1
|
Zhao Y, Xiao Q, Sun T, Yu H, Luo M. Knockdown of LCN2 Attenuates Brain Injury After Intracerebral Hemorrhage via Suppressing Pyroptosis. Neuropsychiatr Dis Treat 2024; 20:83-99. [PMID: 38249526 PMCID: PMC10800110 DOI: 10.2147/ndt.s440065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Objective The aims of this study are to screen novel differentially expressed genes (DEGs) for intracerebral hemorrhage (ICH) and reveal the role of Lipocalin-2 (LCN2) in ICH. Methods We constructed the ICH model by injection of autologous whole blood into the right basal ganglia in rats. RNA-sequencing and bioinformatics analyses were performed to identify the DEGs between ICH and sham rats, and some important ones were confirmed using quantitative real-time PCR (qRT-PCR). LCN shRNA was used to knockdown of LCN2 in ICH rats. Pathological examination was carried out using 2,3,5-triphenyltetrazolium chloride (TTC) staining and Hematoxylin-eosin (HE) staining. Immunohistochemistry detected Caspase-3, and co-staining of Terminal dUTP nick end labeling (TUNEL) and NEUN staining were performed for neuron apoptosis assessment. Western blot analysis was performed to quantify pyroptosis-related proteins. Enzyme-linked immunosorbent assay (ELISA) was used to measure inflammatory cytokine levels. Results ICH rats exhibited significant hematomas, higher brain water content, obvious interstitial edema, and inflammatory infiltration, as well as more apoptotic cells in brain tissues. RNA-seq analysis identified 103 upregulated and 81 downregulated DEGs. The expression of LCN2, HSPB1, CXCL10, and MEF2B were upregulated in ICH rats. ICH triggered the release of interleukin (IL)-1β, tumor necrosis factor-α (TNF-α), and IL-18, and promoted the expression of pyroptosis-related proteins Caspase-1, GSDMD, NLRP3, and ASC. LCN2 knockdown attenuated the pathological characteristics of ICH, and also reduced pyroptosis in brain tissues. Conclusion Inhibition of LCN2 attenuates brain injury after ICH via suppressing pyroptosis, which provide guidance for ICH management.
Collapse
Affiliation(s)
- Yangyang Zhao
- The First Clinical Medical College, Gannan Medical University, Ganzhou City, Jiangxi Province, People's Republic of China
| | - Qiuxiang Xiao
- Department of Pathology, The First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi Province, People's Republic of China
| | - Tao Sun
- The First Clinical Medical College, Gannan Medical University, Ganzhou City, Jiangxi Province, People's Republic of China
| | - Haiyun Yu
- The First Clinical Medical College, Gannan Medical University, Ganzhou City, Jiangxi Province, People's Republic of China
| | - Muyun Luo
- Department of Neurosurgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi Province, People's Republic of China
| |
Collapse
|
2
|
Abdel-Reheim MA, Nomier Y, Zaki MB, Abulsoud AI, Mohammed OA, Rashad AA, Oraby MA, Elballal MS, Tabaa MME, Elazazy O, Abd-Elmawla MA, El-Dakroury WA, Abdel Mageed SS, Abdelmaksoud NM, Elrebehy MA, Helal GK, Doghish AS. Unveiling the regulatory role of miRNAs in stroke pathophysiology and diagnosis. Pathol Res Pract 2024; 253:155085. [PMID: 38183822 DOI: 10.1016/j.prp.2023.155085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 12/28/2023] [Accepted: 12/30/2023] [Indexed: 01/08/2024]
Abstract
Stroke, a major global cause of mortality, leads to a range of problems for those who survive. Besides its brutal events, stroke also tends to have a characteristic of recurrence, making it a complex disease involving intricate regulatory networks. One of the major cellular regulators is the non-coding RNAs (ncRNA), specifically microRNAs (miRNAs), thus the possible functions of miRNAs in the pathogenesis of stroke are discussed as well as the possibility of using miRNA-based therapeutic approaches. Firstly, the molecular mechanisms by which miRNAs regulate vital physiological processes, including synaptic plasticity, oxidative stress, apoptosis, and the integrity of the blood-brain barrier (BBB) are reviewed. The miRNA indirectly impacts stroke outcomes by regulating BBB function and angiogenesis through the targeting of transcription factors and angiogenic factors. In addition, the tendency for some miRNAs to be upregulated in response to hypoxia, which is a prevalent phenomenon in stroke and various neurological disorders, highlights the possibility that it controls hypoxia-inducible factor (HIF) signaling and angiogenesis, thereby influencing the integrity of the BBB as examples of the discussed mechanisms. Furthermore, this review explores the potential therapeutic targets that miRNAs may offer for stroke recovery and highlights their promising capacity to alleviate post-stroke complications. This review provides researchers and clinicians with valuable resources since it attempts to decipher the complex network of miRNA-mediated mechanisms in stroke. Additionally, the review addresses the interplay between miRNAs and stroke risk factors as well as clinical applications of miRNAs as diagnostic and prognostic markers.
