1
|
Kouri MA, Spyratou E, Kalkou ME, Patatoukas G, Angelopoulou E, Tremi I, Havaki S, Gorgoulis VG, Kouloulias V, Platoni K, Efstathopoulos EP. Nanoparticle-Mediated Radiotherapy: Unraveling Dose Enhancement and Apoptotic Responses in Cancer and Normal Cell Lines. Biomolecules 2023; 13:1720. [PMID: 38136591 PMCID: PMC10742116 DOI: 10.3390/biom13121720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Cervical cancer remains a pressing global health concern, necessitating advanced therapeutic strategies. Radiotherapy, a fundamental treatment modality, has faced challenges such as targeted dose deposition and radiation exposure to healthy tissues, limiting optimal outcomes. To address these hurdles, nanomaterials, specifically gold nanoparticles (AuNPs), have emerged as a promising avenue. This study delves into the realm of cervical cancer radiotherapy through the meticulous exploration of AuNPs' impact. Utilizing ex vivo experiments involving cell lines, this research dissected intricate radiobiological interactions. Detailed scrutiny of cell survival curves, dose enhancement factors (DEFs), and apoptosis in both cancer and normal cervical cells revealed profound insights. The outcomes showcased the substantial enhancement of radiation responses in cancer cells following AuNP treatment, resulting in heightened cell death and apoptotic levels. Significantly, the most pronounced effects were observed 24 h post-irradiation, emphasizing the pivotal role of timing in AuNPs' efficacy. Importantly, AuNPs exhibited targeted precision, selectively impacting cancer cells while preserving normal cells. This study illuminates the potential of AuNPs as potent radiosensitizers in cervical cancer therapy, offering a tailored and efficient approach. Through meticulous ex vivo experimentation, this research expands our comprehension of the complex dynamics between AuNPs and cells, laying the foundation for their optimized clinical utilization.
Collapse
Affiliation(s)
- Maria Anthi Kouri
- 2nd Department of Radiology, Medical School, Attikon University Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.A.K.); (E.S.); (G.P.); (V.K.); (K.P.)
- Medical Physics Program, Department of Physics and Applied Physics, Kennedy College of Sciences, University of Massachusetts Lowell, 265 Riverside St., Lowell, MA 01854, USA
| | - Ellas Spyratou
- 2nd Department of Radiology, Medical School, Attikon University Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.A.K.); (E.S.); (G.P.); (V.K.); (K.P.)
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Iroon Polytechniou 9, 15780 Athens, Greece
| | - Maria-Eleni Kalkou
- Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece;
| | - Georgios Patatoukas
- 2nd Department of Radiology, Medical School, Attikon University Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.A.K.); (E.S.); (G.P.); (V.K.); (K.P.)
| | - Evangelia Angelopoulou
- 2nd Department of Pathology, School of Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Ioanna Tremi
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.T.); (S.H.); (V.G.G.)
| | - Sophia Havaki
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.T.); (S.H.); (V.G.G.)
| | - Vassilis G. Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.T.); (S.H.); (V.G.G.)
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
- Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M20 4GJ, UK
- Faculty of Health and Medical Sciences, University of Surrey, Surrey GU2 7YH, UK
| | - Vassilis Kouloulias
- 2nd Department of Radiology, Medical School, Attikon University Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.A.K.); (E.S.); (G.P.); (V.K.); (K.P.)
| | - Kalliopi Platoni
- 2nd Department of Radiology, Medical School, Attikon University Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.A.K.); (E.S.); (G.P.); (V.K.); (K.P.)
| | - Efstathios P. Efstathopoulos
- 2nd Department of Radiology, Medical School, Attikon University Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.A.K.); (E.S.); (G.P.); (V.K.); (K.P.)
| |
Collapse
|
2
|
Ackermans LL, Rabou J, Basrai M, Schweinlin A, Bischoff S, Cussenot O, Cancel-Tassin G, Renken R, Gómez E, Sánchez-González P, Rainoldi A, Boccia G, Reisinger K, Ten Bosch JA, Blokhuis TJ. Screening, Diagnosis and Monitoring of Sarcopenia: when to use which tool? Clin Nutr ESPEN 2022; 48:36-44. [DOI: 10.1016/j.clnesp.2022.01.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 11/18/2021] [Accepted: 01/23/2022] [Indexed: 10/19/2022]
|
3
|
Golmohammadi R, Darvishi E, Shafiee Motlagh M, Faradmal J, Aliabadi M, Rodrigues MA. Prediction of occupational exposure limits for noise-induced non-auditory effects. APPLIED ERGONOMICS 2022; 99:103641. [PMID: 34768225 DOI: 10.1016/j.apergo.2021.103641] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 09/25/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
There is a recent trend to place more emphasis on noise non-auditory effects. Despite its implications on health, there is a lack of recommendations for noise in occupational settings. This study aimed to present occupational exposure limits for noise-induced non-auditory effects in healthy males using empirical exposure-response regression models based on the data of laboratory and field considering the effective variables. To this end, the equivalent noise level was measured and recorded in four working settings including closed offices, open-plan offices, control rooms, and industrial workplaces during a normal working day. They were 65, 68, 73, and 80dB(A), respectively. In the laboratory, 31 healthy males were exposed to five noise conditions (four noisy conditions and one quiet) during 8 h and they were asked to perform the cognitive tests. In the field phase, 124 healthy males were also examined from four working settings in their workstations for 8 h. The psychophysiological parameters of the participants were recorded in both lab and field. The results indicated variations in mental responses at levels above 55dBA, and psychophysiological variations at levels above 70dB(A) in both phases. The findings also showed that the developed regression models could plausibly predict the noise-induced psychophysiological responses during exposure to noise levels; thus, they can be presented the likely exposure limits. Based on the results of the models, the levels <55dB(A) are likelihood of the acoustic comfort limit, and the levels ranged from 55 to 65dB(A) are the acoustic safe limits. The acoustic caution limit is the likelihood of the levels ranged from 65 to 75dB(A). The levels ranged from 75 to 80dB(A) are likely the action levels or control limits, and the occupational exposure limit are the probability of levels> 80dB(A).
