1
|
Tyagi IS, Tsui HYC, Chen S, Li X, Mat WK, Khan MA, Choy LB, Chan KYA, Chan TMD, Ng CPS, Ng HK, Poon WS, Xue H. Non-mitotic proliferation of malignant cancer cells revealed through live-cell imaging of primary and cell-line cultures. Cell Div 2024; 19:3. [PMID: 38341593 DOI: 10.1186/s13008-024-00109-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/15/2024] [Indexed: 02/12/2024] Open
Abstract
INTRODUCTION Anti-mitosis has been a key strategy of anti-cancer therapies, targeting at a fundamental property of cancer cells, their non-controllable proliferation due to overactive mitotic divisions. For improved anti-cancer therapies, it is important to find out whether cancer cells can proliferate independent of mitosis and become resistant to anti-mitotic agents. RESULTS In this study, live-cell imaging was applied to both primary-cultures of tumor cells, and immortalized cancer cell lines, to detect aberrant proliferations. Cells isolated from various malignant tumors, such as Grade-III hemangiopericytoma, atypical meningioma, and metastatic brain tumor exhibit distinct cellular behaviors, including amoeboid sequestration, tailing, tunneling, nucleic DNA leakage, as well as prokaryote-like division such as binary fission and budding-shedding, which are collectively referred to and reported as 'non-mitotic proliferation' in this study. In contrast, benign tumors including Grade-I hemangiopericytoma and meningioma were not obvious in such behaviors. Moreover, when cultured in medium free of any anti-cancer drugs, cells from a recurrent Grade-III hemangiopericytoma that had been subjected to pre-operation adjuvant chemotherapy gradually shifted from non-mitotic proliferation to abnormal mitosis in the form of daughter number variation (DNV) and endomitosis, and eventually regular mitosis. Similarly, when treated with the anti-cancer drugs Epirubicin or Cisplatin, the cancer cell lines HeLa and A549 showed a shift from regular mitosis to abnormal mitosis, and further to non-mitosis as the dominant mode of proliferation with increasing drug concentrations. Upon removal of the drugs, the cells reversed back to regular mitosis with only minor occurrences of abnormal mitosis, accompanied by increased expression of the stem cell markers ALDH1, Sox, Oct4 and Nanog. CONCLUSIONS The present study revealed that various types of malignant, but not benign, cancer cells exhibited cellular behaviors indicative of non-mitotic proliferation such as binary fission, which was typical of prokaryotic cell division, suggesting cell level atavism. Moreover, reversible transitions through the three modes of proliferation, i.e., mitosis, abnormal mitosis and non-mitosis, were observed when anticancer drug concentrations were grossly increased inducing non-mitosis or decreased favoring mitosis. Potential clinical significance of non-mitotic proliferation in cancer drug resistance and recurrence, and its relationship with cancer stem cells are worthy of further studies.
Collapse
Affiliation(s)
- Iram Shazia Tyagi
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Ho Yin Calvin Tsui
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Si Chen
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Xinyi Li
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Wai-Kin Mat
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Muhammad A Khan
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Lucas Brendan Choy
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Ka-Yin Aden Chan
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Tat-Ming Danny Chan
- Division of Neurosurgery & CUHK Otto Wong Brain Tumour Centre, Department of Surgery, The Chinese University of Hong Kong (CUHK), Hong Kong, Hong Kong SAR, China
| | - Chi-Ping Stephanie Ng
- Division of Neurosurgery & CUHK Otto Wong Brain Tumour Centre, Department of Surgery, The Chinese University of Hong Kong (CUHK), Hong Kong, Hong Kong SAR, China
| | - Ho-Keung Ng
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Wai Sang Poon
- Division of Neurosurgery & CUHK Otto Wong Brain Tumour Centre, Department of Surgery, The Chinese University of Hong Kong (CUHK), Hong Kong, Hong Kong SAR, China.
- Department of Neurosurgery, Neuro-Medical Centre, University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, Guangdong, China.
| | - Hong Xue
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China.
- Center for Cancer Genomics, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.
