1
|
Tarish Abdullah RA, Şarkaya K. Interaction of lysozyme with solid supports cryogels containing imidazole functional group. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1251:124405. [PMID: 39662363 DOI: 10.1016/j.jchromb.2024.124405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/08/2024] [Accepted: 11/28/2024] [Indexed: 12/13/2024]
Abstract
This paper details the preparation of acrylamide-based supermacroporous cryogels and their application in removing lysozyme from aqueous solutions. N-Vinyl imidazole was copolymerized with acrylamide as a comonomer to impart pseudo-specificity to the cryogels, forming poly(AAm-VIM) cryogel. Characterization studies to assess the physical and chemical properties of the synthesized cryogels involved swelling tests, Fourier Transform Infrared Spectroscopy (FTIR), elemental analysis, Field Emission Scanning Electron Microscopy (FESEM), and Thermogravimetric Analysis (TGA-DTA). To ascertain the optimal conditions for the adsorption process, pH 9.0 (TRIS buffer) was selected for lysozyme adsorption, using the parametres such as initial concentration screening, ionic strength, temperature, and column flow rate. The Langmuir and Freundlich isotherm models were analyzed to assess the adsorption parameters mathematically. The regression coefficient results indicated that lysozyme adsorption aligned more closely with the Langmuir isotherm model. The adsorption process is considered to be thermodynamically physical and spontaneous. SDS-PAGE analysis assessed the purity of lysozyme isolated from an aqueous solution using a poly(AAm-VIM) cryogel column. The inertness and regeneration capacity of poly(AAm-VIM) cryogel affinity columns were assessed using reusability studies conducted during the adsorption-desorption cycle.
Collapse
Affiliation(s)
| | - Koray Şarkaya
- Department of Chemistry, Faculty of Science, Pamukkale University, Denizli, Turkey.
| |
Collapse
|
2
|
Behrendt F, Gottschaldt M, Schubert US. Surface functionalized cryogels - characterization methods, recent progress in preparation and application. MATERIALS HORIZONS 2024; 11:4600-4637. [PMID: 39021096 DOI: 10.1039/d4mh00315b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Cryogels are polymeric materials with a sponge-like microstructure and have attracted significant attention in recent decades. Research has focused on their composition, fabrication techniques, characterization methods as well as potential or existing fields of applications. The use of functional precursors or functionalizing ligands enables the preparation of cryogels with desired properties such as biocompatibility or responsivity. They can also exhibit adsorptive properties or can be used for catalytical purposes. Although a very brief overview about several functional (macro-)monomers and functionalizing ligands has been provided by previous reviewers for certain cryogel applications, so far there has been no particular focus on the evaluation of the functionalization success and the characterization methods used. This review will provide a comprehensive overview of different characterization methods most recently used for the evaluation of cryogel functionalization. Furthermore, new functional (macro-)monomers and subsequent cryogel functionalization strategies are discussed, based on synthetic polymers, biopolymers and a combination of both. This review highlights the importance of the functionalization aspect in cryogel research in order to produce materials with tailored properties for certain applications.
Collapse
Affiliation(s)
- Florian Behrendt
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Michael Gottschaldt
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Ulrich S Schubert
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
- Abbe Center of Photonics (ACP), Albert-Einstein-Straße 6, 07743 Jena, Germany
| |
Collapse
|
3
|
Salehi Abar E, Vandghanooni S, Torab A, Jaymand M, Eskandani M. A comprehensive review on nanocomposite biomaterials based on gelatin for bone tissue engineering. Int J Biol Macromol 2024; 254:127556. [PMID: 37884249 DOI: 10.1016/j.ijbiomac.2023.127556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/09/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023]
Abstract
The creation of a suitable scaffold is a crucial step in the process of bone tissue engineering (BTE). The scaffold, acting as an artificial extracellular matrix, plays a significant role in determining the fate of cells by affecting their proliferation and differentiation in BTE. Therefore, careful consideration should be given to the fabrication approach and materials used for scaffold preparation. Natural polypeptides such as gelatin and collagen have been widely used for this purpose. The unique properties of nanoparticles, which vary depending on their size, charge, and physicochemical properties, have demonstrated potential in solving various challenges encountered in BTE. Therefore, nanocomposite biomaterials consisting of polymers and nanoparticles have been extensively used for BTE. Gelatin has also been utilized in combination with other nanomaterials to apply for this purpose. Composites of gelatin with various types of nanoparticles are particularly promising for creating scaffolds with superior biological and physicochemical properties. This review explores the use of nanocomposite biomaterials based on gelatin and various types of nanoparticles together for applications in bone tissue engineering.