Collapse
Affiliation(s)
- Rostam Golmohammadi
- Center of Excellence for Occupational Health, School of Public Health and Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ebrahim Darvishi
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Masoud Shafiee Motlagh
- Center of Excellence for Occupational Health, Occupational Health and Safety Research Center, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Javad Faradmal
- Modeling of Non-Communicable Diseases Research Center & Department of Biostatistics and Epidemiology, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohsen Aliabadi
- Center of Excellence for Occupational Health, Occupational Health and Safety Research Center, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Matilde A Rodrigues
- Department of Environmental Health, Health and Environment Research Center, School of Health, Polytechnic Institute of Porto, Portugal
| |
Collapse
|
4
|
Shuryak I, Brenner DJ. REVIEW OF QUANTITATIVE MECHANISTIC MODELS OF RADIATION-INDUCED NON-TARGETED EFFECTS (NTE). RADIATION PROTECTION DOSIMETRY 2020; 192:236-252. [PMID: 33395702 PMCID: PMC7840098 DOI: 10.1093/rpd/ncaa207] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 10/15/2020] [Accepted: 11/23/2020] [Indexed: 05/03/2023]
Abstract
Quantitative mechanistic modeling of the biological effects of ionizing radiation has a long rich history. Initially, it was dominated by target theory, which quantifies damage caused by traversal of cellular targets like DNA by ionizing tracks. The discovery that mutagenesis, death and/or altered behavior sometimes occur in cells that were not themselves traversed by any radiation tracks but merely interacted with traversed cells was initially seen as surprising. As more evidence of such 'non-targeted' or 'bystander' effects accumulated, the importance of their contribution to radiation-induced damage became more recognized. Understanding and modeling these processes is important for quantifying and predicting radiation-induced health risks. Here we review the variety of mechanistic mathematical models of nontargeted effects that emerged over the past 2-3 decades. This review is not intended to be exhaustive, but focuses on the main assumptions and approaches shared or distinct between models, and on identifying areas for future research.
Collapse
Affiliation(s)
- Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, 630W 168th street, New York, NY 10032, USA
| | | |
Collapse
|
5
|
Ghazali L, Mohd Yusof MYP, Norman NH. Effects of scanning parameters reduction in dental radiographs on image quality and diagnostic performance: A randomised controlled trial. J Orthod 2020; 48:5-12. [PMID: 33200660 DOI: 10.1177/1465312520971641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVES To investigate the effect of reducing scanning parameters of digital dental panoramic tomogram (DPT) and lateral cephalometric (LC) radiographs on quality and diagnostic performance of the images. DESIGN Single-centre prospective two-arm parallel randomised controlled trial. SETTING Orthodontic Clinic, Faculty of Dentistry, Universiti Teknologi MARA, Selangor, Malaysia. PARTICIPANTS Adult orthodontic patients aged 18-35 years, indicated for DPT and LC, who were fit and healthy with a body mass index of 18.5-25.0, not contraindicated to radiographic examination, not pregnant, and did not have a history of facial or skeletal abnormalities or bone diseases were included. METHODS Thirty-eight adult orthodontic patients were randomised into control and intervention groups. DPT and LC radiographs in the control group were obtained using standard scanning parameters as prescribed by the manufacturer using Orthopantomograph® OP300 by Instrumentarium. Scanning parameters in the intervention group were reduced by 60% for DPT (60 kV, 3.2 mA) and 30% for LC (85 kV, 8 mA). A five-point rating scale was used for the assessment of image quality. Images were evaluated for diagnostic performance by detection of anatomical landmarks. Mann-Whitney test was performed to compare the quality and diagnostic performance of the images and the observer agreement was assessed using the intraclass correlation coefficient (ICC). RESULTS For image quality, the control group produced slightly lower median scores (DPT 2.0, LC 2.0) compared to the intervention group (DPT 2.0, LC 3.0). For diagnostic performance, both groups showed similar median scores (DPT 21.0, LC 32.0). The differences between control and intervention groups for both modalities were not statistically significant. The average scores for intra-observer agreement were excellent (ICC 0.917) and inter-observer agreement was good (ICC 0.822). CONCLUSION Minimising radiation exposure by reducing scanning parameters on digital DPT by 60% and LC by 30% on Intsrumentarium 300 OP did not affect the quality and diagnostic performance of the images. Thus, scanning parameters on digital DPT and LC should be reduced when taking radiographs.
Collapse
Affiliation(s)
- Liyana Ghazali
- Centre for Paediatric Dentistry and Orthodontic Studies, Faculty of Dentistry, Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
| | - Mohd Yusmiaidil Putera Mohd Yusof
- Centre for Oral and Maxillofacial Diagnostics and Medicine Studies, Faculty of Dentistry, Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
| | - Noraina Hafizan Norman
- Centre for Paediatric Dentistry and Orthodontic Studies, Faculty of Dentistry, Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
| |
Collapse
|
6
|
Bovine somatic cell nuclear transfer using mitomycin C-mediated chemical oocyte enucleation. ZYGOTE 2019; 27:137-142. [PMID: 31036094 DOI: 10.1017/s0967199419000029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
SummaryChemical oocyte enucleation holds the potential to ease somatic cell nuclear transfer (SCNT), although high enucleation rates remain limited to micromanipulation-based approaches. Therefore, this study aimed to test mitomycin C (MMC) for use in bovine functional chemical oocyte enucleation. Incubation of denuded eggs in 10 µg ml-1 MMC for different periods did not affect most maturation rates (0.5 h: 85.78%A, 1.0 h: 72.77%B, 1.5 h: 83.87%A, and 2.0 h: 82.05%A) in comparison with non-treated controls (CTL; 85.77%A). Parthenogenetic development arrest by MMC was efficient at cleavage (CTL: 72.93%A, 0.5 h: 64.92%A,B, 1.0 h: 60.39%B,C, 1.5 h: 66.35%A,B, and 2.0 h: 53.84%C) and blastocyst stages (CTL: 33.94%A, 0.5 h: 7.58%B, 1.0 h: 2.47%C, 1.5 h: 0.46%C, and 2.0 h: 0.51%C). Blastocysts were obtained after nuclear transfer (NT) using MMC enucleation [NT(MMC): 4.54%B] but at lower rates than for the SCNT control [NT(CTL): 26.31%A]. The removal of the meiotic spindle after MMC incubation fully restored SCNT blastocyst development [NT(MMC+SR): 24.74%A]. Early pregnancies were obtained by the transfer of NT(MMC) and NT(MMC+SR) blastocysts to synchronized recipients. In conclusion, MMC leads to functional chemical oocyte enucleation during SCNT and further suggests its potential for application towards technical improvements.
Collapse
|
7
|
Rahman A, Munther D, Fazil A, Smith B, Wu J. Advancing risk assessment: mechanistic dose-response modelling of Listeria monocytogenes infection in human populations. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180343. [PMID: 30225020 PMCID: PMC6124125 DOI: 10.1098/rsos.180343] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/25/2018] [Indexed: 05/16/2023]
Abstract
The utility of characterizing the effects of strain variation and individual/subgroup susceptibility on dose-response outcomes has motivated the search for new approaches beyond the popular use of the exponential dose-response model for listeriosis. While descriptive models can account for such variation, they have limited power to extrapolate beyond the details of particular outbreaks. By contrast, this study exhibits dose-response relationships from a mechanistic basis, quantifying key biological factors involved in pathogen-host dynamics. An efficient computational algorithm and geometric interpretation of the infection pathway are developed to connect dose-response relationships with the underlying bistable dynamics of the model. Relying on in vitro experiments as well as outbreak data, we estimate plausible parameters for the human context. Despite the presence of uncertainty in such parameters, sensitivity analysis reveals that the host response is most influenced by the pathogen-immune system interaction. In particular, we show how variation in this interaction across a subgroup of the population dictates the shape of dose-response curves. Finally, in terms of future experimentation, our model results provide guidelines and highlight vital aspects of the interplay between immune cells and particular strains of Listeria monocytogenes that should be examined.
