1
|
Suazo M, Herrero J, Fortuny G, Puigjaner D, López JM. Biomechanical response of human rib cage to cardiopulmonary resuscitation maneuvers: Effects of the compression location. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2022; 38:e3585. [PMID: 35188706 PMCID: PMC9285513 DOI: 10.1002/cnm.3585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/01/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
The biomechanical response of a human rib cage to cardiopulmonary resuscitation maneuvers was investigated by means of finite element simulations. We analyzed the effect of the location where the force was applied on the achieved compression depths and stress levels experienced by the breastbone and ribs. For compression locations on the breastbone, a caudal shift of the application area toward the breastbone tip resulted in a 17% reduction of the force required to achieve a target 5 cm compression depth. We found that the use of compression regions located on the costal cartilages would involve higher risk of rib fractures.
Collapse
Affiliation(s)
- Mario Suazo
- Departament d’ Enginyeria Informàtica i MatemàtiquesUniversitat Rovira i VirgiliTarragonaCatalunyaSpain
- Departamento de Matemática AplicadaEscuela de Matemática y Ciencias de la Computación, UNAH–VSTegucigalpaHonduras
| | - Joan Herrero
- Departament d’ Enginyeria QuímicaUniversitat Rovira i VirgiliTarragonaCatalunyaSpain
| | - Gerard Fortuny
- Departament d’ Enginyeria Informàtica i MatemàtiquesUniversitat Rovira i VirgiliTarragonaCatalunyaSpain
| | - Dolors Puigjaner
- Departament d’ Enginyeria Informàtica i MatemàtiquesUniversitat Rovira i VirgiliTarragonaCatalunyaSpain
| | - Josep M. López
- Departament d’ Enginyeria Informàtica i MatemàtiquesUniversitat Rovira i VirgiliTarragonaCatalunyaSpain
| |
Collapse
|
2
|
Hulsmans MH, van Heijl M, Houwert RM, Burger BJ, Verleisdonk EJM, Veeger DJ, van der Meijden OA. Surgical fixation of midshaft clavicle fractures: A systematic review of biomechanical studies. Injury 2018. [PMID: 29523350 DOI: 10.1016/j.injury.2018.02.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE Surgical treatment of displaced midshaft clavicle fractures requires a decision between plate fixation and intramedullary (IM) fixation. Numerous studies report on the biomechanical properties of various repair constructs. The goal of this systematic review was to provide an overview of studies describing the biomechanical properties of the most commonly used surgical fixations of midshaft clavicle fractures. Additionally, we aimed to translate these biomechanical results into clinically relevant conclusions. METHODS A computer-aided search of the EMBASE and PudMed/MEDLINE databases was conducted. Studies included for review compared biomechanical properties of plate fixation with IM fixation and superiorly positioned plates with anteroinferiorly positioned plates for midshaft clavicle fractures. RESULTS Fifteen studies were eligible for inclusion. Plate fixation seemed to form a more robust construct than IM fixation in terms of stiffness and failure loading. The remaining clavicle was stronger after removal of the IM device than after removal of the plate. Superior plating of transverse fractures generally seemed to provide greater stiffness and strength during bending loads than anteroinferior plating did. The absence of cortical alignment in wedge and comminuted fractures directly influenced the fixation stability for both IM fixation and plate fixation, regardless of location. CONCLUSION Each type of fracture fixation has biomechanical advantages and disadvantages. However, exact thresholds of stiffness for inducing healing and failure strength to withstand refractures are unknown. The clinical relevance of the biomechanical studies may be arguable. Since none of the studies investigate the effect of tissue adaptation over time they should be interpreted with caution.
Collapse
Affiliation(s)
- Martijn H Hulsmans
- Department of Surgery, Diakonessenhuis Utrecht/Zeist/Doorn, Bosboomstraat 1, 3582 KE, Utrecht, The Netherlands
| | - Mark van Heijl
- Department of Surgery, Diakonessenhuis Utrecht/Zeist/Doorn, Bosboomstraat 1, 3582 KE, Utrecht, The Netherlands
| | - Roderick M Houwert
- Utrecht Traumacenter, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Bart J Burger
- Department of Orthopaedic Surgery/Centre for Orthopaedic Research Alkmaar (CORAL), Medical Centre Alkmaar, Wilhelminalaan 12, 1815 JD, Alkmaar, The Netherlands
| | - Egbert Jan M Verleisdonk
- Department of Surgery, Diakonessenhuis Utrecht/Zeist/Doorn, Bosboomstraat 1, 3582 KE, Utrecht, The Netherlands.
| | - Dirk Jan Veeger
- MOVE Research Institute, Department of Human Movement Sciences, Vrije Universiteit, Amsterdam, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
| | - Olivier A van der Meijden
- Department of Surgery, Diakonessenhuis Utrecht/Zeist/Doorn, Bosboomstraat 1, 3582 KE, Utrecht, The Netherlands; Department of Orthopaedic Surgery/Centre for Orthopaedic Research Alkmaar (CORAL), Medical Centre Alkmaar, Wilhelminalaan 12, 1815 JD, Alkmaar, The Netherlands
| |
Collapse
|
3
|
Pendergast M, Rusovici R. A finite element parametric study of clavicle fixation plates. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2015; 31:e02710. [PMID: 25641811 DOI: 10.1002/cnm.2710] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 12/01/2014] [Accepted: 12/25/2014] [Indexed: 06/04/2023]
Abstract
A finite element simulation on a fracture fixated clavicle was performed to study the effects of different fracture fixation parameters on the callus region. Specifically, parameters such as plate material, thickness, plate/bone gap, screw length, and locking vs. non-locking screws were explored. Plate thickness and locking vs. non-locking screws were found to be influential to construct stiffness where plate/bone gap and number of screws were not as sensitive.
