1
|
Liu T, Xu J, Zhang QX, Huang YJ, Wang W, Fu Z. Inhibiting the expression of spindle appendix cooled coil protein 1 can suppress tumor cell growth and metastasis and is associated with cancer immune cells in esophageal squamous cell carcinoma. PLoS One 2024; 19:e0302312. [PMID: 39196978 PMCID: PMC11356440 DOI: 10.1371/journal.pone.0302312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 04/01/2024] [Indexed: 08/30/2024] Open
Abstract
Inhibiting the expression of spindle appendix cooled coil protein 1 (SPDL1) can slow down disease progression and is related to poor prognosis in patients with esophageal cancer. However, the specific roles and molecular mechanisms of SPDL1 in esophageal squamous cell carcinoma (ESCC) have not been explored yet. The current study aimed to investigate the expression levels of SPDL1 in ESCC via transcriptome analysis using data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus databases. Moreover, the biological roles, molecular mechanisms, and protein networks involved in SPDL1 were identified using machine learning and bioinformatics. The cell counting kit-8 assay, EdU staining, and transwell assay were used to investigate the effects of inhibiting SPDL1 expression on ESCC cell proliferation, migration, and invasion. Finally, the correlation between the SPDL1 expression and cancer immune infiltrating cells was evaluated by analyzing data from the TCGA database. Results showed that SPDL1 was overexpressed in the ESCC tissues. The SPDL1 expression was related to age in patients with ESCC. The SPDL1 co-expressed genes included those involved in cell division, cell cycle, DNA repair and replication, cell aging, and other processes. The high-risk scores of SPDL1-related long non-coding RNAs were significantly correlated with overall survival and cancer progression in patients with ESCC (P < 0.05). Inhibiting the SPDL1 expression was effective in suppressing the proliferation, migration, and invasion of ESCC TE-1 cells (P < 0.05). The overexpression of SPDL1 was positively correlated with the levels of Th2 and T-helper cells, and was negatively correlated with the levels of plasmacytoid dendritic cells and mast cells. In conclusion, SPDL1 was overexpressed in ESCC and was associated with immune cells. Further, inhibiting the SPDL1 expression could effectively slow down cancer cell growth and migration. SPDL1 is a promising biomarker for treating patients with ESCC.
Collapse
Affiliation(s)
- Tao Liu
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan City, China
| | - Juan Xu
- Operating Room, Taihe Hospital, Hubei University of Medicine, Shiyan City, China
| | - Qun-Xian Zhang
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan City, China
| | - Yan-Jiao Huang
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan City, China
| | - Wei Wang
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan City, China
| | - Zhu Fu
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan City, China
| |
Collapse
|
2
|
Zhu D, Feng H, Zhang Z, Li J, Li Y, Hou T. DEPDC1B: A novel tumor suppressor gene associated with immune infiltration in colon adenocarcinoma. Cancer Med 2024; 13:e70043. [PMID: 39087856 PMCID: PMC11292854 DOI: 10.1002/cam4.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/05/2024] [Accepted: 07/12/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Recent research indicates a positive correlation between DEP structural domain-containing 1B (DEPDC1B) and the cell cycle in various tumors. However, the role of DEPDC1B in the infiltration of the tumor immune microenvironment (TIME) remains unexplored. METHODS We analyzed the differential expression and prognostic significance of DEPDC1B in colon adenocarcinoma (COAD) using the R package "limma" and the Gene Expression Profiling Interactive Analysis (GEPIA) website. Gene set enrichment analysis (GSEA) was employed to investigate the functions and interactions of DEPDC1B expression in COAD. Cell Counting Kit-8 (CCK-8) assays and colony formation assays were utilized to assess the proliferative function of DEPDC1B. Correlations between DEPDC1B expression and tumor-infiltrating immune cells, immune checkpoints, tumor mutational burden (TMB), and microsatellite instability (MSI) status were examined using Spearman correlation analysis and CIBERSORT. RESULTS DEPDC1B was highly expressed in COAD. Elevated DEPDC1B expression was associated with lower epithelial-to-mesenchymal transition (EMT) and TNM stages, leading to a favorable prognosis. DEPDC1B mRNA was prominently expressed in COAD cell lines. CCK-8 and colony formation assays demonstrated that DEPDC1B inhibited the proliferation of COAD cells. Analysis using the CIBERSORT database and Spearman correlation revealed that DEPDC1B correlated with four types of tumor-infiltrating immune cells. Furthermore, high DEPDC1B expression was linked to the expression of PD-L1, CTLA4, SIGLEC15, PD-L2, TMB, and MSI-H. High DEPDC1B expression also indicated responsiveness to anti-PD-L1 immunotherapy. CONCLUSIONS DEPDC1B inhibits the proliferation of COAD cells and positively regulates the cell cycle, showing a positive correlation with CCNB1 and PBK expression. DEPDC1B expression in COAD is associated with tumor-infiltrating immune cells, immune checkpoints, TMB, and MSI-H in the tumor immune microenvironment. This suggests that DEPDC1B may serve as a novel prognostic marker and a potential target for immunotherapy in COAD.