Collapse
Affiliation(s)
- Ashrafur Rahman
- Laboratory for Industrial and Applied Mathematics, Centre for Disease Modelling, Department of Mathematics and Statistics, York University, Toronto, Ontario, CanadaM3J 1P3
| | - Daniel Munther
- Department of Mathematics, Cleveland State University, Cleveland, OH 44115, USA
| | - Aamir Fazil
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario, CanadaN1G 5B2
| | - Ben Smith
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario, CanadaN1G 5B2
| | - Jianhong Wu
- Laboratory for Industrial and Applied Mathematics, Centre for Disease Modelling, Department of Mathematics and Statistics, York University, Toronto, Ontario, CanadaM3J 1P3
| |
Collapse
|
8
|
Mortazavi SMJ. Comments on "Incidence of cancer among licensed commercial pilots flying North Atlantic routes". Environ Health 2017; 16:125. [PMID: 29149894 PMCID: PMC5693704 DOI: 10.1186/s12940-017-0333-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/01/2017] [Indexed: 06/07/2023]
Abstract
Gudmundsdottir et al. in their paper entitled "Incidence of cancer among licensed commercial pilots flying North Atlantic routes" published in Environmental Health have evaluated the effects of exposure to higher levels of cosmic radiation on cancer incidence in the pilots of commercial flights. Despite its remarkable strengths, the paper authored by Gudmundsdottir et al. has some shortcomings. The shortcomings of this paper such as not determining the shape of dose-response relationship for radiation-induced cancers, limitations in flight dose calculations, the weaknesses of CARI-6 as the program used by Gudmundsdottir et al. to estimate the effective dose of galactic cosmic rays, and the problems associated with unpredictable nature of the magnitude and duration of solar particle events are discussed.
Collapse
Affiliation(s)
- S M J Mortazavi
- Diagnostic Imaging Center, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA.
| |
Collapse
|
9
|
Emerging targets for radioprotection and radiosensitization in radiotherapy. Tumour Biol 2016; 37:11589-11609. [DOI: 10.1007/s13277-016-5117-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 06/09/2016] [Indexed: 01/12/2023] Open
|
10
|
Mutations of the human interferon alpha-2b (hIFN-α2b) gene in occupationally protracted low dose radiation exposed personnel. Cytokine 2015; 73:181-9. [DOI: 10.1016/j.cyto.2015.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 02/07/2015] [Accepted: 02/09/2015] [Indexed: 12/11/2022]
|
11
|
Mortazavi SMJ, Motamedifar M, Namdari G, Taheri M, Mortazavi AR, Shokrpour N. Non-linear adaptive phenomena which decrease the risk of infection after pre-exposure to radiofrequency radiation. Dose Response 2013; 12:233-45. [PMID: 24910582 DOI: 10.2203/dose-response.12-055.mortazavi] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Substantial evidence indicates that adaptive response induced by low doses of ionizing radiation can result in resistance to the damage caused by a subsequently high-dose radiation or cause cross-resistance to other non-radiation stressors. Adaptive response contradicts the linear-non-threshold (LNT) dose-response model for ionizing radiation. We have previously reported that exposure of laboratory animals to radiofrequency radiation can induce a survival adaptive response. Furthermore, we have indicated that pre-exposure of mice to radiofrequency radiation emitted by a GSM mobile phone increased their resistance to a subsequent Escherichia coli infection. In this study, the survival rates in animals receiving both adapting (radiofrequency) and challenge dose (bacteria) and the animals receiving only the challenge dose (bacteria) were 56% and 20%, respectively. In this light, our findings contribute to the assumption that radiofrequency-induced adaptive response can be used as an efficient method for decreasing the risk of infection in immunosuppressed irradiated individuals. The implication of this phenomenon in human's long term stay in the space is also discussed.
Collapse
Affiliation(s)
- S M J Mortazavi
- Professor of Medical Physics, Medical Physics Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; ; The Center for Research in Ionizing and Non-Ionizing Radiation, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - M Motamedifar
- Associate Professor of Microbiology, Department of Bacteriology, School of Medicine and Shiraz HIV/Aids Research Center (SHARC), Shiraz University of Medical Sciences, Shiraz, Iran
| | - G Namdari
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - M Taheri
- Lecturer of Microbiology, Laboratory Sciences Department, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - A R Mortazavi
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - N Shokrpour
- Professor, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
12
|
Robertson A, Allen J, Laney R, Curnow A. The cellular and molecular carcinogenic effects of radon exposure: a review. Int J Mol Sci 2013; 14:14024-63. [PMID: 23880854 PMCID: PMC3742230 DOI: 10.3390/ijms140714024] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 06/14/2013] [Accepted: 06/17/2013] [Indexed: 02/06/2023] Open
Abstract
Radon-222 is a naturally occurring radioactive gas that is responsible for approximately half of the human annual background radiation exposure globally. Chronic exposure to radon and its decay products is estimated to be the second leading cause of lung cancer behind smoking, and links to other forms of neoplasms have been postulated. Ionizing radiation emitted during the radioactive decay of radon and its progeny can induce a variety of cytogenetic effects that can be biologically damaging and result in an increased risk of carcinogenesis. Suggested effects produced as a result of alpha particle exposure from radon include mutations, chromosome aberrations, generation of reactive oxygen species, modification of the cell cycle, up or down regulation of cytokines and the increased production of proteins associated with cell-cycle regulation and carcinogenesis. A number of potential biomarkers of exposure, including translocations at codon 249 of TP53 in addition to HPRT mutations, have been suggested although, in conclusion, the evidence for such hotspots is insufficient. There is also substantial evidence of bystander effects, which may provide complications when calculating risk estimates as a result of exposure, particularly at low doses where cellular responses often appear to deviate from the linear, no-threshold hypothesis. At low doses, effects may also be dependent on cellular conditions as opposed to dose. The cellular and molecular carcinogenic effects of radon exposure have been observed to be both numerous and complex and the elevated chronic exposure of man may therefore pose a significant public health risk that may extend beyond the association with lung carcinogenesis.
