1
|
Yaron JR, Pallod S, Grigaitis-Esman N, Singh V, Rhodes S, Patel DM, Ghosh D, Rege K. Histamine receptor agonism differentially induces immune and reparative healing responses in biomaterial-facilitated tissue repair. Biomaterials 2025; 315:122967. [PMID: 39586217 DOI: 10.1016/j.biomaterials.2024.122967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 11/04/2024] [Accepted: 11/14/2024] [Indexed: 11/27/2024]
Abstract
Tissue repair is a highly regulated process involving immune, stromal, vascular, and parenchymal cell responses. Mediators of cellular responses at different phases of the healing process stimulate transitions through the continuum of repair. Histamine is an early mediator of healing, which, in skin, is released by resident cells (e.g., mast cells) after cutaneous injury, and acts to stimulate diverse responses in multiple cell populations. Histamine signaling is regulated by four distinct cell surface G-protein coupled receptors (HRH1-4 in humans, Hrh1-4 in mice) which initiate different downstream signaling cascades upon activation, but the specific effect of each receptor on tissue repair is poorly understood. Here, we systematically investigated the effect of selective histamine receptor agonism in laser-activated sealing and tissue repair of incisional skin wounds in immunocompetent mice. Although all four histamine receptors exhibited wound responsiveness in the epidermis, we find that activation of Hrh1, Hrh2, and Hrh4 stimulate a pro-healing immune response characterized by increased pro-resolution macrophages, reduced pro-inflammatory macrophages, and suppressed neutrophil responses. Further, activation of Hrh1 and Hrh4 stimulate angiogenesis after injury. Lastly, although Hrh1 activation resulted in enhanced epidermal epithelial-to-mesenchymal transition (EMT) in vivo and epithelialization in vitro, activation of Hrh2 suppressed both epidermal EMT and epithelialization. Activation of Hrh3, primarily found on neuronal cells, had no effect on any measure in our study. Selective histamine receptor agonism, specifically of histamine receptors Hrh-1 and 4, is a potential reparative approach to promote the efficacy of biomaterial-mediated repair of tissues, including skin.
Collapse
Affiliation(s)
- Jordan R Yaron
- Center for Biomaterials Innovation and Translation, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA; Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Shubham Pallod
- Center for Biomaterials Innovation and Translation, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA; Biological Design Graduate Program, School for Engineering of Matter, Transport, and Energy, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Nicole Grigaitis-Esman
- Center for Biomaterials Innovation and Translation, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA; Biological Design Graduate Program, School for Engineering of Matter, Transport, and Energy, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Vanshika Singh
- Center for Biomaterials Innovation and Translation, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA; Biomedical Engineering, School for Biological and Health Systems Engineering, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Samantha Rhodes
- Center for Biomaterials Innovation and Translation, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA; Biological Design Graduate Program, School for Engineering of Matter, Transport, and Energy, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Dirghau Manishbhai Patel
- Center for Biomaterials Innovation and Translation, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA; Biomedical Engineering, School for Biological and Health Systems Engineering, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Deepanjan Ghosh
- Center for Biomaterials Innovation and Translation, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA; Biological Design Graduate Program, School for Engineering of Matter, Transport, and Energy, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Kaushal Rege
- Center for Biomaterials Innovation and Translation, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA; Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ, 85287, USA; Biological Design Graduate Program, School for Engineering of Matter, Transport, and Energy, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
2
|
Lu H, Zhang S, Shao C, Chen P, Ma M, Hao Y. Efficacy of 0.05% Cyclosporine-A eye drops (II) and 3% Diquafosol ophthalmic solution in the treatment of dry eye after cataract surgery. Pak J Med Sci 2024; 40:2689-2694. [PMID: 39634897 PMCID: PMC11613396 DOI: 10.12669/pjms.40.11.10607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/02/2024] [Accepted: 10/08/2024] [Indexed: 12/07/2024] Open
Abstract
Objectives To compare the efficacy of 0.05% cyclosporine A (CsA) eye drops (II) and 3% Diquafosol ophthalmic solution (DQS) in the treatment of dry eye (DE) after cataract surgery (CS). Methods Clinical data of 123 patients with DE after CS treated at the Fourth Hospital of Hebei Medical University from June 2022 to August 2023 were retrospectively analyzed. Patients were divided into three groups based on the treatment: Conventional group (tobramycin & dexamethasone eye drops combined with pranoprofen eye drops, n=41), DQS group (3% DQS based on the conventional treatment, n=42), and CsA group (0.05% CsA eye drops(II) based on the conventional treatment, n=40). The therapeutic effects; Schirmer I test (SIt), tear film breakup time (TBUT), levels of serum inflammatory factors, and tear cytokine levels before and after treatment were compared between the groups. Results Chief complaint score, conjunctival congestion score, corneal fluorescein staining score, and ocular surface disease index score of the DQS group and the CsA groups were significantly lower than those of the conventional group (P<0.05). After treatment, the improvement in SIt, TBUT, serum inflammatory factors, and tear cytokine levels in the DQS group and the CsA group was significantly better than that in the conventional group (P<0.05). However, these indexes were comparable in the DQS and the CsA group (P>0.05). Conclusions Compared to the conventional treatment alone, the addition of 3% DQS or 0.05% CsA eye drops (II) to the conventional treatment both are effective and might more effectively alleviate DE in patients undergoing CS.