Collapse
Affiliation(s)
- Megan Pendergast
- Florida Institute of Technology, Mechanical and Aerospace Engineering, 150 W. University Blvd, Melbourne, FL, 32901, USA
| | - Razvan Rusovici
- Florida Institute of Technology, Mechanical and Aerospace Engineering, 150 W. University Blvd, Melbourne, FL, 32901, USA
| |
Collapse
|
4
|
Marie C. Strength analysis of clavicle fracture fixation devices and fixation techniques using finite element analysis with musculoskeletal force input. Med Biol Eng Comput 2015; 53:759-69. [PMID: 25850983 DOI: 10.1007/s11517-015-1288-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 03/26/2015] [Indexed: 11/27/2022]
Abstract
In the cases, when clavicle fractures are treated with a fixation plate, opinions are divided about the best position of the plate, type of plate and type of screw units. Results from biomechanical studies of clavicle fixation devices are contradictory, probably partly because of simplified and varying load cases used in different studies. The anatomy of the shoulder region is complex, which makes it difficult and expensive to perform realistic experimental tests; hence, reliable simulation is an important complement to experimental tests. In this study, a method for finite element simulations of stresses in the clavicle plate and bone is used, in which muscle and ligament force data are imported from a multibody musculoskeletal model. The stress distribution in two different commercial plates, superior and anterior plating position and fixation including using a lag screw in the fracture gap or not, was compared. Looking at the clavicle fixation from a mechanical point of view, the results indicate that it is a major benefit to use a lag screw to fixate the fracture. The anterior plating position resulted in lower stresses in the plate, and the anatomically shaped plate is more stress resistant and stable than a regular reconstruction plate.
Collapse
Affiliation(s)
- Cronskär Marie
- Department of Quality, Mechanics and Mathematics, Mid Sweden University, Akademigatan 1, 831 25, Östersund, Sweden,
| |
Collapse
|
5
|
Perz R, Toczyski J, Subit D. Variation in the human ribs geometrical properties and mechanical response based on X-ray computed tomography images resolution. J Mech Behav Biomed Mater 2015; 41:292-301. [DOI: 10.1016/j.jmbbm.2014.07.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 07/28/2014] [Accepted: 07/30/2014] [Indexed: 11/24/2022]
|
6
|
Zhang Q, Kindig M, Li Z, Crandall JR, Kerrigan JR. Development of structural and material clavicle response corridors under axial compression and three point bending loading for clavicle finite element model validation. J Biomech 2014; 47:2563-70. [PMID: 24975696 DOI: 10.1016/j.jbiomech.2014.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 05/27/2014] [Accepted: 06/04/2014] [Indexed: 11/30/2022]
Abstract
Clavicle injuries were frequently observed in automotive side and frontal crashes. Finite element (FE) models have been developed to understand the injury mechanism, although no clavicle loading response corridors yet exist in the literature to ensure the model response biofidelity. Moreover, the typically developed structural level (e.g., force-deflection) response corridors were shown to be insufficient for verifying the injury prediction capacity of FE model, which usually is based on strain related injury criteria. Therefore, the purpose of this study is to develop both the structural (force vs deflection) and material level (strain vs force) clavicle response corridors for validating FE models for injury risk modeling. 20 Clavicles were loaded to failure under loading conditions representative of side and frontal crashes respectively, half of which in axial compression, and the other half in three point bending. Both structural and material response corridors were developed for each loading condition. FE model that can accurately predict structural response and strain level provides a more useful tool in injury risk modeling and prediction. The corridor development method in this study could also be extended to develop corridors for other components of the human body.
Collapse
Affiliation(s)
- Qi Zhang
- Center For Applied Biomechanics, University of Virginia, USA.