Collapse
Affiliation(s)
- Aaron Robertson
- Clinical Photobiology, European Centre for Environment and Human Health, University of Exeter Medical School, University of Exeter, Knowledge Spa, Royal Cornwall Hospital, Truro, Cornwall TR1 3HD, UK; E-Mails: (J.A.); (A.C.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +44-1872-256-432; Fax: +44-1872-256-497
| | - James Allen
- Clinical Photobiology, European Centre for Environment and Human Health, University of Exeter Medical School, University of Exeter, Knowledge Spa, Royal Cornwall Hospital, Truro, Cornwall TR1 3HD, UK; E-Mails: (J.A.); (A.C.)
| | - Robin Laney
- Clinical Oncology, Sunrise Centre, Royal Cornwall Hospital, Truro, Cornwall TR1 3LJ, UK; E-Mail:
| | - Alison Curnow
- Clinical Photobiology, European Centre for Environment and Human Health, University of Exeter Medical School, University of Exeter, Knowledge Spa, Royal Cornwall Hospital, Truro, Cornwall TR1 3HD, UK; E-Mails: (J.A.); (A.C.)
| |
Collapse
|
13
|
Scott BR. Low-dose-radiation stimulated natural chemical and biological protection against lung cancer. Dose Response 2008; 6:299-318. [PMID: 18846259 DOI: 10.2203/dose-response.07-025.scott] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Research is being conducted world-wide related to chemoprevention of future lung cancer among smokers. The fact that low doses and dose rates of some sparsely ionizing forms of radiation (e.g., x rays, gamma rays, and beta radiation) stimulate transient natural chemical and biological protection against cancer in high-risk individuals is little known. The cancer preventative properties relate to radiation adaptive response (radiation hormesis) and involve stimulated protective biological signaling (a mild stress response). The biological processes associated with the protective signaling are now better understood and include: increased availability of efficient DNA double-strand break repair (p53-related and in competition with normal apoptosis), stimulated auxiliary apoptosis of aberrant cells (presumed p53-independent), and stimulated protective immune functions. This system of low-dose radiation activated natural protection (ANP) requires an individual-specific threshold level of mild stress and when invoked can efficiently prevent the occurrence of cancers as well as other genomic-instability-associated diseases. In this paper, low, essentially harmless doses of gamma rays spread over an extended period are shown via use of a biological-based, hormetic relative risk (HRR) model to be highly efficient in preventing lung cancer induction by alpha radiation from inhaled plutonium.
Collapse
Affiliation(s)
- B R Scott
- Lovelace Respiratory Research Institute, 2425 Ridgecrest Drive SE, Albuquerque, NM 87108, USA.
| |
Collapse
|
14
|
Bauer G. Low dose radiation and intercellular induction of apoptosis: potential implications for the control of oncogenesis. Int J Radiat Biol 2008; 83:873-88. [PMID: 18058371 DOI: 10.1080/09553000701727523] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE This review is focused on the potential impact of low dose radiation effects on intercellular induction of apoptosis and the underlying reactive-oxygen species (ROS)-mediated signaling pathways. RESULTS Transformed cells are subject to ROS-mediated apoptosis induction by non-transformed cells ('intercellular induction of apoptosis') and by ROS-mediated autocrine self-destruction. Sensitivity to intercellular induction of apoptosis and autocrine self-destruction are strictly correlated to the expression of the transformed state. Extracellular superoxide anions generated by transformed target cells drive the selectivity and sensitivity of this signaling system which is based on four different signaling pathways. Low dose irradiation of non-transformed cells enhances intercellular induction of apoptosis in transformed cells. This process is controlled by TGF-beta and seems to depend on the induction of peroxidase release. In addition, low dose radiation enhances superoxide anion generation of transformed target cells. CONCLUSIONS Low dose radiation-triggered enhancement of intercellular induction of apoptosis and autocrine self-destruction might represent a potential control system during carcinogenesis. It might be the underlying mechanism for the well-known inhibitory effect of low dose radiation on detectable transformation events. However, modifications of the complex intercellular ROS-based signaling system may also lead to configurations in which low dose radiation attenuates ROS-mediated apoptosis induction.
Collapse
Affiliation(s)
- Georg Bauer
- Abteilung Virologie, Institut für Medizinische Mikrobiologie und Hygiene, Universität Freiburg, Freiburg, Germany.
| |
Collapse
|
15
|
Schöllnberger H, Mitchel REJ, Redpath JL, Crawford-Brown DJ, Hofmann W. Detrimental and protective bystander effects: a model approach. Radiat Res 2007; 168:614-26. [PMID: 17973556 PMCID: PMC3088356 DOI: 10.1667/rr0742.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Accepted: 07/04/2007] [Indexed: 11/03/2022]
Abstract
This work integrates two important cellular responses to low doses, detrimental bystander effects and apoptosis-mediated protective bystander effects, into a multistage model for chromosome aberrations and in vitro neoplastic transformation: the State-Vector Model. The new models were tested on representative data sets that show supralinear or U-shaped dose responses. The original model without the new low-dose features was also tested for consistency with LNT-shaped dose responses. Reductions of in vitro neoplastic transformation frequencies below the spontaneous level have been reported after exposure of cells to low doses of low-LET radiation. In the current study, this protective effect is explained with bystander-induced apoptosis. An important data set that shows a low-dose detrimental bystander effect for chromosome aberrations was successfully fitted by additional terms within the cell initiation stage. It was found that this approach is equivalent to bystander-induced clonal expansion of initiated cells. This study is an important step toward a comprehensive model that contains all essential biological mechanisms that can influence dose-response curves at low doses.
Collapse
Affiliation(s)
- H Schöllnberger
- Department of Materials Engineering and Physics and Biophysics, University of Salzburg, Salzburg, Austria.
| | | | | | | | | |
Collapse
|
16
|
Abstract
Apoptosis induced in non-hit bystander cells is an important biological mechanism which operates after exposure to low doses of low-LET radiation. This process was implemented into a deterministic multistage model for in vitro neoplastic transformation: the State-Vector Model (SVM). The new model is tested on two data sets that show a reduction of the transformation frequency below the spontaneous level after exposure of the human hybrid cell line CGL1 to low doses of gamma-radiation. Stronger protective effects are visible in the data for delayed plating while the data for immediate plating show more of an LNT-like dose-response curve. It is shown that the model can describe both data sets. The calculation of the time-dependent numerical solution of the model also allows to obtain information about the time-dependence of the protective apoptosis-mediated process after low dose exposures. These findings are compared with experimental observations after high dose exposures.