Collapse
Affiliation(s)
- Hongwei Lu
- Hongwei Lu Department of Ophthalmology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province 050000, P.R. China
| | - Shuangmei Zhang
- Shuangmei Zhang Department of Ophthalmology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province 050000, P.R. China
| | - Chenjun Shao
- Chenjun Shao Department of Ophthalmology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province 050000, P.R. China
| | - Pengfei Chen
- Pengfei Chen Department of Ophthalmology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province 050000, P.R. China
| | - Minting Ma
- Minting Ma Department of Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province 050000, P.R. China
| | - Yuhua Hao
- Yuhua Hao Department of Ophthalmology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province 050000, P.R. China
| |
Collapse
|
3
|
Zhen Y, Li X, Huang S, Wang R, Yang L, Huang Y, Yan J, Ju J, Wen H, Sun Q. LncRNA lnc-SPRR2G-2 contributes to keratinocyte hyperproliferation and inflammation in psoriasis by activating the STAT3 pathway and downregulating KHSRP. Mol Cell Probes 2024; 76:101967. [PMID: 38942130 DOI: 10.1016/j.mcp.2024.101967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
Psoriasis is a chronic inflammatory disease characterized by increased keratinocyte proliferation and local inflammation. Long noncoding RNAs (lncRNAs) play important regulatory roles in many immune-mediated diseases, including psoriasis. In this study, we aimed to investigate the role and mechanism of lnc-SPRR2G-2 (SPRR2G) in M5-treated psoriatic keratinocytes. Fluorescence in situ hybridization and quantitative real-time polymerase chain reaction (qRT-PCR) showed that lnc-SPRR2G-2 was significantly upregulated in psoriasis tissues and psoriatic keratinocytes. In psoriatic keratinocytes, functional and molecular experiment analyses demonstrated that SPRR2G regulated proliferation, cell cycle and apoptosis, and induced the expression of S100 calcium binding protein A7 (S100A7), interleukin (IL)-1β, IL-8 and C-X-C motif chemokine ligand 10 (CXCL10). The function of SPRR2G in psoriasis is related to the STAT3 signaling pathway and can be inhibited by a STAT3 inhibitor. Moreover, KH-type splicing regulatory protein (KHSRP) was proved to be regulated by lnc-SPRR2G-2 and to control the mRNA decay of psoriasis-related cytokines (p < 0.05). In summary, we reported the functions of lnc-SPRR2G-2 and KHSRP in psoriasis. Our findings provide new insights for the further exploration of the pathogenesis and treatment of psoriasis.
