1
|
Réthi-Nagy Z, Ábrahám E, Sinka R, Juhász S, Lipinszki Z. Protein Phosphatase 4 Is Required for Centrobin Function in DNA Damage Repair. Cells 2023; 12:2219. [PMID: 37759442 PMCID: PMC10526779 DOI: 10.3390/cells12182219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/21/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Genome stability in human cells relies on the efficient repair of double-stranded DNA breaks, which is mainly achieved by homologous recombination (HR). Among the regulators of various cellular functions, Protein phosphatase 4 (PP4) plays a pivotal role in coordinating cellular response to DNA damage. Meanwhile, Centrobin (CNTRB), initially recognized for its association with centrosomal function and microtubule dynamics, has sparked interest due to its potential contribution to DNA repair processes. In this study, we investigate the involvement of PP4 and its interaction with CNTRB in HR-mediated DNA repair in human cells. Employing a range of experimental strategies, we investigate the physical interaction between PP4 and CNTRB and shed light on the importance of two specific motifs in CNTRB, the PP4-binding FRVP and the ATR kinase recognition SQ sequences, in the DNA repair process. Moreover, we examine cells depleted of PP4 or CNTRB and cells harboring FRVP and SQ mutations in CNTRB, which result in similar abnormal chromosome morphologies. This phenomenon likely results from the impaired resolution of Holliday junctions, which serve as crucial intermediates in HR. Taken together, our results provide new insights into the intricate mechanisms of PP4 and CNTRB-regulated HR repair and their interrelation.
Collapse
Affiliation(s)
- Zsuzsánna Réthi-Nagy
- MTA SZBK Lendület Laboratory of Cell Cycle Regulation, Institute of Biochemistry, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary; (Z.R.-N.); (E.Á.)
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Edit Ábrahám
- MTA SZBK Lendület Laboratory of Cell Cycle Regulation, Institute of Biochemistry, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary; (Z.R.-N.); (E.Á.)
- National Laboratory for Biotechnology, Institute of Genetics, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary
| | - Rita Sinka
- Department of Genetics, University of Szeged, H-6726 Szeged, Hungary;
| | - Szilvia Juhász
- Institute of Biochemistry, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary
| | - Zoltán Lipinszki
- MTA SZBK Lendület Laboratory of Cell Cycle Regulation, Institute of Biochemistry, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary; (Z.R.-N.); (E.Á.)
- National Laboratory for Biotechnology, Institute of Genetics, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary
| |
Collapse
|
2
|
Xiong F, Li C, Wang Q, Geng X, Yuan Z, Li Z. Identification of Chromatin Regulatory Factors Related to Immunity and Treatment of Alzheimer's Disease. J Mol Neurosci 2023; 73:85-94. [PMID: 36826468 PMCID: PMC10081979 DOI: 10.1007/s12031-023-02107-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/18/2023] [Indexed: 02/25/2023]
Abstract
Alzheimer's disease is one of the common neurodegenerative diseases in the elderly, which mainly manifests as progressively severe cognitive impairment, which seriously affects the quality of life of patients. Chromatin regulators have been shown to be associated with a variety of biological processes, and we mainly explore the relationship between chromatin regulators and Alzheimer's disease. Eight hundred seventy chromatin regulators were collected from previous studies, and data related to Alzheimer's disease patients were downloaded from the GEO database. Finally, we screened chromatin regulators related to Alzheimer's disease immunity, established prediction models, and screened related drugs and miRNAs. We screened 160 differentially expressed CRs, constructed an interaction network, obtained 10 hub genes, successfully constructed a prediction model based on immune-related 5 CRs, and obtained 520 related drugs and 3 related miRNA, which provided an idea for the treatment of Alzheimer's disease. Our study identified 5 chromatin regulators related to Alzheimer's disease, which are expected to be new targets for Alzheimer's disease immunotherapy.