Collapse
Affiliation(s)
- Elaheh Salehi Abar
- Department of Prosthodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Vandghanooni
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Torab
- Department of Prosthodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Hou SC, Zhang DW, Chen J, Guo XX, Haleem A, He WD. Sulfonated PAM/PPy Cryogels with Lowered Evaporation Enthalpy for Highly Efficient Photothermal Water Evaporation. Polymers (Basel) 2023; 15:polym15092108. [PMID: 37177254 PMCID: PMC10180751 DOI: 10.3390/polym15092108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Because of the increasing scarcity of water resources, the desalination of seawater by photothermal evaporation with harvested solar energy has gradually become a popular research topic. The interconnected macroporous cryogel prepared from polymerization and crosslinking below the freezing temperature of the reactant solution has an excellent performance in photothermal water evaporation after loading photothermal materials. In this study, polyacrylamide (PAM) cryogels were prepared by cryo-polymerization and sulfonated in an alkaline solution containing formaldehyde and Na2SO3. Importantly, the evaporation enthalpy of water in sulfonated PAM cryogel was reduced to 1187 J·g-1 due to the introduction of sulfonate groups into PAM, which was beneficial to increase the photothermal evaporation rate and efficiency. The sulfonated PAM cryogels loaded with polypyrrole and the umbrella-shaped melamine foam substrate were combined to form a photothermal evaporation device, and the evaporation rate was as high as 2.50 kg·m-2·h-1 under one-sun radiation. Meanwhile, the evaporation rate reached 2.09 kg·m-2·h-1 in the 14 wt% high-concentration saline solution, and no salt crystals appeared on the surface of the cryogel after 5 h of photothermal evaporation. Therefore, it was evidenced that the presence of sulfonate groups not only reduced the evaporation enthalpy of water but also prevented salting-out from blocking the water delivery channel during photothermal evaporation, with a sufficiently high evaporation rate, providing a reliable idea of matrix modification for the design of high-efficiency photothermal evaporation materials.
Collapse
Affiliation(s)
- Shi-Chang Hou
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Dao-Wei Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jun Chen
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xiao-Xiao Guo
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Abdul Haleem
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wei-Dong He
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
5
|
Alexandrovskaya YM, Kasianenko EM, Sovetsky AA, Matveyev AL, Zaitsev VY. Spatio-Temporal Dynamics of Diffusion-Associated Deformations of Biological Tissues and Polyacrylamide Gels Observed with Optical Coherence Elastography. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2036. [PMID: 36903151 PMCID: PMC10004177 DOI: 10.3390/ma16052036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
In this work, we use the method of optical coherence elastography (OCE) to enable quantitative, spatially resolved visualization of diffusion-associated deformations in the areas of maximum concentration gradients during diffusion of hyperosmotic substances in cartilaginous tissue and polyacrylamide gels. At high concentration gradients, alternating sign, near-surface deformations in porous moisture-saturated materials are observed in the first minutes of diffusion. For cartilage, the kinetics of osmotic deformations visualized by OCE, as well as the optical transmittance variations caused by the diffusion, were comparatively analyzed for several substances that are often used as optical clearing agents, i.e., glycerol, polypropylene, PEG-400 and iohexol, for which the effective diffusion coefficients were found to be 7.4 ± 1.8, 5.0 ± 0.8, 4.4 ± 0.8 and 4.6 ± 0.9 × 10-6 cm2/s, respectively. For the osmotically induced shrinkage amplitude, the influence of the organic alcohol concentration appears to be more significant than the influence of its molecular weight. The rate and amplitude of osmotically induced shrinkage and dilatation in polyacrylamide gels is found to clearly depend on the degree of their crosslinking. The obtained results show that observation of osmotic strains with the developed OCE technique can be applied for structural characterization of a wide range of porous materials, including biopolymers. In addition, it may be promising for revealing alterations in the diffusivity/permeability of biological tissues that are potentially associated with various diseases.