Collapse
Affiliation(s)
- Yunyue Zhen
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China; Laboratory of Basic Medical Science, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Xueqing Li
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China; Laboratory of Basic Medical Science, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Shan Huang
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China; Laboratory of Basic Medical Science, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Ruijie Wang
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China; Laboratory of Basic Medical Science, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Luan Yang
- Department of Dermatology, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, Shandong, China
| | - Yingjian Huang
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China; Laboratory of Basic Medical Science, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Jianjun Yan
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Jiaoying Ju
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China; Laboratory of Basic Medical Science, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - He Wen
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China.
| | - Qing Sun
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
4
|
Wójcik M, Plata-Babula A, Głowaczewska A, Sirek T, Orczyk A, Małecka M, Grabarek BO. Expression profile of mRNAs and miRNAs related to mitogen-activated kinases in HaCaT cell culture treated with lipopolysaccharide a and adalimumab. Cell Cycle 2024; 23:385-404. [PMID: 38557266 PMCID: PMC11174132 DOI: 10.1080/15384101.2024.2335051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
Studies indicate that mitogen-activated protein kinases (MAPKs) exhibit activation and overexpression within psoriatic lesions. This study aimed to investigate alterations in the expression patterns of genes encoding MAPKs and microRNA (miRNA) molecules that potentially regulate their expression in human adult low-calcium high-temperature (HaCaT) keratinocytes when exposed to bacterial lipopolysaccharide A (LPS) and adalimumab. HaCaT cells underwent treatment with 1 µg/mL LPS for 8 hours, followed by treatment with 8 µg/mL adalimumab for 2, 8, or 24 hours. Untreated cells served as controls. The molecular analysis involved microarray, quantitative real-time polymerase chain reaction (RTqPCR), and enzyme-linked immunosorbent assay (ELISA) analyses. Changes in the expression profile of seven mRNAs: dual specificity phosphatase 1 (DUSP1), dual specificity phosphatase 3 (DUSP3), dual specificity phosphatase 4 (DUSP4), mitogen-activated protein kinase 9 (MAPK9), mitogen-activated protein kinase kinase kinase 2 (MAP3K2), mitogen-activated protein kinase kinase 2 (MAP2K2), and MAP kinase-activated protein kinase 2 (MAPKAPK2, also known as MK2) in cell culture exposed to LPS or LPS and the drug compared to the control. It was noted that miR-34a may potentially regulate the activity of DUSP1, DUSP3, and DUSP4, while miR-1275 is implicated in regulating MAPK9 expression. Additionally, miR-382 and miR-3188 are potential regulators of DUSP4 levels, and miR-200-5p is involved in regulating MAPKAPK2 and MAP3K2 levels. Thus, the analysis showed that these mRNA molecules and the proteins and miRNAs they encode appear to be useful molecular markers for monitoring the efficacy of adalimumab therapy.
Collapse
Affiliation(s)
- Michał Wójcik
- Collegium Medicum, WSB University, Dabrowa Gornicza, Poland
| | - Aleksandra Plata-Babula
- Department of Nursing and Maternity, High School of Strategic Planning in Dabrowa Gornicza, Dabrowa Gornicza, Poland
| | - Amelia Głowaczewska
- Faculty of Health Sciences, University of Applied Sciences in Nysa, Nysa, Poland
| | - Tomasz Sirek
- Department of Plastic Surgery, Faculty of Medicine, Academia of Silesia, Katowice, Poland
- Department of Plastic and Reconstructive Surgery, Hospital for Minimally Invasive and Reconstructive Surgery in Bielsko-Biała, Bielsko-Biala, Poland
| | - Aneta Orczyk
- Collegium Medicum, WSB University, Dabrowa Gornicza, Poland
| | - Mariola Małecka
- Faculty of Medicine, Uczelnia Medyczna im. Marii Skłodowskiej-Curie, Warszawa, Poland
| | | |
Collapse
|
5
|