Collapse
Affiliation(s)
- Dandan Zhu
- Guangdong Center for Clinical Laboratory, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouGuangdongChina
| | - Huolun Feng
- School of MedicineSouth China University of TechnologyGuangzhouGuangdongChina
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouGuangdongChina
| | - Zhixiong Zhang
- Guangdong Center for Clinical Laboratory, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouGuangdongChina
| | - Jiaqi Li
- Guangdong Center for Clinical Laboratory, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouGuangdongChina
| | - Yong Li
- School of MedicineSouth China University of TechnologyGuangzhouGuangdongChina
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouGuangdongChina
| | - Tieying Hou
- Medical Experimental CenterShenzhen Nanshan People's HospitalShenzhenGuangdongChina
- Medical SchoolShenzhen UniversityShenzhenGuangdongChina
| |
Collapse
|
3
|
Ouyang J, Li H, Wu G, Hei B, Liu R. Platycodin D inhibits glioblastoma cell proliferation, migration, and invasion by regulating DEPDC1B-mediated epithelial-to-mesenchymal transition. Eur J Pharmacol 2023; 958:176074. [PMID: 37742812 DOI: 10.1016/j.ejphar.2023.176074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/17/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND Platycodin D (PD) is a potent bioactive constituent in the medicinal herb Platycodon grandiflorum. It has shown anticancer properties, particularly against glioblastoma (GB) and other human malignancies. DEPDC1B (DEP domain-containing protein 1B) is an oncogene associated with epithelial-mesenchymal transition (EMT). It is highly expressed in GB and correlated with tumor grade and patient prognosis. In this study, we investigated whether the antiglioma effect of PD was associated with downregulation of DEPDC1B. METHODS Gene expression and clinical data were obtained from the China Glioma Genome Atlas and The Cancer Genome Atlas databases for glioma samples. In vitro experiments were conducted using Cell Counting Kit-8 and Transwell assays to assess the impact of PD on the proliferation, migration, and invasion of GB cells. mRNA and protein expression was evaluated using real-time polymerase chain reaction and western blotting, respectively. RESULTS PD exerted inhibitory effects on the proliferation and motility of GB cells. PD downregulated DEPDC1B protein as well as several markers associated with EMT, namely N-cadherin, vimentin, and Snail. The suppressive effects of PD were enhanced when DEPDC1B was knocked down in GB cells, while overexpression of DEPDC1B in cells reversed the inhibitory effects of PD. CONCLUSION PD exerts an antiglioma effect by regulating DEPDC1B-mediated EMT.
Collapse
Affiliation(s)
- Jia Ouyang
- Department of Neurosurgery, Peking University People's Hospital, Beijing, 100044, People's Republic of China
| | - Haima Li
- Medical College of Nanchang University, Nanchang, Jiangxi, People's Republic of China; Department of Neurosurgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, People's Republic of China
| | - Guangyong Wu
- Department of Neurosurgery, Peking University People's Hospital, Beijing, 100044, People's Republic of China
| | - Bo Hei
- Department of Neurosurgery, Peking University People's Hospital, Beijing, 100044, People's Republic of China
| | - Ruen Liu
- Department of Neurosurgery, Peking University People's Hospital, Beijing, 100044, People's Republic of China; Medical College of Nanchang University, Nanchang, Jiangxi, People's Republic of China; Department of Neurosurgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, People's Republic of China.