Collapse
Affiliation(s)
- Helmut Schöllnberger
- Department of Materials Engineering and Physics, Division of Physics and Biophysics, University of Salzburg, Hellbrunnerstrasse 34, Salzburg, Austria.
| | | |
Collapse
|
17
|
Scott BR. Low-dose radiation-induced protective process and implications for risk assessment, cancer prevention, and cancer therapy. Dose Response 2007; 5:131-49. [PMID: 18648600 PMCID: PMC2477691 DOI: 10.2203/dose-response.05-037.scott] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
A low-dose protective apoptosis-mediated (PAM) process is discussed that appears to be turned on by low-dose gamma and X rays but not by low-dose alpha radiation. PAM is a bystander effect that involves cross-talk between genomically compromised [e.g., mutants, neoplastically transformed, micronucleated] cells and nongenomically compromised cells. A novel neoplastic cell transformation model, NEOTRANS(3), is discussed that includes PAM. With NEOTRANS(3), PAM is activated by low doses and inhibited by moderate or high doses and is, therefore, a hormetic process. A low-dose region of suppression of the transformation frequency below the spontaneous frequency relates to the hormetic zone over which PAM is presumed to operate. The magnitude of suppression relates to what is called the hormetic intensity. Both the hormetic intensity and width of the hormetic zone are expected to depend on dose rate, being more pronounced after low dose rates. It is expected that PAM likely had a significant role in the following observations after chronic irradiation: (1) what appears to be a tremendous reduction in the cancer incidence below the spontaneous level for Taiwanese citizens residing for years in cobalt-60 contaminated apartments; and (2) the published reductions in the lung cancer incidence below the spontaneous level in humans after protracted X irradiation and after chronic gamma plus alpha irradiation. Implications of PAM for cancer prevention and low-dose cancer therapy are briefly discussed.
Collapse
Affiliation(s)
- B R Scott
- Lovelace Respiratory Research Institute, Albuquerque, NM, USA.
| |
Collapse
|
18
|
Redpath JL, Elmore E. Radiation-induced neoplastic transformation in vitro, hormesis and risk assessment. Dose Response 2006; 5:123-30. [PMID: 18648601 DOI: 10.2203/dose-response.06-010.redpath] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Dose-response curves for various low-LET radiation sources have consistently been demonstrated to be J-shaped for the cancer-relevant endpoint of neoplastic transformation in vitro. Most of these studies have been performed where the radiation has been delivered at intermediate to high dose-rates (30-3000 mGy/min), where the threshold dose for induction of neoplastic transformation is around 100-200 mGy. Below these doses, the transformation frequency is less than that seen spontaneously, indicative of a hormetic effect. More recently, data have been obtained for low dose rates (<0.5 mGy/min) of low-LET radiation, and again hormetic effects are apparent but with threshold doses now being >1000 mGy. Similar trends have been reported in animal experiments as well as in human epidemiologic studies. Indeed, the relative risks for induction of neoplastic transformation in vitro in the dose range 1 to 1000 mGy agree well with those for incidence of radiation-induced breast cancer and leukemia in humans. These findings support the notion that the endpoint of neoplastic transformation in vitro is a plausible endpoint to not only study mechanisms involved in response to low doses of radiation, but also to provide information of potential importance to risk assessment.
Collapse
Affiliation(s)
- J Leslie Redpath
- Department of Radiation Oncology, University of California Irvine, Irvine, CA, USA.
| | | |
Collapse
|
19
|
Redpath JL. Suppression of neoplastic transformation in vitro by low doses of low LET radiation. Dose Response 2006; 4:302-8. [PMID: 18648592 DOI: 10.2203/dose-response.06-114.redpath] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
A major concern of exposure to low doses of radiation is the risk of cancer induction. Epidemiologic data are rarely powerful enough to accurately discriminate this risk at doses <10 cGy. In order to gain insight into events at these low doses, laboratory-based studies of relevant endpoints are required. One such endpoint is radiation-induced neoplastic transformation in vitro. Such studies can provide quantitative dose-response data, as well as insights into underlying cellular and molecular mechanisms. Data are presented that indicate that low doses of low LET radiation can suppress neoplastic transformation in vitro to levels below those seen spontaneously. Mechanisms involved include both the death of a subpopulation of cells prone to spontaneous neoplastic transformation and the induction of DNA repair. The relative contributions of these mechanisms is dose-dependent. The relevance of these observations to radiation risk estimation is discussed.
Collapse
Affiliation(s)
- J Leslie Redpath
- Department of Radiation Oncology, University of California-Irvine, CA 92697, USA.
| |
Collapse
|
20
|
Zeng G, Day TK, Hooker AM, Blyth BJ, Bhat M, Tilley WD, Sykes PJ. Non-linear chromosomal inversion response in prostate after low dose X-radiation exposure. Mutat Res 2006; 602:65-73. [PMID: 16982072 DOI: 10.1016/j.mrfmmm.2006.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Revised: 06/27/2006] [Accepted: 08/11/2006] [Indexed: 10/24/2022]
Abstract
Somatic intrachromosomal recombination can result in inversions and deletions in DNA, which are important mutations in cancer. The pKZ1 chromosomal inversion assay is a sensitive assay for studying the effects of DNA damaging agents using chromosomal inversion as a mutation end-point. We have previously demonstrated that the chromosomal inversion response in pKZ1 spleen after single low doses of X-radiation exposure does not follow the linear no-threshold dose-response model. Here, we optimised a chromosomal inversion screening method to study the effect of low dose X-radiation exposure in pKZ1 prostatic tissue. In the present study, a significant induction in inversions was observed after ultra-low doses of 0.005-0.01 mGy or after a high dose of 1000 mGy, whereas a reduction in inversions to below the sham-treated frequency was observed between 1 and 10 mGy exposure. This is the first report of a reduction to below endogenous frequency for any mutation end-point in prostate. In addition, the doses of radiation studied were at least three orders of magnitude lower than have been reported in other mutation assays in prostate in vivo or in vitro. In sham-treated pKZ1 controls and in pKZ1 mice treated with low doses of 1-10 mGy the number of inversions/gland cross-section rarely exceeded three. Up to 4 and 7 inversions were observed in individual prostatic gland cross-sections after doses < or =0.02 mGy and after 1000 mGy, respectively. The number of inversions identified in individual cross-sections of prostatic glands of untreated mice and all treated mice other than the 1000 mGy treatment group followed a Poisson distribution. The dose-response curves and fold changes observed after all radiation doses studied were similar in spleen and prostate. These results suggest that the pKZ1 assay is measuring a fundamental response to DNA damage after low dose X-radiation exposure which is independent of tissue type.
