1
|
Taheriazam A, Bayanzadeh SD, Heydari Farahani M, Mojtabavi S, Zandieh MA, Gholami S, Heydargoy MH, Jamali Hondori M, Kangarloo Z, Behroozaghdam M, Khorrami R, Sheikh Beig Goharrizi MA, Salimimoghadam S, Rashidi M, Hushmandi K, Entezari M, Hashemi M. Non-coding RNA-based therapeutics in cancer therapy: An emphasis on Wnt/β-catenin control. Eur J Pharmacol 2023; 951:175781. [PMID: 37179043 DOI: 10.1016/j.ejphar.2023.175781] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/22/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023]
Abstract
Non-coding RNA transcripts are RNA molecules that have mainly regulatory functions and they do not encode proteins. microRNAs (miRNAs), lncRNAs and circRNAs are major types of this family and these epigenetic factors participate in disease pathogenesis, especially cancer that their abnormal expression may lead to cancer progression. miRNAs and lncRNAs possess a linear structure, whereas circRNAs possess ring structures and high stability. Wnt/β-catenin is an important factor in cancer with oncogenic function and it can increase growth, invasion and therapy resistance in tumors. Wnt upregulation occurs upon transfer of β-catenin to nucleus. Interaction of ncRNAs with Wnt/β-catenin signaling can determine tumorigenesis. Wnt upregulation is observed in cancers and miRNAs are able to bind to 3'-UTR of Wnt to reduce its level. LncRNAs can directly/indirectly regulate Wnt and in indirect manner, lncRNAs sponge miRNAs. CircRNAs are new emerging regulators of Wnt and by its stimulation, they increase tumor progression. CircRNA/miRNA axis can affect Wnt and carcinogenesis. Overall, interaction of ncRNAs with Wnt can determine proliferation rate, migration ability and therapy response of cancers. Furthermore, ncRNA/Wnt/β-catenin axis can be utilized as biomarker in cancer and for prognostic applications in patients.
Collapse
Affiliation(s)
- Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Melika Heydari Farahani
- Faculty of Veterinary Medicine, Islamic Azad University, Shahr-e Kord Branch, Chaharmahal and Bakhtiari, Iran
| | - Sarah Mojtabavi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Sadaf Gholami
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Hossein Heydargoy
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Microbiology, Shahr-e Ghods Branch, Azad Islamic University, Tehran, Iran
| | - Maryam Jamali Hondori
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Zahra Kangarloo
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mitra Behroozaghdam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
2
|
Rui X, Wu X, Rong Z, Wang Z. Upgulation of lncRNA GASL1 inhibits atherosclerosis by regulating miR-106a/LKB1 axis. BMC Cardiovasc Disord 2023; 23:11. [PMID: 36627571 PMCID: PMC9832782 DOI: 10.1186/s12872-023-03038-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Atherosclerosis (AS) is a common frequently-occurring disease in the clinic and a serious threat to human health. This research aimed to explore the value between GASL1 and AS. METHODS The expression and values of GASL1 in AS patients were revealed by qRT-PCR and ROC curve. The HUVEC cells were induced by ox-LDL to construct in-vitro models. Cell viability was detected by MTT assay, and apoptosis was detected by flow cytometry. The inflammatory situation was reflected by the ELISA assay. Double luciferase reporter gene assay verified the regulatory relationship between GASL1 and miR-106a, miR-106a and LKB1. RESULTS The levels of GASL1 was lower in AS group than those in control group. The value of GASL1 in predicting AS patients was also tested by the ROC curve. After HUVEC cells were induced by ox-LDL, the levels of GASL1 and LKB1 decreased significantly, while the level of miR-106a increased significantly. Upregulation of LKB1 reversed the effect of upregulation of GASL1 on viability, apoptosis, and inflammation of HUVEC cells induced by ox-LDL. CONCLUSION Overexpression of GASL1 might suppress ox-LDL-induced HUVEC cell viability, apoptosis, and inflammation by regulating miR-106a/LKB1 axis.