| |
Collapse
|
4
|
Yang Q, Al-Hendy A. The Functional Role and Regulatory Mechanism of FTO m 6A RNA Demethylase in Human Uterine Leiomyosarcoma. Int J Mol Sci 2023; 24:7957. [PMID: 37175660 PMCID: PMC10178470 DOI: 10.3390/ijms24097957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Uterine leiomyosarcoma (uLMS) is the most frequent subtype of uterine sarcoma that presents a poor prognosis and high rates of recurrence and metastasis. The origin and molecular mechanism underlying and driving its clinical and biological behavior remain largely unknown. Recently, we and others have revealed the role of microRNAs, DNA methylation, and histone modifications in contributing to the pathogenesis of uLMS. However, the connection between reversible m6A RNA methylation and uLMS pathogenesis remains unclear. In this study, we assessed the role and mechanism of FTO m6A RNA demethylase in the pathogenesis of uLMS. Immunohistochemistry analysis revealed that the levels of RNA demethylases FTO and ALKBH5 were aberrantly upregulated in uLMS tissues compared to adjacent myometrium with a significant change by histochemical scoring assessment (p < 0.01). Furthermore, the inhibition of FTO demethylase with its small, potent inhibitor (Dac51) significantly decreased the uLMS proliferation dose-dependently via cell cycle arrest. Notably, RNA-seq analysis revealed that the inhibition of FTO with Dac51 exhibited a significant decrease in cell-cycle-related genes, including several CDK members, and a significant increase in the expression of CDKN1A, which correlated with a Dac51-exerted inhibitory effect on cell proliferation. Moreover, Dac51 treatment allowed the rewiring of several critical pathways, including TNFα signaling, KRAS signaling, inflammation response, G2M checkpoint, and C-Myc signaling, among others, leading to the suppression of the uLMS phenotype. Moreover, transcription factor (TF) analyses suggested that epitranscriptional alterations by Dac51 may alter the cell cycle-related gene expression via TF-driven pathways and epigenetic networks in uLMS cells. This intersection of RNA methylation and other epigenetic controls and pathways provides a framework to better understand uterine diseases, particularly uLMS pathogenesis with a dysregulation of RNA methylation machinery. Therefore, targeting the vulnerable epitranscriptome may provide an additional regulatory layer for a promising and novel strategy for treating patients with this aggressive uterine cancer.
Collapse
Affiliation(s)
- Qiwei Yang
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
5
|
Yang Q, Falahati A, Khosh A, Mohammed H, Kang W, Corachán A, Bariani MV, Boyer TG, Al-Hendy A. Targeting Class I Histone Deacetylases in Human Uterine Leiomyosarcoma. Cells 2022; 11:cells11233801. [PMID: 36497061 PMCID: PMC9735512 DOI: 10.3390/cells11233801] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/19/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Uterine leiomyosarcoma (uLMS) is the most frequent subtype of uterine sarcoma that presents a poor prognosis, high rates of recurrence, and metastasis. Currently, the molecular mechanism of the origin and development of uLMS is unknown. Class I histone deacetylases (including HDAC1, 2, 3, and 8) are one of the major classes of the HDAC family and catalyze the removal of acetyl groups from lysine residues in histones and cellular proteins. Class I HDACs exhibit distinct cellular and subcellular expression patterns and are involved in many biological processes and diseases through diverse signaling pathways. However, the link between class I HDACs and uLMS is still being determined. In this study, we assessed the expression panel of Class I HDACs in uLMS and characterized the role and mechanism of class I HDACs in the pathogenesis of uLMS. Immunohistochemistry analysis revealed that HDAC1, 2, and 3 are aberrantly upregulated in uLMS tissues compared to adjacent myometrium. Immunoblot analysis demonstrated that the expression levels of HDAC 1, 2, and 3 exhibited a graded increase from normal and benign to malignant uterine tumor cells. Furthermore, inhibition of HDACs with Class I HDACs inhibitor (Tucidinostat) decreased the uLMS proliferation in a dose-dependent manner. Notably, gene set enrichment analysis of differentially expressed genes (DEGs) revealed that inhibition of HDACs with Tucidinostat altered several critical pathways. Moreover, multiple epigenetic analyses suggested that Tucidinostat may alter the transcriptome via reprogramming the oncogenic epigenome and inducing the changes in microRNA-target interaction in uLMS cells. In the parallel study, we also determined the effect of DL-sulforaphane on the uLMS. Our study demonstrated the relevance of class I HDACs proteins in the pathogenesis of malignant uLMS. Further understanding the role and mechanism of HDACs in uLMS may provide a promising and novel strategy for treating patients with this aggressive uterine cancer.
Collapse
Affiliation(s)
- Qiwei Yang
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
- Correspondence:
| | - Ali Falahati
- Department of Biology, Yazd University, Yazd 891581841, Iran
| | - Azad Khosh
- Department of Biology, Yazd University, Yazd 891581841, Iran
| | - Hanaa Mohammed
- Anatomy Department, Faculty of Medicine, Sohag University, Sohag 82524, Egypt
| | - Wenjun Kang
- Center for Research Informatics, University of Chicago, Chicago, IL 60637, USA
| | - Ana Corachán
- Department of Paediatrics, University of Valencia, Obstetrics and Gynecology, 46026 Valencia, Spain
| | | | - Thomas G. Boyer
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|