available evidence of lncRNA on the prognosis and clinicopathological features of oral squamous cell carcinoma. CONCLUSION The conclusion of our study will provide the updated evidence to judge the lncRNA on the prognosis and clinicopathological features of oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Qingjie Lin
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong University, Jinan
| | - Yong Zhang
- Department of Implantology, Binzhou Central Hospital, Binzhou
| | - Yanguo Liu
- Department of Implantology, Jinan City People's Hospital, Jinan, Shandong Province, China
| | - Xin Xu
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong University, Jinan
| |
Collapse
|
29
|
Tian S, Tang M, Li J, Wang C, Liu W. Identification of long non-coding RNA signatures for squamous cell carcinomas and adenocarcinomas. Aging (Albany NY) 2020; 13:2459-2479. [PMID: 33318305 PMCID: PMC7880362 DOI: 10.18632/aging.202278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 11/08/2020] [Indexed: 11/25/2022]
Abstract
Studies have demonstrated that both squamous cell carcinomas (SCCs) and adenocarcinomas (ACs) possess some common molecular characteristics. Evidence has accumulated to support the theory that long non-coding RNAs (lncRNAs) serve as novel biomarkers and therapeutic targets in complex diseases such as cancer. In this study, we aimed to identify pan lncRNA signatures that are common to squamous cell carcinomas or adenocarcinomas with different tissues of origin. With the aid of elastic-net regularized regression models, a 35-lncRNA pan discriminative signature and an 11-lncRNA pan prognostic signature were identified for squamous cell carcinomas, whereas a 6-lncRNA pan discriminative signature and a 5-lncRNA pan prognostic signature were identified for adenocarcinomas. Among them, many well-known cancer relevant genes such as MALAT1 and PVT1 were included. The identified pan lncRNA lists can help experimental biologists generate research hypotheses and adopt existing treatments for less prevalent cancers. Therefore, these signatures warrant further investigation.
Collapse
Affiliation(s)
- Suyan Tian
- Division of Clinical Research, First Hospital of Jilin University, Changchun 130021, Jilin, P.R. China
| | - Mingbo Tang
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Jialin Li
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Chi Wang
- Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY 40536, USA.,Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Wei Liu
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun 130021, Jilin, China
| |
Collapse
|
30
|
Pei S, Chen Z, Tan H, Fan L, Zhang B, Zhao C. SLC16A1-AS1 enhances radiosensitivity and represses cell proliferation and invasion by regulating the miR-301b-3p/CHD5 axis in hepatocellular carcinoma. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:42778-42790. [PMID: 32748357 DOI: 10.1007/s11356-020-09998-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
Hepatocellular carcinoma (HCC), a common type of human malignancies, leads to increasing incidence and fairly high mortality. An increasing number of studies have verified that long noncoding RNAs (lncRNAs) played key roles in the development of multiple human cancers. As a biomarker, SLC16A1-AS1 has been reported in non-small cell lung cancer (NSCLC) and oral squamous cell carcinoma (OSCC). Thus, we decided to investigate whether SLC16A1-AS1 exerts its biological function in HCC. In this study, we discovered that SLC16A1-AS1 was obviously downregulated in HCC tissues and cells. Overexpression of SLC16A1-AS1 inhibited HCC cell proliferation, invasion, and epithelial-mesenchymal transition (EMT) process as well as promoted cell apoptosis. Moreover, SLC16A1-AS1 was confirmed to enhance the radiosensitivity of HCC cells. Molecular mechanism exploration suggested that SLC16A1-AS1 served as a sponge for miR-301b-3p and CHD5 was the downstream target gene of miR-301b-3p in HCC cells. Rescue assays implied that CHD5 knockdown could recover the effects of SLC16A1-AS1 overexpression on HCC cellular processes. In brief, our study clarified that SLC16A1-AS1 acted as a tumor suppressor in HCC by targeting the miR-301b-3p/CHD5 axis, which may be a promising diagnostic biomarker and provide promising treatment for HCC patients.
Collapse
Affiliation(s)
- Shenglin Pei
- Department of Anesthesiology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Zuyi Chen
- Department of Intervention, Affiliated Tumor Hospital of Guangxi Medical University, No. 71 Hedi Road, Qingxiu District, Nanning, 530021, Guangxi, China
| | - Huajun Tan
- Department of Intervention, Affiliated Tumor Hospital of Guangxi Medical University, No. 71 Hedi Road, Qingxiu District, Nanning, 530021, Guangxi, China
| | - Liwei Fan
- Department of Intervention, Affiliated Tumor Hospital of Guangxi Medical University, No. 71 Hedi Road, Qingxiu District, Nanning, 530021, Guangxi, China
| | - Baina Zhang
- Department of Intervention, Affiliated Tumor Hospital of Guangxi Medical University, No. 71 Hedi Road, Qingxiu District, Nanning, 530021, Guangxi, China
| | - Chang Zhao
- Department of Intervention, Affiliated Tumor Hospital of Guangxi Medical University, No. 71 Hedi Road, Qingxiu District, Nanning, 530021, Guangxi, China.
| |
Collapse
|