Collapse
Affiliation(s)
- Fengzhen Xiong
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, China
| | - Chenglong Li
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, China
| | - Qingbo Wang
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, China
| | - Xin Geng
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, China
| | - Zhengbo Yuan
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, China
| | - Zefu Li
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, China.
| |
Collapse
|
3
|
Identification of Parkinson's disease-associated chromatin regulators. Sci Rep 2023; 13:3084. [PMID: 36813848 PMCID: PMC9947017 DOI: 10.1038/s41598-023-30236-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Parkinson's disease (PD) is a common neurological disorder that causes quiescent tremors, motor delays, depression, and sleep disturbances. Existing treatments can only improve symptoms, not stop progression or cure the disease, but effective treatments can significantly improve patients' quality of life. There is growing evidence that chromatin regulatory proteins (CRs) are involved in a variety of biological processes, including inflammation, apoptosis, autophagy, and proliferation. But the relationship of chromatin regulators in Parkinson's disease has not been studied. Therefore, we aim to investigate the role of CRs in the pathogenesis of Parkinson's disease. We collected 870 chromatin regulatory factors from previous studies and downloaded data on patients with PD from the GEO database. 64 differentially expressed genes were screened, the interaction network was constructed and the key genes with the top 20 scores were calculated. Then we discussed its correlation with the immune function of PD. Finally, we screened potential drugs and miRNAs. Five genes related to the immune function of PD, BANF1, PCGF5, WDR5, RYBP and BRD2, were obtained by using the absolute value of correlation greater than 0.4. And the disease prediction model showed good predictive efficiency. We also screened 10 related drugs and 12 related miRNAs, which provided a reference for the treatment of PD. BANF1, PCGF5, WDR5, RYBP and BRD2 are related to the immune process of Parkinson's disease and can predict the occurrence of Parkinson's disease, which is expected to become a new target for the diagnosis and treatment of Parkinson's disease.
Collapse
|
4
|
Yang W, Luo C, Chen S. Development and validation of a chromatin regulator prognostic signature in colon adenocarcinoma. Front Genet 2022; 13:986325. [PMID: 36506326 PMCID: PMC9727087 DOI: 10.3389/fgene.2022.986325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/11/2022] [Indexed: 11/24/2022] Open
Abstract
Aberrant expression of chromatin regulators (CRs) could lead to the development of various diseases including cancer. However, the biological function and prognosis role of CRs in colon adenocarcinoma (COAD) remains unclear. We performed the clustering analyses for expression profiling of COAD downloaded from The Cancer Genome Atlas. We developed a chromatin regulator prognostic model, which was validated in an independent cohort data. Time-intendent receiver operating characteristics curve was used to evaluate predict ability of model. Univariate and multivariate cox regression were used to assess independence of risk score. Nomogram was established to assess individual risk. Gene ontology, and Kyoto Encyclopedia of genes and genomes, gene set variation analysis and gene set enrichment analysis were performed to explore the function of CRs. Immune infiltration and drug sensitivity were also performed to assess effect of CRs on treatment in COAD. COAD can be separated into two subtypes with different clinical characteristics and prognosis. The C2 had elevated immune infiltration levels and low tumor purity. Using 12 chromatin regulators, we developed and validated a prognostic model that can predict the overall survival of COAD patients. We built a risk score that can be an independent prognosis predictor of COAD. The nomogram score system achieved the best predict ability and were also confirmed by decision curve analysis. There were significantly different function and pathway enrichment, immune infiltration levels, and tumor mutation burden between high-risk and low-risk group. The external validation data also indicated that high-risk group had higher stable disease/progressive disease response rate and poorer prognosis than low-risk group. Besides, the signature genes included in the model could cause chemotherapy sensitivity to some small molecular compounds. Our integrative analyses for chromatin regulators could provide new insights for the risk management and individualized treatment in COAD.
Collapse
Affiliation(s)
- Wenlong Yang
- Department of Gastrointestinal Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, China,*Correspondence: Wenlong Yang,
| | - Chenhua Luo
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Shan Chen
- Department of Pharmacy, Central South University, Changsha, Hunan, China
| |
Collapse
|
5
|
Gasparotto M, Lee YS, Palazzi A, Vacca M, Filippini F. Nuclear and Cytoplasmatic Players in Mitochondria-Related CNS Disorders: Chromatin Modifications and Subcellular Trafficking. Biomolecules 2022; 12:biom12050625. [PMID: 35625553 PMCID: PMC9138954 DOI: 10.3390/biom12050625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 12/10/2022] Open
Abstract
Aberrant mitochondrial phenotypes are common to many central nervous system (CNS) disorders, including neurodegenerative and neurodevelopmental diseases. Mitochondrial function and homeostasis depend on proper control of several biological processes such as chromatin remodeling and transcriptional control, post-transcriptional events, vesicle and organelle subcellular trafficking, fusion, and morphogenesis. Mutation or impaired regulation of major players that orchestrate such processes can disrupt cellular and mitochondrial dynamics, contributing to neurological disorders. The first part of this review provides an overview of a functional relationship between chromatin players and mitochondria. Specifically, we relied on specific monogenic CNS disorders which share features with mitochondrial diseases. On the other hand, subcellular trafficking is coordinated directly or indirectly through evolutionarily conserved domains and proteins that regulate the dynamics of membrane compartments and organelles, including mitochondria. Among these “building blocks”, longin domains and small GTPases are involved in autophagy and mitophagy, cell reshaping, and organelle fusion. Impairments in those processes significantly impact CNS as well and are discussed in the second part of the review. Hopefully, in filling the functional gap between the nucleus and cytoplasmic organelles new routes for therapy could be disclosed.