Collapse
Affiliation(s)
- Yulia M. Alexandrovskaya
- Institute of Applied Physics of the Russian Academy of Sciences, Uljanova St., 46, 603950 Nizhny Novgorod, Russia
- Federal Scientific Research Center “Crystallography and Photonics”, Institute of Photon Technologies, Russian Academy of Sciences, 2 Pionerskaya Street, Troitsk, 108840 Moscow, Russia
| | - Ekaterina M. Kasianenko
- Institute of Applied Physics of the Russian Academy of Sciences, Uljanova St., 46, 603950 Nizhny Novgorod, Russia
- Federal Scientific Research Center “Crystallography and Photonics”, Institute of Photon Technologies, Russian Academy of Sciences, 2 Pionerskaya Street, Troitsk, 108840 Moscow, Russia
| | - Alexander A. Sovetsky
- Institute of Applied Physics of the Russian Academy of Sciences, Uljanova St., 46, 603950 Nizhny Novgorod, Russia
| | - Alexander L. Matveyev
- Institute of Applied Physics of the Russian Academy of Sciences, Uljanova St., 46, 603950 Nizhny Novgorod, Russia
| | - Vladimir Y. Zaitsev
- Institute of Applied Physics of the Russian Academy of Sciences, Uljanova St., 46, 603950 Nizhny Novgorod, Russia
| |
Collapse
|
6
|
Zhu Z, Li J, Ma F, Chen G, Tian H, Li J, Yang P. Poly (polyethylene glycol diacrylate‐
co
‐allyl glycidyl ether) cryogels: Preparation, modification with iminodiacetic acid, and application of Cu(II) removal. J Appl Polym Sci 2023. [DOI: 10.1002/app.53754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- Zhifei Zhu
- School of Environmental Science and Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan People's Republic of China
| | - Junying Li
- School of Chemistry and Chemical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan People's Republic of China
| | - Feng Ma
- School of Environmental Science and Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan People's Republic of China
- School of Chemistry and Chemical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan People's Republic of China
| | - Guangxu Chen
- School of Environmental Science and Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan People's Republic of China
| | - Haoran Tian
- School of Environmental Science and Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan People's Republic of China
| | - Jian Li
- Shandong Analysis and Test Center Qilu University of Technology (Shandong Academy of Sciences) Jinan People's Republic of China
| | - Pengfei Yang
- School of Chemistry and Chemical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan People's Republic of China
| |
Collapse
|
7
|
Foudazi R, Zowada R, Manas-Zloczower I, Feke DL. Porous Hydrogels: Present Challenges and Future Opportunities. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2092-2111. [PMID: 36719086 DOI: 10.1021/acs.langmuir.2c02253] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In this feature article, we critically review the physical properties of porous hydrogels and their production methods. Our main focus is nondense hydrogels that have physical pores besides the space available between adjacent cross-links in the polymer network. After reviewing theories on the kinetics of swelling, equilibrium swelling, the structure-stiffness relationship, and solute diffusion in dense hydrogels, we propose future directions to develop models for porous hydrogels. The aim is to show how porous hydrogels can be designed and produced for studies leading to the modeling of physical properties. Additionally, different methods that are used for making hydrogels with physically incorporated pores are briefly reviewed while discussing the potentials, challenges, and future directions for each method. Among kinetic methods, we discuss bubble generation approaches including reactions, gas injection, phase separation, electrospinning, and freeze-drying. Templating approaches discussed are solid-phase, self-assembled amphiphiles, emulsion, and foam methods.
Collapse
Affiliation(s)
- Reza Foudazi
- School of Chemical, Biological, and Materials Engineering, University of Oklahoma, Norman, Oklahoma73069, United States
| | - Ryan Zowada
- Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, New Mexico88003, United States
| | | | | |
Collapse
|
8
|
Babanejad N, Mfoafo K, Thumma A, Omidi Y, Omidian H. Advances in cryostructures and their applications in biomedical and pharmaceutical products. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04683-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
9
|
Zhang T, Liu C, Zheng H, Han X, Lin H, Cao L, Sui J. The specific biopanning of single-domain antibody against haptens based on a functionalized cryogel. J Mol Recognit 2023; 36:e2999. [PMID: 36225143 DOI: 10.1002/jmr.2999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 12/15/2022]
Abstract
Phage display technology is commonly applied for high-throughput screening of single-domain antibodies (sdAbs), and the problem of non-specific adsorption caused by carrier proteins seriously affects the biopanning of single-domain antibodies specific to haptens. In this paper, enrofloxacin (ENR)-functionalized cryogels were prepared by the ethylenediamine (EDA) and carbodiimide methods for application in the biopanning of ENR-specific phages. To improve the efficiency of biopanning, double blocking, a wash solution flow rate of 1 mL/min, and phage pre-incubation were applied to the biopanning process through single-factor experiments. Results of flat colony counting showed that the phage output of AG-ENR cryogels was 15 times higher than that of AG cryogels for the same input amount. And seven complete sequences of ENR-specific shark sdAbs were obtained by monoclonal phage ELISA and sequence alignment. All these results indicate that functionalized cryogels could be used as a novel and efficient method for phage biopanning for single-domain antibodies to haptens.
Collapse
Affiliation(s)
- Tianjiao Zhang
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Chang Liu
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Hongwei Zheng
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xiangning Han
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Hong Lin
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Limin Cao
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jianxin Sui
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
10
|
Li L, Zhang R, Chen L, Tian X, Li T, Pu B, Ma C, Ji X, Ba F, Xiong C, Shi Y, Mi X, Li J, Keasling JD, Zhang J, Liu Y. Permeability-Engineered Compartmentalization Enables In Vitro Reconstitution of Sustained Synthetic Biology Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203652. [PMID: 36180388 PMCID: PMC9731718 DOI: 10.1002/advs.202203652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/28/2022] [Indexed: 05/11/2023]
Abstract
In nature, biological compartments such as cells rely on dynamically controlled permeability for matter exchange and complex cellular activities. Likewise, the ability to engineer compartment permeability is crucial for in vitro systems to gain sustainability, robustness, and complexity. However, rendering in vitro compartments such a capability is challenging. Here, a facile strategy is presented to build permeability-configurable compartments, and marked advantages of such compartmentalization are shown in reconstituting sustained synthetic biology systems in vitro. Through microfluidics, the strategy produces micrometer-sized layered microgels whose shell layer serves as a sieving structure for biomolecules and particles. In this configuration, the transport of DNAs, proteins, and bacteriophages across the compartments can be controlled an guided by a physical model. Through permeability engineering, a compartmentalized cell-free protein synthesis system sustains multicycle protein production; ≈100 000 compartments are repeatedly used in a five-cycle synthesis, featuring a yield of 2.2 mg mL-1 . Further, the engineered bacteria-enclosing compartments possess near-perfect phage resistance and enhanced environmental fitness. In a complex river silt environment, compartmentalized whole-cell biosensors show maintained activity throughout the 32 h pollutant monitoring. It is anticipated that permeability-engineered compartmentalization should pave the way for practical synthetic biology applications such as green bioproduction, environmental sensing, and bacteria-based therapeutics.