Collapse
Affiliation(s)
- Guoxin Zeng
- Department of Haematology and Genetic Pathology, Flinders University and Flinders Medical Centre, Bedford Park, SA, Australia
| | | | | | | | | | | | | |
Collapse
|
21
|
Scott BR. Stochastic thresholds: a novel explanation of nonlinear dose-response relationships for stochastic radiobiological effects. Dose Response 2006; 3:547-67. [PMID: 18648632 DOI: 10.2203/dose-response.003.04.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
New research data for low-dose, low-linear energy transfer (LET) radiation-induced, stochastic effects (mutations and neoplastic transformations) are modeled using the recently published NEOTRANS(3) model. The model incorporates a protective, stochastic threshold (StoThresh) at low doses for activating cooperative protective processes considered to include presumptive p53-dependent, high-fidelity repair of nuclear DNA damage in competition with presumptive p53-dependent apoptosis and a novel presumptive p53-independent protective apoptosis mediated (PAM) process which selectively removes genomically compromised cells (mutants, neoplastic transformants, micronucleated cells, etc.). The protective StoThresh are considered to fall in a relatively narrow low-dose zone (Transition Zone A). Below Transition Zone A is the ultra-low-dose region where it is assumed that only low-fidelity DNA repair is activated along with presumably apoptosis. For this zone there is evidence for an increase in mutations with increases in dose. Just above Transition Zone A, a Zone of Maximal Protection (suppression of stochastic effects) arises and is attributed to maximal cooperation of high-fidelity, DNA repair/apoptosis and the PAM process. The width of the Zone of Maximal Protection depends on low-LET radiation dose rate and appears to depend on photon radiation energy. Just above the Zone of Maximal Protection is Transition Zone B, where deleterious StoThresh for preventing the PAM process fall. Just above Transition Zone B is a zone of moderate doses where complete inhibition of the PAM process appears to occur. However, for both Transition Zone B and the zone of complete inhibition of the PAM process, high-fidelity DNA repair/apoptosis are presumed to still operate. The indicated protective and deleterious StoThresh lead to nonlinear, hormetic-type dose-response relationships for low-LET radiation-induced mutations, neoplastic transformation and, presumably, also for cancer.
Collapse
Affiliation(s)
- Bobby R Scott
- Lovelace Respiratory Research Institute, 2425 Ridgecrest Drive SE, Albuquerque, NM 87108, USA.
| |
Collapse
|
22
|
Schöllnberger H, Stewart RD, Mitchel REJ. Low-LET-induced radioprotective mechanisms within a stochastic two-stage cancer model. Dose Response 2006; 3:508-18. [PMID: 18648628 PMCID: PMC2477198 DOI: 10.2203/dose-response.003.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
A stochastic two-stage cancer model with clonal expansion was used to investigate the potential impact on human lung cancer incidence of some aspects of the hormesis mechanisms suggested by Feinendegen (Health Phys. 52 663-669, 1987). The model was applied to low doses of low-LET radiation delivered at low dose rates. Non-linear responses arise in the model because radiologically induced adaptations in radical scavenging and DNA repair may reduce the biological consequences of DNA damage formed by endogenous processes and ionizing radiation. Sensitivity studies were conducted to identify critical model inputs and to help define the changes in cellular defense mechanisms necessary to produce a lifetime probability for lung cancer that deviates from a linear no-threshold (LNT) type of response. Our studies suggest that lung cancer risk predictions may be very sensitive to the induction of DNA damage by endogenous processes. For doses comparable to background radiation levels, endogenous DNA damage may account for as much as 50 to 80% of the predicted lung cancers. For an additional lifetime dose of 1 Gy from low-LET radiation, endogenous processes may still account for as much as 20% of the predicted cancers (Fig. 2). When both repair and scavengers are considered as inducible, radiation must enhance DNA repair and radical scavenging in excess of 30 to 40% of the baseline values to produce lifetime probabilities for lung cancer outside the range expected for endogenous processes and background radiation.
Collapse
Affiliation(s)
- H Schöllnberger
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.
| | | | | |
Collapse
|
23
|
Brooks AL. Paradigm shifts in radiation biology: their impact on intervention for radiation-induced disease. Radiat Res 2005; 164:454-61. [PMID: 16187749 DOI: 10.1667/rr3324.1] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
New mechanistic cell and molecular studies on the effects of very low doses of radiation have resulted in three major paradigm shifts. First, the observation of bystander effects demonstrated that non-hit cells may respond as well as cells in which energy is deposited. Second, it was thought that gene mutations and chromosome aberrations were the most important early changes that represented the initiation phase of radiation-induced cancer. Now genomic instability that leads to the loss of genetic control appears to play a major role in the development of cancer. Finally, recent studies have demonstrated that radiation-induced changes in gene expression can be demonstrated at very low radiation doses. These changes can result in alterations in response pathways, many of which appear to be involved in protective or adaptive responses. The demonstration that unique genes are up- and down-regulated depending on the radiation type, dose and dose rate suggests that different molecular mechanisms are involved in responses to high and low radiation doses. The ability to alter radiation response by physical and chemical treatments suggests that it may be possible to intervene in the progression of radiation-induced diseases. Such intervention may decrease the cancer risk from radiation exposure. This new research also demonstrates that many nonlinear biological processes have an impact on the induction of cancer and the shape of dose-response functions. Thus, for low-LET radiation delivered at low dose rates, the linear, no-threshold hypothesis is not well supported, but it is adequately conservative in protecting against low-dose radiation risks.
Collapse
Affiliation(s)
- Antone L Brooks
- Washington State University Tri-Cities, Richland, Washington 99352, USA.
| |
Collapse
|
24
|
Elmore E, Lao XY, Ko M, Rightnar S, Nelson G, Redpath J. Neoplastic transformation in vitro induced by low doses of 232 MeV protons. Int J Radiat Biol 2005; 81:291-7. [PMID: 16019938 DOI: 10.1080/09553000500140324] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The aim was to define the dose--response curve for high-energy proton-induced neoplastic transformation in vitro. The HeLa x skin fibroblast human hybrid cell assay was used to determine the frequency of neoplastic transformation following doses of 232 MeV protons (mean linear energy transfer, LET=0.44 keV microm(-1)) in the range 5-600 mGy. Proton irradiations were carried out at the Loma Linda University Proton Treatment Facility, CA, USA. The data indicate no evidence for induction of transformation below a dose of 100 mGy. At doses of 5 and 50 mGy, there is evidence for a possible suppression of transformation frequencies below that for spontaneous transformation. The shape of the dose--response curve for high-energy proton-induced transformation of the human hybrid cell line CGL1 does not follow a linear no-threshold model and shows evidence for a threshold as well as for possible suppression of transformation at doses <100 mGy, similar to that seen for other low-LET radiations.
Collapse
Affiliation(s)
- E Elmore
- Department of Radiation Oncology, University of California, Irvine, CA 92697, USA
| | | | | | | | | | | |
Collapse
|
25
|
Redpath JL. Nonlinear response for neoplastic transformation following low doses of low let radiation. NONLINEARITY IN BIOLOGY, TOXICOLOGY, MEDICINE 2005; 3:113-124. [PMID: 19330158 PMCID: PMC2657837 DOI: 10.2201/nonlin.003.01.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
There are now several independent studies that indicate that the dose-response for the endpoint of radiation-induced neoplastic transformation in vitro is non-linear for low linear energy transfer (LET) radiation. At low doses (<10 cGy) the transformation frequency drops below that seen spontaneously. Importantly, this observation has been made using fluoroscopic energy x-rays, a commonly used modality in diagnostic radiology, the practice of which is responsible for the majority of radiation exposure to the general public. Since the transformation frequency is reduced over a large dose range (0.1 to 10cGy) it is likely that multiple mechanisms are involved and that the relative contribution of these may vary with dose. These include the killing of a subpopulation of cells prone to spontaneous transformation at the lowest doses, and the induction of DNA repair at somewhat higher doses. Protective effects of low doses of low LET radiation on other cancer-relevant endpoints in vitro and in vivo have also been observed by several independent laboratories. These observations strongly suggest that the linear-nonthreshold dose-response model is unlikely to apply to the induction of cancer by low doses of low LET radiation in humans.