Wójcik M, Zmarzły N, Derkacz A, Kulpok-Bagiński T, Blek N, Grabarek BO. Gene expression profile of mitogen-activated kinases and microRNAs controlling their expression in HaCaT cell culture treated with lipopolysaccharide A and cyclosporine A. Cell Cycle 2024; 23:279-293. [PMID: 38445655 PMCID: PMC11057563 DOI: 10.1080/15384101.2024.2320508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/01/2024] [Indexed: 05/01/2024] Open
Abstract
Studies indicate that mitogen-activated protein kinases (MAPKs) are activated and overexpressed in psoriatic lesions. The aim of the study was to assess changes in the expression pattern of genes encoding MAPKs and microRNA (miRNA) molecules potentially regulating their expression in human adult low-calcium high-temperature (HaCaT) keratinocytes exposed to bacterial lipopolysaccharide A (LPS) and cyclosporine A (CsA). HaCaT cells were treated with 1 µg/mL LPS for 8 h, followed by treatment with 100 ng/mL cyclosporine A for 2, 8, or 24 h. Untreated cells served as controls. The molecular analysis consists of microarray, quantitative real-time polymerase chain reaction, and enzyme-linked immunosorbent assay analyses. The statistical analysis of the obtained results was performed using Transcriptome Analysis Console and STATISTICA 13.5 PL with the statistical significance threshold of p < 0.05. Changes in the expression profile of six mRNAs: dual-specificity phosphatase 1 (DUSP1), dual-specificity phosphatase 4 (DUSP4), mitogen-activated protein kinase kinase 2 (MAP2K2), mitogen-activated protein kinase kinase 7 (MAP2K7), mitogen-activated protein kinase kinase kinase 2 (MAP3K2) and mitogen-activated protein kinase 9 (MAPK9) in cell culture exposed to LPS or LPS and the drug compared to the control. We observed that under the LPS and cyclosporine treatment, the expression o/ miR-34a, miR-1275, miR-3188, and miR-382 changed significantly (p < 0.05). We demonstrated a potential relationship between DUSP1 and miR-34a; DUSP4 and miR-34a, miR-382, and miR-3188; MAPK9 and miR-1275, MAP2K7 and mir-200-5p; MAP3K2 and mir-200-5p, which may be the subject of further research in the context of psoriasis.
Collapse
Affiliation(s)
- Michał Wójcik
- Collegium Medicum, WSB University, Dabrowa Gornicza, Poland
| | - Nikola Zmarzły
- Collegium Medicum, WSB University, Dabrowa Gornicza, Poland
| | - Alicja Derkacz
- Collegium Medicum, WSB University, Dabrowa Gornicza, Poland
| | | | - Natasza Blek
- Faculty of Medicine, Uczelnia Medyczna im. Marii Skłodowskiej-Curie, Warszawa, Poland
| | | |
Collapse
|
6
|
Buda P, Michalski P, Warmusz O, Michalska-Bańkowska A, Sirek T, Ossowski P, Bogdał P, Strojny D, Pisany-Syska A, Grabarek BO. Influence of adalimumab on interleukin 12/23 signalling pathways in human keratinocytes treated with lipopolysaccharide A. Postepy Dermatol Alergol 2023; 40:647-654. [PMID: 38028419 PMCID: PMC10646715 DOI: 10.5114/ada.2023.129272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 06/18/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction The interleukin-12/23 (IL-12/23) signalling pathway plays an important role in the pathogenesis of psoriasis. In addition, even molecularly targeted therapy has been reported to lose adequate response to treatment. Aim To determine the expression patterns of mRNAs and miRNAs related to IL-12/23 signalling pathways in the human keratinocyte culture exposed to liposaccharide A (LPS) and then adalimumab in comparison with untreated cells. Material and methods Human, adult, low-Calcium, high-Temperature keratinocyte (HaCaT) cultures were exposed to 1 µg/ml LPS for 8 h, and then adalimumab was added to the cultures at a concentration of 8 µg/ml and incubated for 2, 8, and 24 h. We used mRNA and miRNA microarray, quantitative reverse transcription polymerase chain reaction, and enzyme-linked immunosorbent assay techniques. Results STAT1, STAT3, STAT5, IL-6, IL-6R, SOCS3, and JAK3 genes differentiated HaCaT cultures with the drug from controls regardless of the time the cells were exposed to the drug. The addition of adalimumab to a culture previously exposed to LPS resulted in silencing of SOCS3 and IL-6 expression compared to the control, while for the other transcripts they were found to be overexpressed compared to the control culture. The assessment indicated the strongest connections between JAK3 and hsa-miR-373-5p (target score 96); SOCS3, STAT5, and hsa-miR-1827 (target score 96). Conclusions Our study indicates that adalimumab has the strongest modulating effect on mRNA and miRNA expression of JAK/STAT and IL-6-dependent IL-12/23 pathways.