Collapse
Affiliation(s)
- Luyao Li
- School of Physical Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Rong Zhang
- School of Physical Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Long Chen
- School of Physical Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Xintong Tian
- School of Physical Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Ting Li
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesFudan UniversityShanghai200438China
| | - Bingchun Pu
- Department of Immunology and MicrobiologyShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Conghui Ma
- School of Physical Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Xiangyang Ji
- School of Physical Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Fang Ba
- School of Physical Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Chenwei Xiong
- School of Physical Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Yunfeng Shi
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesFudan UniversityShanghai200438China
| | - Xianqiang Mi
- Shanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050China
| | - Jian Li
- School of Physical Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Jay D. Keasling
- Joint BioEnergy InstituteEmeryvilleCA94608USA
- Biological Systems and Engineering DivisionLawrence Berkeley National LaboratoryBerkeleyCA94720USA
- Department of Chemical and Biomolecular Engineering & Department of BioengineeringUniversity of CaliforniaBerkeleyCA94720USA
| | - Jingwei Zhang
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesFudan UniversityShanghai200438China
| | - Yifan Liu
- School of Physical Science and TechnologyShanghaiTech UniversityShanghai201210China
- Shanghai Clinical Research and Trial CenterShanghai201210China
| |
Collapse
|
11
|
Mahala N, Mittal A, Lal M, Dubey US. Isolation and characterization of bioactive lactoferrin from camel milk by novel pH-dependent method for large scale production. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2022; 36:e00765. [PMID: 36188118 PMCID: PMC9519473 DOI: 10.1016/j.btre.2022.e00765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/09/2022] [Accepted: 09/20/2022] [Indexed: 10/27/2022]
Abstract
The present article exemplifies a novel method to isolate highly purified bioactive lactoferrin from camel milk. Cytotoxicity of lactoferrin against the Hela cells was used to evaluate its bioactivity. SDS-PAGE and LC-MS analysis was done for its identification and characterization. The purified camel milk lactoferrin was found to be 708 amino acids in length with a molecular weight of 77.3 kDa and a pI value of 8.24. This pH-dependent isolation procedure ensures the retention of bioactive lactoferrin from camel milk. The importance of the present work lies in its simplicity and scalability for manufacturing bioactive lactoferrin at an industrial level.
Collapse
Affiliation(s)
- Neelam Mahala
- Department of Biological Sciences, Birla Institute of Technology of Science, Pilani (BITS Pilani), Pilani Campus, Rajasthan 333031, India
| | - Aastha Mittal
- Department of Biological Sciences, Birla Institute of Technology of Science, Pilani (BITS Pilani), Pilani Campus, Rajasthan 333031, India
| | - Manohar Lal
- Department of Biological Sciences, Birla Institute of Technology of Science, Pilani (BITS Pilani), Pilani Campus, Rajasthan 333031, India
| | - Uma S. Dubey
- Department of Biological Sciences, Birla Institute of Technology of Science, Pilani (BITS Pilani), Pilani Campus, Rajasthan 333031, India
| |
Collapse
|
12
|
Hajizadeh S, Dicko C, Bülow L. Interaction of haemin with albumin-based macroporous cryogel: Adsorption isotherm and fluorescence quenching studies. Front Bioeng Biotechnol 2022; 10:1072153. [DOI: 10.3389/fbioe.2022.1072153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022] Open
Abstract
Albumin-based cryogels for capturing haemin were synthesised by crosslinking different biomolecules, bovine serum albumin (BSA) and ovalbumin (OVA). The impact of the protein and coupling agent concentrations on cryogel’s mechanical properties, swelling ratios and polymerisation yields, as well as autoclaving as a post-treatment on the cryogel, were studied. We found that BSA (50 mg/ml) and the crosslinker (N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride, 46 mg/ml) formed a cryogel with optimum physical characteristics at a comparatively low protein concentration. The cryogel’s mechanical stability was increased using a double-layer cryogel approach by crosslinking the BSA proteins at subzero temperature inside an acrylamide and hydroxyethyl methacrylate premade cryogels. Batch binding and kinetic adsorption isotherms of haemin on the cryogels were assessed to evaluate their binding capacity toward the porphyrin molecule. The results showed that single-layer cryogels (BSA and OVA) had a higher capacity (∼0.68 mg/ml gel) and higher reaction rate constant towards haemin adsorption than double-layer gels. In contrast, the double-layer cryogels had higher mechanical strength than single-layer gels. The experimental results suggested that the cryogels followed the Freundlich model and the pseudo-second-order isotherm for batch adsorption and kinetics, respectively. The interaction between haemin and the gels was studied by fluorescence quenching. We found between 1.1 and 1.6 binding sites for different cryogels.