Collapse
Affiliation(s)
- Xueqi Rui
- Department of Cardiovascular Medicine, Liyang People’s Hospital, Liyang, 213399 China
| | - Xinning Wu
- grid.452710.5Department of Cardiovascular Medicine, People’s Hospital of Rizhao, No. 126 Tai’an Road, Donggang District, Rizhao, 276827 China
| | - Zheyi Rong
- Department of Cardiovascular Medicine, Renhe Hospital, Baoshan District, Shanghai, 201900 China
| | - Zipeng Wang
- grid.417303.20000 0000 9927 0537Department of Neurology, Huai’an Second People’s Hospital, The Affiliated Huai’an Hospital of Xuzhou Medical University, No. 62, Huaihai South Road, Qingjiangpu District, Huai’an, 223000 China
| |
Collapse
|
3
|
Wang J, Du S, Wang C, Zhu Z, Xie B, Zhang B. Clinicopathological and prognostic value of long noncoding RNA SNHG7 in cancers: a meta-analysis and bioinformatics. Aging (Albany NY) 2021; 13:23796-23809. [PMID: 34714775 PMCID: PMC8580357 DOI: 10.18632/aging.203650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 10/18/2021] [Indexed: 12/17/2022]
Abstract
The long intergenic non-coding RNA SNHG7 has been reported to be abnormally expressed in many types of cancer, the results remain controversial. In this study, a meta-analysis was performed to evaluate the clinicopathologic and prognostic value of SNHG7 in cancers. Electronic databases of PubMed, Web of Science, Cochrane Library and Embase were used to search relevant studies. A combined hazard ratio (HR) and its corresponding 95% confidence interval (CI) were used to assess the association between SNHG7 expression and prognosis in cancer patients. Pooled odds ratio (OR) and 95% CI were calculated to elaborate the association between SNHG7 expression and clinicopathological features in cancers. Besides, the data from The Cancer Genome Atlas (TCGA) dataset was used to validate the results. In total, eighteen studies compromising 1303 participants were enrolled in this analysis. The pooled results showed increased SNHG7 expression could predict unfavorable overall survival (OS) (HR = 1.75, 95%CI = 1.52–2.02, P = 0.000). Analysis stratified by follow-up time, cancer types, analysis types, sample sizes and cut off further verified the prognostic value of SNHG7. Additionally, elevated SNHG7 expression was correlated with TNM stage (OR: 3.31, 95%CI = 2.29–4.80, P = 0.000), lymph node metastasis (OR = 3.32, 95%CI = 1.61–6.83, P = 0.004), and tumor differentiation (OR = 1.92, 95%CI = 1.22–3.03, P =0.005) in patients with cancers. Excavation of TCGA dataset valuated that SNHG7 was upregulated in some cancers and predicted worse OS, which partially confirmed our results in this meta-analysis.
Collapse
Affiliation(s)
- June Wang
- Central Laboratory, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Shenlin Du
- Clinical Laboratory, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Chen Wang
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zinian Zhu
- Clinical Laboratory, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Baocheng Xie
- Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Bashan Zhang
- Clinical Laboratory, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| |
Collapse
|
4
|
Sun Y, Chen G, He J, Huang ZG, Li SH, Yang YP, Zhong LY, Ji SF, Huang Y, Chen XH, He ML, Wu H. Clinical significance and potential molecular mechanism of miRNA-222-3p in metastatic prostate cancer. Bioengineered 2021; 12:325-340. [PMID: 33356818 PMCID: PMC8806336 DOI: 10.1080/21655979.2020.1867405] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The clinical significance and underlying molecular mechanism of miRNA-222-3p in metastatic prostate cancer (MPCa) remain unclear. The present study used a large number of cases (n = 1,502) based on miRNA chip and miRNA sequencing datasets to evaluate the expression and diagnostic potential of miRNA-222-3p in MPCa. We applied a variety of meta-analytic methods, including forest maps, sensitivity analysis, subgroup analysis and summary receiver operating characteristic curves, to prove the final results. MiRNA-222-3p was reduced in MPCa and had a moderate diagnostic potential in MPCa. We screened 118 miRNA-222-3p targets using three different methods including miRNA-222-3p transfected MPCa cell lines, online prediction databases and differently upregulated genes in MPCa. Moreover, functional enrichment analysis performed to explore the potential molecular mechanism of miRNA-222-3p showed that the potential target genes of miRNA-222-3p were significantly enriched in the p53 signal pathway. In the protein–protein interaction network analysis, SNAP91 was identified as a hub gene that may be closely related to MPCa. Gene chip and RNA sequencing datasets containing 1,237 samples were used to determine the expression level and diagnostic potential of SNAP91 in MPCa. SNAP91 was found to be overexpressed in MPCa and had a moderate diagnostic potential in MPCa. In addition, miRNA-222-3p expression was negatively correlated with SNAP91 expression in MPCa (r = −0.636, P = 0.006). These results demonstrated that miRNA-222-3p might play an important role in MPCa by negatively regulating SNAP91 expression. Thus, miRNA-222-3p might be a potential biomarker and therapeutic target of MPCa.
Collapse
Affiliation(s)
- Yu Sun
- Division of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University , Nanning, P.R. China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University , Nanning, P.R. China
| | - Juan He
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University , Nanning, P.R. China
| | - Zhi-Guang Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University , Nanning, P.R. China
| | - Sheng-Hua Li
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University , Nanning, P.R. China
| | - Yuan-Ping Yang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University , Nanning, P.R. China
| | - Lu-Yang Zhong
- Division of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University , Nanning, P.R. China
| | - Shu-Fan Ji
- Division of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University , Nanning, P.R. China
| | - Ying Huang
- Division of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University , Nanning, P.R. China
| | - Xin-Hua Chen
- Division of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University , Nanning, P.R. China
| | - Mao-Lin He
- Division of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University , Nanning, P.R. China
| | - Hao Wu
- Division of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University , Nanning, P.R. China
| |
Collapse
|