Collapse
Affiliation(s)
- J Leslie Redpath
- Department of Radiation Oncology, University of California Irvine, Irvine, CA
| |
Collapse
|
26
|
Okladnikova ND, Scott BR, Tokarskaya ZB, Zhuntova GV, Khokhryakov VF, Syrchikov VA, Grigoryeva ES. Chromosomal aberrations in lymphocytes of peripheral blood among Mayak facility workers who inhaled insoluble forms of 239PU. RADIATION PROTECTION DOSIMETRY 2004; 113:3-13. [PMID: 15585521 DOI: 10.1093/rpd/nch417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A cytogenetic study was performed on 79 plutonium (Pu) workers chronically exposed to alpha radiation from inhaled, low-transportable (insoluble) compounds of airborne 239Pu and to external gamma rays. Body burden estimates for 239Pu ranged from 0 to 15.5 kBq. Chromosomal aberrations (CAs) (stable and unstable) among peripheral blood lymphocytes and cumulative alpha radiation doses were evaluated approximately 25 y after first contact with 239Pu. For the cytogenetic analyses, a standard two-day peripheral blood lymphocyte culture technique was applied. While alpha radiation doses continually increase up to the time of cytogenetic measurements, significant gamma ray exposures essentially ceased long before the time of measurement, so that alpha and gamma doses were not correlated. For the exposed workers, the mean 239Pu body burden (estimate), evaluated at the time of the cytogenetic measurement, was 1.23 +/- 0.26 kBq and the corresponding mean absorbed external gamma ray dose (estimate) to the total body was 0.076 +/- 0.009 Gy. Single and multivariate regression analyses were performed on the CA data. Stable, unstable and total aberrations increased as the 239Pu body burden increased over the range 0-4.5 kBq. However, above this range little additional increase was observed. CAs were weakly correlated with time since the first intake of 239Pu. No relationship between chromatid aberrations and 239Pu incorporation was found. Unstable (but not stable) aberrations were correlated with gamma radiation dose. No significant relationship of CA and smoking was found.
Collapse
Affiliation(s)
- N D Okladnikova
- Southern Urals Biophysics Institute (SUBI), P.O. Box 456780, Ozyorsk, Russia
| | | | | | | | | | | | | |
Collapse
|
27
|
Scott BR. A biological-based model that links genomic instability, bystander effects, and adaptive response. Mutat Res 2004; 568:129-43. [PMID: 15530546 DOI: 10.1016/j.mrfmmm.2004.06.051] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Revised: 05/24/2004] [Accepted: 06/04/2004] [Indexed: 05/01/2023]
Abstract
This paper links genomic instability, bystander effects, and adaptive response in mammalian cell communities via a novel biological-based, dose-response model called NEOTRANS3. The model is an extension of the NEOTRANS2 model that addressed stochastic effects (genomic instability, mutations, and neoplastic transformation) associated with brief exposure to low radiation doses. With both models, ionizing radiation produces DNA damage in cells that can be associated with varying degrees of genomic instability. Cells with persistent problematic instability (PPI) are mutants that arise via misrepair of DNA damage. Progeny of PPI cells also have PPI and can undergo spontaneous neoplastic transformation. Unlike NEOTRANS2, with NEOTRANS3 newly induced mutant PPI cells and their neoplastically transformed progeny can be suppressed via our previously introduced protective apoptosis-mediated (PAM) process, which can be activated by low linear energy transfer (LET) radiation. However, with NEOTRANS3 (which like NEOTRANS2 involves cross-talk between nongenomically compromised [e.g., nontransformed, nonmutants] and genomically compromised [e.g., mutants, transformants, etc.] cells), it is assumed that PAM is only activated over a relatively narrow, dose-rate-dependent interval (D(PAM),D(off)); where D(PAM) is a small stochastic activation threshold, and D(off) is the stochastic dose above which PAM does not occur. PAM cooperates with activated normal DNA repair and with activated normal apoptosis in guarding against genomic instability. Normal repair involves both error-free repair and misrepair components. Normal apoptosis and the error-free component of normal repair protect mammals by preventing the occurrence of mutant cells. PAM selectively removes mutant cells arising via the misrepair component of normal repair, selectively removes existing neoplastically transformed cells, and probably selectively removes other genomically compromised cells when it is activated. PAM likely involves multiple pathways to apoptosis, with the selected pathway depending on the type of cell to be removed, its cellular environment, and on the nature of the genomic damage.
Collapse
Affiliation(s)
- B R Scott
- Lovelace Respiratory Research Institute, 2425 Ridgecrest Drive SE, Albuquerque, NM 87108, USA.
| |
Collapse
|
28
|
Kadhim MA, Moore SR, Goodwin EH. Interrelationships amongst radiation-induced genomic instability, bystander effects, and the adaptive response. Mutat Res 2004; 568:21-32. [PMID: 15530536 DOI: 10.1016/j.mrfmmm.2004.06.043] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2004] [Revised: 06/03/2004] [Accepted: 06/04/2004] [Indexed: 05/01/2023]
Abstract
Over the past two decades, our understanding of radiation biology has undergone a fundamental shift in paradigms away from deterministic "hit-effect" relationships and towards complex ongoing "cellular responses". These responses include now familiar, but still poorly understood, phenomena associated with radiation exposure such as bystander effects, genomic instability, and adaptive responses. All three have been observed at very low doses, and at time points far removed from the initial radiation exposure, and are extremely relevant for linear extrapolation to low doses; the adaptive response is particularly relevant when exposure is spread over a period of time. These are precisely the circumstances that are most relevant to understanding cancer risk associated with environmental and occupational radiation exposures. This review will provide a synthesis of the known, and proposed, interrelationships amongst low-dose cellular responses to radiation. It also will examine the potential importance of non-targeted cellular responses to ionizing radiation in setting acceptable exposure limits especially to low-LET radiations.