Collapse
|
13
|
Highly performant nanocomposite cryogels for multicomponent oily wastewater filtration. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Türkcan C. Development of A New Method For The Synthesis of Macroporous Polymeric Surfaces For Lateral Flow Assay. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
15
|
Hajizadeh S, Kettisen K, Bülow L, Ye L. Rapid Separation of Human Hemoglobin on a Large Scale From Non-clarified Bacterial Cell Homogenates Using Molecularly Imprinted Composite Cryogels. Front Bioeng Biotechnol 2021; 9:671229. [PMID: 34660545 PMCID: PMC8517190 DOI: 10.3389/fbioe.2021.671229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/07/2021] [Indexed: 11/13/2022] Open
Abstract
The production of a macroporous hydrogel column, known as cryogel, has been scaled up (up to 150 mL) in this work for the purification of human hemoglobin from non-clarified bacterial homogenates. Composite cryogels were synthesized in the presence of adult hemoglobin (HbA) to form a molecularly imprinted polymer (MIP)network where the affinity sites for the targeted molecule were placed directly on an acrylamide cryogel by protein imprinting during the cryogelation. The MIP composite cryogel column was first evaluated in a well-defined protein mixture. It showed high selectivity toward HbA in spite of the presence of serum albumin. Also, when examined in complex non-clarified E. coli cell homogenates, the column showed excellent chromatographic behavior. The binding capacity of a 50 mL column was thus found to be 0.88 and 1.2 mg/g, from a protein mixture and non-clarified cell homogenate suspension, respectively. The recovery and purification of the 50 mL column for separation of HbA from cell suspension were evaluated to be 79 and 58%, respectively. The MIP affinity cryogel also displayed binding and selectivity toward fetal Hb (HbF) under the same operational conditions.
Collapse
Affiliation(s)
- Solmaz Hajizadeh
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Lund, Sweden
| | - Karin Kettisen
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Lund, Sweden
| | - Leif Bülow
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Lund, Sweden
| | - Lei Ye
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Lund, Sweden
| |
Collapse
|
16
|
Çimen D, Özbek MA, Bereli N, Mattiasson B, Denizli A. Injectable Cryogels in Biomedicine. Gels 2021; 7:gels7020038. [PMID: 33915687 PMCID: PMC8167568 DOI: 10.3390/gels7020038] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 02/07/2023] Open
Abstract
Cryogels are interconnected macroporous materials that are synthesized from a monomer solution at sub-zero temperatures. Cryogels, which are used in various applications in many research areas, are frequently used in biomedicine applications due to their excellent properties, such as biocompatibility, physical resistance and sensitivity. Cryogels can also be prepared in powder, column, bead, sphere, membrane, monolithic, and injectable forms. In this review, various examples of recent developments in biomedical applications of injectable cryogels, which are currently scarce in the literature, made from synthetic and natural polymers are discussed. In the present review, several biomedical applications of injectable cryogels, such as tissue engineering, drug delivery, therapeutic, therapy, cell transplantation, and immunotherapy, are emphasized. Moreover, it aims to provide a different perspective on the studies to be conducted on injectable cryogels, which are newly emerging trend.
Collapse
Affiliation(s)
- Duygu Çimen
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey; (D.Ç.); (M.A.Ö.); (N.B.)
| | - Merve Asena Özbek
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey; (D.Ç.); (M.A.Ö.); (N.B.)
| | - Nilay Bereli
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey; (D.Ç.); (M.A.Ö.); (N.B.)
| | - Bo Mattiasson
- Department of Biotechnology, Lund University, Box 124, 221 00 Lund, Sweden;
| | - Adil Denizli
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey; (D.Ç.); (M.A.Ö.); (N.B.)