| | - Matthew Kindig
- Center For Applied Biomechanics, University of Virginia, USA
| | - Zuoping Li
- Center For Applied Biomechanics, University of Virginia, USA
| | - Jeff R Crandall
- Center For Applied Biomechanics, University of Virginia, USA
| | | |
Collapse
|
7
|
Bauer JS, Sidorenko I, Mueller D, Baum T, Issever AS, Eckstein F, Rummeny EJ, Link TM, Raeth CW. Prediction of bone strength by μCT and MDCT-based finite-element-models: how much spatial resolution is needed? Eur J Radiol 2013; 83:e36-42. [PMID: 24274992 DOI: 10.1016/j.ejrad.2013.10.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 10/17/2013] [Accepted: 10/22/2013] [Indexed: 10/26/2022]
Abstract
OBJECTIVES Finite-element-models (FEM) are a promising technology to predict bone strength and fracture risk. Usually, the highest spatial resolution technically available is used, but this requires excessive computation time and memory in numerical simulations of large volumes. Thus, FEM were compared at decreasing resolutions with respect to local strain distribution and prediction of failure load to (1) validate MDCT-based FEM and to (2) optimize spatial resolution to save computation time. MATERIALS AND METHODS 20 cylindrical trabecular bone specimens (diameter 12 mm, length 15-20mm) were harvested from elderly formalin-fixed human thoracic spines. All specimens were examined by micro-CT (isotropic resolution 30 μm) and whole-body multi-row-detector computed tomography (MDCT, 250 μm × 250 μm × 500 μm). The resolution of all datasets was lowered in eight steps to ~ 2,000 μm × 2000 μm × 500 μm and FEM were calculated at all resolutions. Failure load was determined by biomechanical testing. Probability density functions of local micro-strains were compared in all datasets and correlations between FEM-based and biomechanically measured failure loads were determined. RESULTS The distribution of local micro-strains was similar for micro-CT and MDCT at comparable resolutions and showed a shift toward higher average values with decreasing resolution, corresponding to the increasing apparent trabecular thickness. Small micro-strains (εeff<0.005) could be calculated down to 250 μm × 250 μm × 500 μm. Biomechanically determined failure load showed significant correlations with all FEM, up to r=0.85 and did not significantly change with lower resolution but decreased with high thresholds, due to loss of trabecular connectivity. CONCLUSION When choosing connectivity-preserving thresholds, both micro-CT- and MDCT-based finite-element-models well predicted failure load and still accurately revealed the distribution of local micro-strains in spatial resolutions, available in vivo (250 μm × 250 μm × 500 μm), that thus seemed to be the optimal compromise between high accuracy and low computation time.
Collapse
Affiliation(s)
- Jan S Bauer
- Department of Radiology, Technische Universität München, Munich, Germany; Department of Radiology, University of California, San Francisco, CA, United States; Max Planck Institute for Extraterrestrial Physics, Garching, Germany.
| | - Irina Sidorenko
- Max Planck Institute for Extraterrestrial Physics, Garching, Germany
| | - Dirk Mueller
- Department of Radiology, Universität Köln, Germany
| | - Thomas Baum
- Department of Radiology, Technische Universität München, Munich, Germany; Department of Radiology, University of California, San Francisco, CA, United States; Max Planck Institute for Extraterrestrial Physics, Garching, Germany
| | - Ahi Sema Issever
- Department of Radiology, University of California, San Francisco, CA, United States; Department of Radiology, Charite, Berlin, Germany
| | - Felix Eckstein
- Institute of Anatomy and Musculoskeletal Research, Paracelsus Medical University, Salzburg, Austria
| | - Ernst J Rummeny
- Department of Radiology, Technische Universität München, Munich, Germany
| | - Thomas M Link
- Department of Radiology, University of California, San Francisco, CA, United States
| | - Christoph W Raeth
- Max Planck Institute for Extraterrestrial Physics, Garching, Germany
| |
Collapse
|
8
|
Cronskär M, Rasmussen J, Tinnsten M. Combined finite element and multibody musculoskeletal investigation of a fractured clavicle with reconstruction plate. Comput Methods Biomech Biomed Engin 2013; 18:740-8. [PMID: 24156391 DOI: 10.1080/10255842.2013.845175] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
This paper addresses the evaluation of clavicle fixation devices, by means of computational models. The aim was to develop a method for comparison of stress distribution in various fixation devices, to determine whether the use of multibody musculoskeletal input in such model is applicable and to report the approach. The focus was on realistic loading and the motivation for the work is that the treatment can be enhanced by a better understanding of the loading of the clavicle and fixation device. The method can be used to confirm the strength of customised plates, for optimisation of new plates and to complement experimental studies. A finite element (FE) mesh of the clavicle geometry was created from computed tomography data and imported into the FE solver where the model was subjected to muscle forces and other boundary conditions from a multibody musculoskeletal model performing a typical activity of daily life. A reconstruction plate and screws were also imported into the model. The combination models returned stresses and displacements of plausible magnitudes in all included parts and the result, upon further development and validation, may serve as a design guideline for improved clavicle fixation.
Collapse
Affiliation(s)
- Marie Cronskär
- a Department of Technology and Sustainable Development , Mid Sweden University , 83125 Östersund , Sweden
| | | | | |
Collapse
|
9
|
Li Z, Kindig MW, Kerrigan JR, Kent RW, Crandall JR. Development and validation of a subject-specific finite element model of a human clavicle. Comput Methods Biomech Biomed Engin 2013; 16:819-29. [DOI: 10.1080/10255842.2011.641122] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
10
|
Li Z, Kindig MW, Subit D, Kent RW. Influence of mesh density, cortical thickness and material properties on human rib fracture prediction. Med Eng Phys 2010; 32:998-1008. [DOI: 10.1016/j.medengphy.2010.06.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 06/28/2010] [Accepted: 06/29/2010] [Indexed: 10/19/2022]
|