Collapse
Affiliation(s)
- Munira A Kadhim
- MRC Radiation and Genome Stability Unit, Harwell, Didcot, Oxfordshire OX110RD, UK.
| | | | | |
Collapse
|
29
|
Ko SJ, Liao XY, Molloi S, Elmore E, Redpath JL. Neoplastic TransformationIn Vitroafter Exposure to Low Doses of Mammographic-Energy X Rays: Quantitative and Mechanistic Aspects. Radiat Res 2004; 162:646-54. [PMID: 15548114 DOI: 10.1667/rr3277] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The induction of neoplastic transformation in vitro after exposure of HeLa x skin fibroblast hybrid cells to low doses of mammography-energy (28 kVp) X rays has been studied. The data indicate no evidence of an increase in transformation frequency over the range 0.05 to 22 cGy, and doses in the range 0.05 to 1.1 cGy may result in suppression of transformation frequencies to levels below that seen spontaneously. This finding is not consistent with a linear, no-threshold dose- response curve. The dose range at which possible suppression is evident includes doses typically experienced in mammographic examination of the human breast. Experiments are described that attempt to elucidate any possible role of bystander effects in modulating this low-dose radiation response. Not unexpectedly, inhibition of gap junction intercellular communication (GJIC) with the inhibitor lindane did not result in any significant alteration of transformation frequencies seen at doses of 0.27 or 5.4 cGy in these subconfluent cultures. Furthermore, no evidence of a bystander effect associated with factors secreted into the extracellular medium was seen in medium transfer experiments. Thus, in this system and under the experimental conditions used, bystander effects would not appear to be playing a major role in modulating the shape of the dose-response curve.
Collapse
Affiliation(s)
- S J Ko
- Department of Radiation Oncology, University of California Irvine, Irvine, California 92697, USA
| | | | | | | | | |
Collapse
|
30
|
Schöllnberger H, Stewart RD, Mitchel REJ, Hofmann W. An examination of radiation hormesis mechanisms using a multistage carcinogenesis model. NONLINEARITY IN BIOLOGY, TOXICOLOGY, MEDICINE 2004; 2:317-52. [PMID: 19330150 PMCID: PMC2657508 DOI: 10.1080/15401420490900263] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
A multistage cancer model that describes the putative rate-limiting steps in carcinogenesis is developed and used to investigate the potential impact on cumulative lung cancer incidence of the hormesis mechanisms suggested by Feinendegen and Pollycove. In the model, radiation and endogenous processes damage the DNA of target cells in the lung. Some fraction of the misrepaired or unrepaired DNA damage induces genomic instability and, ultimately, leads to the accumulation of malignant cells. The model explicitly accounts for cell birth and death processes, the clonal expansion of initiated cells, malignant conversion, and a lag period for tumor formation. Radioprotective mechanisms are incorporated into the model by postulating dose and dose-rate-dependent radical scavenging. The accuracy of DNA damage repair also depends on dose and dose rate. As currently formulated, the model is most applicable to low-linear-energy-transfer (LET) radiation delivered at low dose rates. Sensitivity studies are conducted to identify critical model inputs and to help define the shapes of the cumulative lung cancer incidence curves that may arise when dose and dose-rate-dependent cellular defense mechanisms are incorporated into a multistage cancer model. For lung cancer, both linear no-threshold (LNT-), and non-LNT-shaped responses can be obtained. If experiments demonstrate that the effects of DNA damage repair and radical scavenging are enhanced at least three-fold under low-dose conditions, our studies would support the existence of U-shaped responses. The overall fidelity of the DNA damage repair process may have a large impact on the cumulative incidence of lung cancer. The reported studies also highlight the need to know whether or not (or to what extent) multiply damaged DNA sites are formed by endogenous processes. Model inputs that give rise to U-shaped responses are consistent with an effective cumulative lung cancer incidence threshold that may be as high as 300 mGy (4 mGy per year for 75 years) for low-LET radiation.
Collapse
Affiliation(s)
- H Schöllnberger
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | | | | | | |
Collapse
|
31
|
Scott BR, Walker DM, Walker VE. Low-dose radiation and genotoxic chemicals can protect against stochastic biological effects. NONLINEARITY IN BIOLOGY, TOXICOLOGY, MEDICINE 2004; 2:185-211. [PMID: 19330143 PMCID: PMC2657487 DOI: 10.1080/15401420490507602] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
A protective apoptosis-mediated (PAM) process that is turned on in mammalian cells by low-dose photon (X and gamma) radiation and appears to also be turned on by the genotoxic chemical ethylene oxide is discussed. Because of the PAM process, exposure to low-dose photon radiation (and possibly also some genotoxic chemicals) can lead to a reduction in the risk of stochastic effects such as problematic mutations, neoplastic transformation (an early step in cancer occurrence), and cancer. These findings indicate a need to revise the current low-dose risk assessment paradigm for which risk of cancer is presumed to increase linearly with dose (without a threshold) after exposure to any amount of a genotoxic agent such as ionizing radiation. These findings support a view seldom mentioned in the past, that cancer risk can actually decrease, rather than increase, after exposure to low doses of photon radiation and possibly some other genotoxic agents. The PAM process (a form of natural protection) may contribute substantially to cancer prevention in humans and other mammals. However, new research is needed to improve our understanding of the process. The new research could unlock novel strategies for optimizing cancer prevention and novel protocols for low-dose therapy for cancer. With low-dose cancer therapy, normal tissue could be spared from severe damage while possibly eliminating the cancer.
Collapse
Affiliation(s)
- Bobby R Scott
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | | | | |
Collapse
|
32
|
Walker DM, Seilkop SK, Scott BR, Walker VE. Hprt mutant frequencies in splenic T-cells of male F344 rats exposed by inhalation to propylene. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2004; 43:265-272. [PMID: 15141366 DOI: 10.1002/em.20020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Propylene is a major industrial intermediate and atmospheric pollutant to which humans are exposed by inhalation. In this study, 6-week-old male F344 rates were exposed to 0, 200, 2000, or 10,000 ppm propylene by inhalation for 4 weeks (6 h/day, 5 days/week), and mutant frequencies were determined in the Hprt gene of splenic T-lymphocytes. Twenty milligrams of cyclophosphamide monohydrate (CPP)/kg bw, given on the penultimate day of propylene exposure, was used as a positive control mutagen. Rats (n = 8/group) were necropsied for isolation of T-cells 8 weeks after the last dose, a sampling time that produced peak spleen Hprt mutant frequencies (Mfs) in a preliminary mutant manifestation study using CCP treatment. Hprt Mfs were measured via the T-cell cloning assay, which was performed without knowledge of the animal treatment groups. Mean Hprt Mfs were significantly increased over control values (mean Mf = 5.24 +/- 1.55 (SD) x 10(-6)) in CPP-treated rats (10.37 +/- 4.30 x 10(-6), P = 0.007). However, Hprt Mfs in propylene-exposed rats were not significantly increased over background, with mean Mfs of 4.90 +/- 1.84 x 10(-6) (P = 0.152), 5.05 +/- 3.70 x 10(-6) (P = 0.895), and 5.95 +/- 2.49 x10(-6) (P = 0.500) for animals exposed to 200, 2000, or 10,000 ppm propylene, respectively. No significant increase in F344 rat or B6C3F1 mouse cancer incidence was reported in the National Toxicology Program carcinogenicity studies of propylene across this same exposure range. Taken together, these findings support the conclusion that inhalation exposure of rats to propylene does not cause mutations or cancer.
Collapse
Affiliation(s)
- Dale M Walker
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico, USA
| | | | | | | |
Collapse
|