- Correspondence:
| |
Collapse
|
17
|
Yavaşer R, Karagözler AA. Laccase immobilized polyacrylamide-alginate cryogel: A candidate for treatment of effluents. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.11.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
18
|
The potential use of a gyroid structure to represent monolithic matrices for bioseparation purposes: Fluid dynamics and mass transfer analysis via CFD. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Cristina Oliveira Neves I, Aparecida Rodrigues A, Teixeira Valentim T, Cristina Freitas de Oliveira Meira A, Henrique Silva S, Ayra Alcântara Veríssimo L, Vilela de Resende J. Amino acid-based hydrophobic affinity cryogel for protein purification from ora-pro-nobis (Pereskia aculeata Miller) leaves. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1161:122435. [PMID: 33246278 DOI: 10.1016/j.jchromb.2020.122435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/17/2020] [Accepted: 10/30/2020] [Indexed: 11/28/2022]
Abstract
The surfaces of the polyacrylamide cryogels were coated with L-tryptophan (cryogel-Trp) or L-phenylalanine (cryogel-Phe) to enhance crude leaf extract-derived ora-pro-nobis (OPN) protein binding via pseudo-specific hydrophobic interactions. Cryogels functionalized with amino acids were prepared and characterized through morphological, hydrodynamic, and thermal analyses. The adsorption capacities of cryogel-Phe and cryogel-Trp were evaluated in terms of type (sodium sulfate or sodium phosphate) and concentration (0.02 or 0.10 mol∙L-1) of saline solution, pH (4.0, 5.5, or 7.0), and NaCl concentration (0.0 or 0.5 mol∙L-1). The cryogel-Phe presented a higher adsorptive capacity, achieving its maximum value (q = 92.53 mg∙g-1) when the crude OPN crude leaf extract was diluted in sodium sulfate 0.02 mol∙L-1 + NaCl 0.50 mol∙L-1, at pH = 7.0. The dilution rate significantly (p < 0.05) affected the recovered protein amount after the adsorption and elution processes, reaching 94.45% when the feedstock solution was prepared with a crude extract 5 times. The zeta potential for the eluted OPN proteins was 5.76 mV (pH = 3.23) for both dilution rates. The secondary structure composition mainly included β-sheets (46.50%) and α-helices (13.93%). The cryogel-Phe exhibited interconnected pores ranging 20-300 μm in size, with a Young modulus of 1.51 MPa, and thermal degradation started at 230 °C. These results indicate that the cryogel-Phe exhibited satisfactory properties as promising chromatography support for use in high-throughput purification of crude leaf extract-derived OPN proteins.
Collapse
Affiliation(s)
| | | | | | | | - Sérgio Henrique Silva
- Department of Food Science, Federal University of Lavras, Lavras, Minas Gerais 37200-900, Brazil
| | | | - Jaime Vilela de Resende
- Department of Food Science, Federal University of Lavras, Lavras, Minas Gerais 37200-900, Brazil
| |
Collapse
|
20
|
Lozinsky VI. Cryostructuring of Polymeric Systems. 55. Retrospective View on the More than 40 Years of Studies Performed in the A.N.Nesmeyanov Institute of Organoelement Compounds with Respect of the Cryostructuring Processes in Polymeric Systems. Gels 2020; 6:E29. [PMID: 32927850 PMCID: PMC7559272 DOI: 10.3390/gels6030029] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
The processes of cryostructuring in polymeric systems, the techniques of the preparation of diverse cryogels and cryostructurates, the physico-chemical mechanisms of their formation, and the applied potential of these advanced polymer materials are all of high scientific and practical interest in many countries. This review article describes and discusses the results of more than 40 years of studies in this field performed by the researchers from the A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences-one of the key centers, where such investigations are carried out. The review includes brief historical information, the description of the main effects and trends characteristic of the cryostructuring processes, the data on the morphological specifics inherent in the polymeric cryogels and cryostructurates, and examples of their implementation for solving certain applied tasks.
Collapse
Affiliation(s)
- Vladimir I Lozinsky
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia
| |
Collapse
|
21
|
Influence of succinylation of a wide-pore albumin cryogels on their properties, structure, biodegradability, and release dynamics of dioxidine loaded in such spongy carriers. Int J Biol Macromol 2020; 160:583-592. [PMID: 32479937 DOI: 10.1016/j.ijbiomac.2020.05.251] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/14/2020] [Accepted: 05/27/2020] [Indexed: 11/21/2022]
Abstract
The goal of this study was to reveal how the chemical modification, succinylation in this case, of the wide-pore serum-albumin-based cryogels affects on their osmotic characteristics (swelling extent), biodegradability and ability to be loaded with the bactericide substance - dioxidine, as well as on its release. The cryogels were prepared via the cryogenic processing (freezing - frozen storage - thawing) of aqueous solutions containing bovine serum albumin (50 g/L), denaturant (urea or guanidine hydrochloride, 1.0 mol/L) and reductant (cysteine, 0.01 mol/L). Freezing/frozen storage temperatures were either -15, or -20, or -25 °C. After defrosting, spongy cryogels were obtained that possessed the system of interconnected gross pores, whose shape and dimensions were dependent on the freezing temperature and on the type of denaturant introduced in the feed solution. Subsequent succinylation of the resultant cryogels caused the growth of the swelling degree of the pore walls of these spongy materials, resulted in strengthening of their resistance against of trypsinolysis and gave rise to an increase in their loading capacity with respect to dioxidine. With that, the microbiological tests showed a higher bactericidal activity of the dioxidine-loaded sponges based on the succinylated albumin cryogels as compared to that of the drug-carriers based on the non-modified protein sponges.