- Guangzhou HKUST Fok Ying Tung Research Institute, Science and Technology Building, Nansha Information Technology Park, Nansha, 511458, Guangzhou, China.
| |
Collapse
|
2
|
Baker TM, Waise S, Tarabichi M, Van Loo P. Aneuploidy and complex genomic rearrangements in cancer evolution. NATURE CANCER 2024; 5:228-239. [PMID: 38286829 PMCID: PMC7616040 DOI: 10.1038/s43018-023-00711-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/14/2023] [Indexed: 01/31/2024]
Abstract
Mutational processes that alter large genomic regions occur frequently in developing tumors. They range from simple copy number gains and losses to the shattering and reassembly of entire chromosomes. These catastrophic events, such as chromothripsis, chromoplexy and the formation of extrachromosomal DNA, affect the expression of many genes and therefore have a substantial effect on the fitness of the cells in which they arise. In this review, we cover large genomic alterations, the mechanisms that cause them and their effect on tumor development and evolution.
Collapse
Affiliation(s)
- Toby M Baker
- The Francis Crick Institute, London, UK
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sara Waise
- The Francis Crick Institute, London, UK
- Cancer Sciences Unit, University of Southampton, Southampton, UK
| | - Maxime Tarabichi
- The Francis Crick Institute, London, UK
- Institute for Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Peter Van Loo
- The Francis Crick Institute, London, UK.
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
3
|
Hu S, Liu T, Xue C, Li Y, Yang Y, Xu X, Liu B, Chen X, Zhao Y, Qin K. A high-throughput microfluidic device inspired by the Wheatstone bridge principle for characterizing the mechanical properties of single cells. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4813-4821. [PMID: 36382629 DOI: 10.1039/d2ay01416e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The mechanical properties of single cells have been recognized as biomarkers for identifying individual cells and diagnosing human diseases. Microfluidic devices based on the flow cytometry principle, which are not limited by the vision field of a microscope and can achieve a very high throughput, have been extensively adopted to measure the mechanical properties of single cells. However, these kinds of microfluidic devices usually required pressure-driven pumps with a very low flow rate and high precision. In this study, we developed a high-throughput microfluidic device inspired by the Wheatstone bridge principle for characterizing the mechanical properties of single cells. The microfluidic analogue of the Wheatstone bridge not only took advantage of flow cytometry, but also allowed precise control of a very low flow rate through the constricted channel with a higher input flow rate generated by a commercially available pressure-driven pump. Under different input flow rates of the pump, the apparent elastic moduli and the fluidity of osteosarcoma (U-2OS) cells and cervical carcinoma (HeLa) cells were measured by monitoring their dynamic deformations passing through the bridge-channel with different sizes of rectangular constrictions. The results showed that the input flow rate had little effect on measuring the mechanical properties of the cells, while the ratio of cell radius to effective constriction radius was different, i.e., for U-2OS cells it was 1.20 and for HeLa cells it was 1.09. Under this condition compared with predecessors, our statistic results of cell mechanical properties exhibited minimal errors. Furthermore, the cell viability after measurements was kept above 90% that demonstrated the non-destructive property of our proposed method.
Collapse
Affiliation(s)
- Siyu Hu
- School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, Liaoning Province, China
| | - Tianmian Liu
- DUT-BSU Joint Institute, Dalian University of Technology, Dalian 116024, Liaoning Province, China
| | - Chundong Xue
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, Liaoning Province, China.
| | - Yongjiang Li
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, Liaoning Province, China.
| | - Yunong Yang
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, Liaoning Province, China
| | - Xing Xu
- Department of Endoscopy, Liaoning Cancer Hospital and Institute, Shenyang, 110042, Liaoning Province, China
| | - Bo Liu
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, Liaoning Province, China
| | - Xiaoming Chen
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, Liaoning Province, China.
| | - Yan Zhao
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, Liaoning Province, China
- Department of Gastric Cancer, Liaoning Cancer Hospital and Institute, Cancer Hospital of Dalian University of Technology, Shenyang, 110042, Liaoning Province, China
| | - Kairong Qin
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, Liaoning Province, China.
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, Liaoning Province, China
| |
Collapse
|