1
|
Stavast CJ, van Zuijen I, Karkoulia E, Özçelik A, van Hoven-Beijen A, Leon LG, Voerman JSA, Janssen GMC, van Veelen PA, Burocziova M, Brouwer RWW, van IJcken WFJ, Maas A, Bindels EM, van der Velden VHJ, Schliehe C, Katsikis PD, Alberich-Jorda M, Erkeland SJ. The tumor suppressor MIR139 is silenced by POLR2M to promote AML oncogenesis. Leukemia 2022; 36:687-700. [PMID: 34741119 PMCID: PMC8885418 DOI: 10.1038/s41375-021-01461-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/03/2022]
Abstract
MIR139 is a tumor suppressor and is commonly silenced in acute myeloid leukemia (AML). However, the tumor-suppressing activities of miR-139 and molecular mechanisms of MIR139-silencing remain largely unknown. Here, we studied the poorly prognostic MLL-AF9 fusion protein-expressing AML. We show that MLL-AF9 expression in hematopoietic precursors caused epigenetic silencing of MIR139, whereas overexpression of MIR139 inhibited in vitro and in vivo AML outgrowth. We identified novel miR-139 targets that mediate the tumor-suppressing activities of miR-139 in MLL-AF9 AML. We revealed that two enhancer regions control MIR139 expression and found that the polycomb repressive complex 2 (PRC2) downstream of MLL-AF9 epigenetically silenced MIR139 in AML. Finally, a genome-wide CRISPR-Cas9 knockout screen revealed RNA Polymerase 2 Subunit M (POLR2M) as a novel MIR139-regulatory factor. Our findings elucidate the molecular control of tumor suppressor MIR139 and reveal a role for POLR2M in the MIR139-silencing mechanism, downstream of MLL-AF9 and PRC2 in AML. In addition, we confirmed these findings in human AML cell lines with different oncogenic aberrations, suggesting that this is a more common oncogenic mechanism in AML. Our results may pave the way for new targeted therapy in AML.
Collapse
Affiliation(s)
- Christiaan J Stavast
- Erasmus MC, University Medical Center Rotterdam, Department of Immunology, Rotterdam, the Netherlands
| | - Iris van Zuijen
- Erasmus MC, University Medical Center Rotterdam, Department of Immunology, Rotterdam, the Netherlands
| | - Elena Karkoulia
- Department of Hemato-Oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Childhood Leukemia Investigation Prague, Department of Pediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Arman Özçelik
- Erasmus MC, University Medical Center Rotterdam, Department of Immunology, Rotterdam, the Netherlands
| | | | - Leticia G Leon
- Erasmus MC, University Medical Center Rotterdam, Department of Immunology, Rotterdam, the Netherlands
| | - Jane S A Voerman
- Erasmus MC, University Medical Center Rotterdam, Department of Immunology, Rotterdam, the Netherlands
| | - George M C Janssen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Peter A van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Monika Burocziova
- Department of Hemato-Oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Rutger W W Brouwer
- Erasmus MC, University Medical Center Rotterdam, Center for Biomics, Rotterdam, the Netherlands
- Erasmus MC, University Medical Center Rotterdam, Department of Cell Biology, Rotterdam, the Netherlands
| | - Wilfred F J van IJcken
- Erasmus MC, University Medical Center Rotterdam, Center for Biomics, Rotterdam, the Netherlands
- Erasmus MC, University Medical Center Rotterdam, Department of Cell Biology, Rotterdam, the Netherlands
| | - Alex Maas
- Erasmus MC, University Medical Center Rotterdam, Department of Cell Biology, Rotterdam, the Netherlands
| | - Eric M Bindels
- Erasmus MC, University Medical Center Rotterdam, Department of Hematology, Rotterdam, the Netherlands
| | | | - Christopher Schliehe
- Erasmus MC, University Medical Center Rotterdam, Department of Immunology, Rotterdam, the Netherlands
| | - Peter D Katsikis
- Erasmus MC, University Medical Center Rotterdam, Department of Immunology, Rotterdam, the Netherlands
| | - Meritxell Alberich-Jorda
- Department of Hemato-Oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Childhood Leukemia Investigation Prague, Department of Pediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Stefan J Erkeland
- Erasmus MC, University Medical Center Rotterdam, Department of Immunology, Rotterdam, the Netherlands.