Collapse
Affiliation(s)
- Paulina Buda
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia in Katowice, Poland
| | - Piotr Michalski
- Department of Dermatology, Center for Child and Family Health, Sosnowiec, Poland
| | - Oliwia Warmusz
- Department of Histology and Cell Pathology in Zabrze, School of Medicine with the Division of Dentistry, Medical University of Silesia in Katowice, Poland
| | - Anna Michalska-Bańkowska
- Department of Histology and Cell Pathology in Zabrze, School of Medicine with the Division of Dentistry, Medical University of Silesia in Katowice, Poland
| | - Tomasz Sirek
- Department of Plastic Surgery, Faculty of Medicine, Academia of Silesia, Katowice, Poland
- Department of Plastic and Reconstructive Surgery, Hospital for Minimally Invasive and Reconstructive Surgery, Bielsko-Biala, Poland
| | - Piotr Ossowski
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia in Katowice, Poland
| | - Paweł Bogdał
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia in Katowice, Poland
| | - Damian Strojny
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia in Katowice, Poland
| | | | - Beniamin Oskar Grabarek
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia in Katowice, Poland
| |
Collapse
|
7
|
Human Melanoma Cells Differentially Express RNASEL/RNase-L and miR-146a-5p under Sex Hormonal Stimulation. Curr Issues Mol Biol 2022; 44:4790-4802. [PMID: 36286041 PMCID: PMC9601115 DOI: 10.3390/cimb44100326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/28/2022] [Accepted: 10/07/2022] [Indexed: 12/01/2022] Open
Abstract
Polymorphisms in the ribonuclease L (RNASEL) coding gene and hsa-miR-146a-5p (miR-146a) have been associated with melanoma in a sex-specific manner. We hypothesized that RNASEL and miR-146a expression could be influenced by sex hormones playing a role in the female advantages observed in melanoma incidence and survival. Thus, we explored the effects of testosterone and 17β-estradiol on RNASEL and miR-146a expression in LM-20 and A375 melanoma cell lines. Direct targeting of miR-146a to the 3′ untranslated region (3′UTR) of RNASEL was examined using a luciferase reporter system. Our results indicate that RNASEL is a direct target of miR-146a in both melanoma cell lines. Trough qPCR and western blot analyses, we explored the effect of miR-146a mimic transfection in the presence of each hormone either on RNASEL mRNA level or on protein expression of RNase-L, the enzyme codified by RNASEL gene. In the presence of testosterone or 17β-estradiol, miR-146a overexpression did not influence RNASEL transcript level in LM-20 cell line, but it slightly induced RNASEL mRNA level in A375 cells. Remarkably, miR-146a overexpression was able to repress the protein level of RNase-L in both LM-20 and A375 cells in the presence of each hormone, as well as to elicit high expression levels of the activated form of the extracellular signal-regulated kinases (ERK)1/2, hence confirming the pro-tumorigenic role of miR-146a overexpression in melanoma. Thereafter, we assessed if the administration of each hormone could affect the endogenous expression of RNASEL and miR-146a genes in LM-20 and A375 cell lines. Testosterone exerted no significant effect on RNASEL gene expression in both cell lines, while 17β-estradiol enhanced RNASEL transcript level at least in LM-20 melanoma cells. Conversely, miR-146a transcript augmented only in the presence of testosterone in either melanoma cell line. Importantly, each hormone acted quite the opposite regarding the RNase-L protein expression, i.e., testosterone significantly decreased RNase-L expression, whereas 17β-estradiol increased it. Overall, the data show that, in melanoma cells treated with 17β-estradiol, RNase-L expression increased likely by transcriptional induction of its gene. Testosterone, instead, decreased RNase-L expression in melanoma cell lines with a post-transcriptional mechanism in which miR-146a could play a role. In conclusion, the pro-tumor activity of androgen hormone in melanoma cells could be exacerbated by both miR-146a increase and RNase-L downregulation. These events may contribute to the worse outcome in male melanoma patients.
Collapse
|