Collapse
|
22
|
García Schejtman SD, Marzini Irranca S, Alvarez Igarzabal CI, Martinelli M. Redefining the chemistry of super-macroporous materials: when dendritic molecules meet polymer cryogels. Polym Chem 2020. [DOI: 10.1039/d0py00542h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dendritic cryogels modify the functionality and properties against conventional cryogels and improve the Immunoglobulin G (IgG) adsorption.
Collapse
Affiliation(s)
- Sergio D. García Schejtman
- Universidad Nacional de Córdoba
- Facultad de Ciencias Químicas
- Laboratorio de Materiales Poliméricos (LaMaP)
- Córdoba
- Argentina
| | - Santiago Marzini Irranca
- Universidad Nacional de Córdoba
- Facultad de Ciencias Químicas
- Laboratorio de Materiales Poliméricos (LaMaP)
- Córdoba
- Argentina
| | - Cecilia I. Alvarez Igarzabal
- Universidad Nacional de Córdoba
- Facultad de Ciencias Químicas
- Laboratorio de Materiales Poliméricos (LaMaP)
- Córdoba
- Argentina
| | - Marisa Martinelli
- Universidad Nacional de Córdoba
- Facultad de Ciencias Químicas
- Laboratorio de Materiales Poliméricos (LaMaP)
- Córdoba
- Argentina
| |
Collapse
|
23
|
Celik MU, Ekici S. Polyacrylamide-polyaniline composites: the effect of crosslinking on thermal, swelling, porosity, crystallinity, and conductivity properties. Colloid Polym Sci 2019. [DOI: 10.1007/s00396-019-04545-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Effect of two crosslinking methods on the physicochemical and biological properties of the collagen-chitosan scaffolds. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.05.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
Guo F, Wang Y, Chen X, Chen M, He W, Chen Z. Supermacroporous polydivinylbenzene cryogels with high surface area: Synthesis by solvothermal postcrosslinking and their adsorption behaviors for carbon dioxide and aniline. J Appl Polym Sci 2019. [DOI: 10.1002/app.47716] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Fenghao Guo
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical EngineeringUniversity of Jinan Jinan 250022 China
| | - Yinping Wang
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical EngineeringUniversity of Jinan Jinan 250022 China
| | - Xilu Chen
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical EngineeringUniversity of Jinan Jinan 250022 China
| | - Mingqian Chen
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical EngineeringUniversity of Jinan Jinan 250022 China
| | - Wei He
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical EngineeringUniversity of Jinan Jinan 250022 China
| | - Zhiyong Chen
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical EngineeringUniversity of Jinan Jinan 250022 China
| |
Collapse
|
26
|
Wubneh A, Tsekoura EK, Ayranci C, Uludağ H. Current state of fabrication technologies and materials for bone tissue engineering. Acta Biomater 2018; 80:1-30. [PMID: 30248515 DOI: 10.1016/j.actbio.2018.09.031] [Citation(s) in RCA: 308] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 12/15/2022]
Abstract
A range of traditional and free-form fabrication technologies have been investigated and, in numerous occasions, commercialized for use in the field of regenerative tissue engineering (TE). The demand for technologies capable of treating bone defects inherently difficult to repair has been on the rise. This quest, accompanied by the advent of functionally tailored, biocompatible, and biodegradable materials, has garnered an enormous research interest in bone TE. As a result, different materials and fabrication methods have been investigated towards this end, leading to a deeper understanding of the geometrical, mechanical and biological requirements associated with bone scaffolds. As our understanding of the scaffold requirements expands, so do the capability requirements of the fabrication processes. The goal of this review is to provide a broad examination of existing scaffold fabrication processes and highlight future trends in their development. To appreciate the clinical requirements of bone scaffolds, a brief review of the biological process by which bone regenerates itself is presented first. This is followed by a summary and comparisons of commonly used implant techniques to highlight the advantages of TE-based approaches over traditional grafting methods. A detailed discussion on the clinical and mechanical requirements of bone scaffolds then follows. The remainder of the manuscript is dedicated to current scaffold fabrication methods, their unique capabilities and perceived shortcomings. The range of biomaterials employed in each fabrication method is summarized. Selected traditional and non-traditional fabrication methods are discussed with a highlight on their future potential from the authors' perspective. This study is motivated by the rapidly growing demand for effective scaffold fabrication processes capable of economically producing constructs with intricate and precisely controlled internal and external architectures. STATEMENT OF SIGNIFICANCE: The manuscript summarizes the current state of fabrication technologies and materials used for creating scaffolds in bone tissue engineering applications. A comprehensive analysis of different fabrication methods (traditional and free-form) were summarized in this review paper, with emphasis on recent developments in the field. The fabrication techniques suitable for creating scaffolds for tissue engineering was particularly targeted and their use in bone tissue engineering were articulated. Along with the fabrication techniques, we emphasized the choice of materials in these processes. Considering the limitations of each process, we highlighted the materials and the material properties critical in that particular process and provided a brief rational for the choice of the materials. The functional performance for bone tissue engineering are summarized for different fabrication processes and the choice of biomaterials. Finally, we provide a perspective on the future of the field, highlighting the knowledge gaps and promising avenues in pursuit of effective scaffolds for bone tissue engineering. This extensive review of the field will provide research community with a reference source for current approaches to scaffold preparation. We hope to encourage the researchers to generate next generation biomaterials to be used in these fabrication processes. By providing both advantages and disadvantage of each fabrication method in detail, new fabrication techniques might be devised that will overcome the limitations of the current approaches. These studies should facilitate the efforts of researchers interested in generating ideal scaffolds, and should have applications beyond the repair of bone tissue.