| |
Collapse
|
2
|
Ball CB, Parida M, Santana JF, Spector BM, Suarez GA, Price DH. Nuclear export restricts Gdown1 to a mitotic function. Nucleic Acids Res 2022; 50:1908-1926. [PMID: 35048979 PMCID: PMC8887472 DOI: 10.1093/nar/gkac015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/22/2021] [Accepted: 01/14/2022] [Indexed: 01/11/2023] Open
Abstract
Approximately half of purified mammalian RNA polymerase II (Pol II) is associated with a tightly interacting sub-stoichiometric subunit, Gdown1. Previous studies have established that Gdown1 inhibits transcription initiation through competitive interactions with general transcription factors and blocks the Pol II termination activity of transcription termination factor 2 (TTF2). However, the biological functions of Gdown1 remain poorly understood. Here, we utilized genetic, microscopic, and multi-omics approaches to functionally characterize Gdown1 in three human cell lines. Acute depletion of Gdown1 caused minimal direct effects on transcription. We show that Gdown1 resides predominantly in the cytoplasm of interphase cells, shuttles between the cytoplasm and nucleus, and is regulated by nuclear export. Gdown1 enters the nucleus at the onset of mitosis. Consistently, genetic ablation of Gdown1 is associated with partial de-repression of mitotic transcription, and Gdown1 KO cells present with evidence of aberrant mitoses coupled to p53 pathway activation. Evidence is presented demonstrating that Gdown1 modulates the combined functions of purified productive elongation factors PAF1C, RTF1, SPT6, DSIF and P-TEFb in vitro. Collectively, our findings support a model wherein the Pol II-regulatory function of Gdown1 occurs during mitosis and is required for genome integrity.
Collapse
Affiliation(s)
- Christopher B Ball
- Department of Biochemistry and Molecular Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Mrutyunjaya Parida
- Department of Biochemistry and Molecular Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Juan F Santana
- Department of Biochemistry and Molecular Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Benjamin M Spector
- Department of Biochemistry and Molecular Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Gustavo A Suarez
- Department of Biochemistry and Molecular Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - David H Price
- Department of Biochemistry and Molecular Biology, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
3
|
Zhu Z, Liu J, Feng H, Zhang Y, Huang R, Pan Q, Nan J, Miao R, Cheng B. Overcoming the cytoplasmic retention of GDOWN1 modulates global transcription and facilitates stress adaptation. eLife 2022; 11:79116. [PMID: 36476745 PMCID: PMC9728996 DOI: 10.7554/elife.79116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Dynamic regulation of transcription is crucial for the cellular responses to various environmental or developmental cues. Gdown1 is a ubiquitously expressed, RNA polymerase II (Pol II) interacting protein, essential for the embryonic development of metazoan. It tightly binds Pol II in vitro and competitively blocks the binding of TFIIF and possibly other transcriptional regulatory factors, yet its cellular functions and regulatory circuits remain unclear. Here, we show that human GDOWN1 strictly localizes in the cytoplasm of various types of somatic cells and exhibits a potent resistance to the imposed driving force for its nuclear localization. Combined with the genetic and microscope-based approaches, two types of the functionally coupled and evolutionally conserved localization regulatory motifs are identified, including the CRM1-dependent nucleus export signal (NES) and a novel Cytoplasmic Anchoring Signal (CAS) that mediates its retention outside of the nuclear pore complexes (NPC). Mutagenesis of CAS alleviates GDOWN1's cytoplasmic retention, thus unlocks its nucleocytoplasmic shuttling properties, and the increased nuclear import and accumulation of GDOWN1 results in a drastic reduction of both Pol II and its associated global transcription levels. Importantly, the nuclear translocation of GDOWN1 occurs in response to the oxidative stresses, and the ablation of GDOWN1 significantly weakens the cellular tolerance. Collectively, our work uncovers the molecular basis of GDOWN1's subcellular localization and a novel cellular strategy of modulating global transcription and stress-adaptation via controlling the nuclear translocation of GDOWN1.
Collapse
Affiliation(s)
- Zhanwu Zhu
- School of Life Sciences, Lanzhou UniversityLanzhouChina
| | - Jingjing Liu
- School of Life Sciences, Lanzhou UniversityLanzhouChina
| | - Huan Feng
- School of Life Sciences, Lanzhou UniversityLanzhouChina
| | - Yanning Zhang
- School of Life Sciences, Lanzhou UniversityLanzhouChina
| | - Ruiqi Huang
- Cuiying Honors College, Lanzhou UniversityLanzhouChina
| | - Qiaochu Pan
- Cuiying Honors College, Lanzhou UniversityLanzhouChina
| | - Jing Nan
- School of Life Sciences, Lanzhou UniversityLanzhouChina
| | - Ruidong Miao
- School of Life Sciences, Lanzhou UniversityLanzhouChina
| | - Bo Cheng
- School of Life Sciences, Lanzhou UniversityLanzhouChina,Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou UniversityLanzhouChina
| |
Collapse
|