Collapse
Affiliation(s)
- Matteo Gasparotto
- Synthetic Biology and Biotechnology Unit, Department of Biology, University of Padua, Via Ugo Bassi 58/B, 35131 Padua, Italy;
| | - Yi-Shin Lee
- Institute of Genetics and Biophysics “A. Buzzati Traverso”, CNR, Via Pietro Castellino, 111, 80131 Naples, Italy; (Y.-S.L.); (A.P.); (M.V.)
- Pharmacology Division, Department of Neuroscience, Reproductive and Odontostomatological Sciences, Faculty of Medicine and surgery, University of Naples Federico II, Via Pansini 5, Building 19 (Biological Tower), 80131 Naples, Italy
| | - Alessandra Palazzi
- Institute of Genetics and Biophysics “A. Buzzati Traverso”, CNR, Via Pietro Castellino, 111, 80131 Naples, Italy; (Y.-S.L.); (A.P.); (M.V.)
| | - Marcella Vacca
- Institute of Genetics and Biophysics “A. Buzzati Traverso”, CNR, Via Pietro Castellino, 111, 80131 Naples, Italy; (Y.-S.L.); (A.P.); (M.V.)
| | - Francesco Filippini
- Synthetic Biology and Biotechnology Unit, Department of Biology, University of Padua, Via Ugo Bassi 58/B, 35131 Padua, Italy;
- Correspondence:
| |
Collapse
|
6
|
Cao M, Wang L, Xu D, Bi X, Guo S, Xu Z, Chen L, Zheng D, Li P, Xu J, Zheng S, Wang H, Wang B, Lu J, Li K. The synergistic interaction landscape of chromatin regulators reveals their epigenetic regulation mechanisms across five cancer cell lines. Comput Struct Biotechnol J 2022; 20:5028-5039. [PMID: 36187922 PMCID: PMC9483781 DOI: 10.1016/j.csbj.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/28/2022] [Accepted: 09/06/2022] [Indexed: 11/03/2022] Open
|
7
|
Penninckx S, Pariset E, Cekanaviciute E, Costes SV. Quantification of radiation-induced DNA double strand break repair foci to evaluate and predict biological responses to ionizing radiation. NAR Cancer 2021; 3:zcab046. [PMID: 35692378 PMCID: PMC8693576 DOI: 10.1093/narcan/zcab046] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/08/2021] [Accepted: 12/17/2021] [Indexed: 08/08/2023] Open
Abstract
Radiation-induced foci (RIF) are nuclear puncta visualized by immunostaining of proteins that regulate DNA double-strand break (DSB) repair after exposure to ionizing radiation. RIF are a standard metric for measuring DSB formation and repair in clinical, environmental and space radiobiology. The time course and dose dependence of their formation has great potential to predict in vivo responses to ionizing radiation, predisposition to cancer and probability of adverse reactions to radiotherapy. However, increasing complexity of experimentally and therapeutically setups (charged particle, FLASH …) is associated with several confounding factors that must be taken into account when interpreting RIF values. In this review, we discuss the spatiotemporal characteristics of RIF development after irradiation, addressing the common confounding factors, including cell proliferation and foci merging. We also describe the relevant endpoints and mathematical models that enable accurate biological interpretation of RIF formation and resolution. Finally, we discuss the use of RIF as a biomarker for quantification and prediction of in vivo radiation responses, including important caveats relating to the choice of the biological endpoint and the detection method. This review intends to help scientific community design radiobiology experiments using RIF as a key metric and to provide suggestions for their biological interpretation.
Collapse
Affiliation(s)
- Sébastien Penninckx
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Medical Physics Department, Jules Bordet Institute, Université Libre de Bruxelles, 1 Rue Héger-Bordet, 1000 Brussels, Belgium
| | - Eloise Pariset
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
- Universities Space Research Association, 615 National Avenue, Mountain View, CA 94043, USA
| | - Egle Cekanaviciute
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Sylvain V Costes
- To whom correspondence should be addressed. Tel: +1 650 604 5343;
| |
Collapse
|