Collapse
Affiliation(s)
- Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Yousra Nomier
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and health sciences, Sultan Qaboos University, Muscat, Oman
| | - Mohamed Bakr Zaki
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Ahmed A Rashad
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mamdouh A Oraby
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City 32897, Menoufia, Egypt
| | - Ola Elazazy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mai A Abd-Elmawla
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | | | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Gouda Kamel Helal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11231, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
3
|
Yin H, Ran Z, Luo T, Jin Z, Ma J. BCL-3 Promotes Intracerebral Hemorrhage Progression by Increasing Blood-Brain Barrier Permeability, Inflammation, and Cell Apoptosis via Endoplasmic Reticulum Stress. Mediators Inflamm 2023; 2023:1420367. [PMID: 37736616 PMCID: PMC10511295 DOI: 10.1155/2023/1420367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 09/23/2023] Open
Abstract
Background Intracerebral hemorrhage (ICH) is among the common types of stroke with high mortality and morbidity. Molecular biomarker selection is crucial for ICH diagnosis and treatment. However, the identification of ICH-related biomarkers remains inadequate. Materials and Methods In vivo and in vitro ICH models were generated and transfected with silenced B-cell lymphoma-3 (BCL-3 and siRNA BCL-3), overexpressed BCL-3, and endoplasmic reticulum stress (ERS) agonist (2-CLHA). Hematoxylin-eosin staining and transmission electron microscopy were used to observe the transfected cells. RNA sequencing was performed in vivo on the sham and ICH groups. The blood-brain barrier (BBB) permeability was evaluated by determining Evans blue dye extravasation, transendothelial electrical resistance, and paracellular permeability. Moreover, tight junction-, cell apoptosis-, and endoplasmic reticulum stress- (ERS-) related proteins were evaluated through real-time quantitative PCR, western blotting, immunohistochemistry, and TUNEL staining. The levels of inflammatory cytokines were measured through the enzyme-linked immunosorbent assay. Results RNA-seq revealed that BCL-3 acts as a key player. BCL-3 promotes ICH progression by increasing BBB permeability, ERS, inflammation, and cell apoptosis. Silencing of BCL-3 slows ICH progression by reducing BBB permeability and inflammation and terminating cell apoptosis and ERS in vitro and in vivo. Conclusion Our study identified ICH biomarkers and elucidated the role of BCL-3 in ICH for the first time.
Collapse
Affiliation(s)
- Hao Yin
- Department of Neurosurgery, Guizhou Provincial People's Hospital, China
| | - Zhongying Ran
- Department of Neurosurgery, Guizhou Provincial People's Hospital, China
| | - Tao Luo
- Department of Neurosurgery, Guizhou Provincial People's Hospital, China
| | - Zexin Jin
- Department of Neurosurgery, Guizhou Provincial People's Hospital, China
| | - Jun Ma
- Department of Neurosurgery, Guizhou Provincial People's Hospital, China
| |
Collapse
|
4
|
Yu M, Tian T, Zhang J, Hu T. miR-141-3p protects against blood-brain barrier disruption and brain injury after intracerebral hemorrhage by targeting ZEB2. J Clin Neurosci 2022; 99:253-260. [PMID: 35306455 DOI: 10.1016/j.jocn.2022.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/28/2022] [Accepted: 03/05/2022] [Indexed: 12/31/2022]
Abstract
MicroRNAs (miRNAs) participate in the diagnosis and treatment of intracerebral hemorrhage (ICH). miR-141-3p has been widely reported to regulate neurological disorders and cerebropathy. However, the specific role of miR-141-3p in ICH has not yet been revealed. The aim of this study was exploration of the biological functions and mechanism of miR-141-3p in ICH by establishing a collagenase-induced ICH mouse model. After ICH induction, miR-141-3p mimics or miR-NC were administered into the right striatum of the model mice followed by the performance of neurological tests. After euthanasia of the mice, the injury volume, brain water content, and injury to the blood-brain barrier (BBB) were evaluated. Evans blue (EB) was used to stain the brain slices, and EB extravasation was detected to evaluate the injury to BBB. miR-141-3p expression in perihematomal edema and hematoma areas after ICH was assessed by RT-qPCR. The levels of tight junction proteins in brain tissues and human brain microvascular endothelial cells (BMECs) were evaluated by western blotting. The FITC-dextran 20 method was used to assess BMEC permeability. The binding between miR-141-3p and zinc finger E-box-binding homeobox 2 (ZEB2) was verified with a luciferase reporter assay. In this study, miR-141-3p overexpression alleviated ICH-induced brain injury and protected BBB integrity in vivo. ZEB2 was a target gene of miR-141-3p. ZEB2 overexpression promoted BBB disruption, and miR-141-3p overexpression attenuated the promoting effect exerted by ZEB2. Overall, miR-141-3p protects against BBB disruption and attenuates brain injuries induced by ICH by targeting ZEB2.
Collapse
Affiliation(s)
- Miao Yu
- Department of Neurosurgery, Affiliated Hospital of Chengde Medical University, Chengde 067000, Hebei, China
| | - Tian Tian
- Department of Neurosurgery, Affiliated Hospital of Chengde Medical University, Chengde 067000, Hebei, China.
| | - Jiwei Zhang
- Department of Neurosurgery, Affiliated Hospital of Chengde Medical University, Chengde 067000, Hebei, China
| | - Tiemin Hu
- Department of Neurosurgery, Affiliated Hospital of Chengde Medical University, Chengde 067000, Hebei, China
| |
Collapse
|