Collapse
|
27
|
Lozinsky VI. Cryostructuring of Polymeric Systems. 50. † Cryogels and Cryotropic Gel-Formation: Terms and Definitions. Gels 2018; 4:E77. [PMID: 30674853 PMCID: PMC6209254 DOI: 10.3390/gels4030077] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/31/2018] [Accepted: 09/06/2018] [Indexed: 02/07/2023] Open
Abstract
A variety of cryogenically-structured polymeric materials are of significant scientific and applied interest in various areas. However, in spite of considerable attention to these materials and intensive elaboration of their new examples, as well as the impressive growth in the number of the publications and patents on this topic over the past two decades, a marked variability of the used terminology and definitions is frequently met with in the papers, reviews, theses, patents, conference presentations, advertising materials and so forth. Therefore, the aim of this brief communication is to specify the basic terms and definitions in the particular field of macromolecular science.
Collapse
Affiliation(s)
- Vladimir I Lozinsky
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, 119991 Moscow, Russia.
| |
Collapse
|
28
|
Wang J, Yang H. Superelastic and pH-Responsive Degradable Dendrimer Cryogels Prepared by Cryo-aza-Michael Addition Reaction. Sci Rep 2018; 8:7155. [PMID: 29740011 PMCID: PMC5940921 DOI: 10.1038/s41598-018-25456-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/11/2018] [Indexed: 12/15/2022] Open
Abstract
Dendrimers exhibit super atomistic features by virtue of their well-defined discrete quantized nanoscale structures. Here, we show that hyperbranched amine-terminated polyamidoamine (PAMAM) dendrimer G4.0 reacts with linear polyethylene glycol (PEG) diacrylate (575 g/mol) via the aza-Michael addition reaction at a subzero temperature (-20 °C), namely cryo-aza-Michael addition, to form a macroporous superelastic network, i.e., dendrimer cryogel. Dendrimer cryogels exhibit biologically relevant Young's modulus, high compression elasticity and super resilience at ambient temperature. Furthermore, the dendrimer cryogels exhibit excellent rebound performance and do not show significant stress relaxation under cyclic deformation over a wide temperature range (-80 to 100 °C). The obtained dendrimer cryogels are stable at acidic pH but degrade quickly at physiological pH through self-triggered degradation. Taken together, dendrimer cryogels represent a new class of scaffolds with properties suitable for biomedical applications.
Collapse
Affiliation(s)
- Juan Wang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia, 23219, United States
| | - Hu Yang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia, 23219, United States. .,Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia, 23298, United States. .,Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, 23298, United States.
| |
Collapse
|
29
|
Fontan RDCI, Bonomo RCF, Gonçalves GRF, Minim VPR, Minim LA. Alternatives for characterizing macroporous polyacrylamide monolithic ion exchanger columns. POLYM ENG SCI 2017. [DOI: 10.1002/pen.24771] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | | | | | - Luis Antonio Minim
- Food Technology Department; Federal University of Viçosa; Viçosa MG 36570-000 Brazil
| |
Collapse
|
30
|
Baysal Z, Aksoy E, Dolak İ, Ersöz A, Say R. Adsorption behaviours of lysozyme onto poly-hydroxyethyl methacrylate cryogels containing methacryloyl antipyrine-Ce(III). INT J POLYM MATER PO 2017. [DOI: 10.1080/00914037.2017.1320655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Zübeyde Baysal
- Department of Chemistry, Faculty of Science, Dicle University, Diyarbakir, Turkey
| | - Eyyüp Aksoy
- Department of Chemistry, Faculty of Science, Dicle University, Diyarbakir, Turkey
| | - İbrahim Dolak
- Technical Science, Vocational High School, Dicle University, Diyarbakir, Turkey
| | - Arzu Ersöz
- Department of Chemistry, Faculty of Science, Anadolu University, Eskişehir, Turkey
| | - Rıdvan Say
- Department of Chemistry, Faculty of Science, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
31
|
Yang C, Liu YR, Zhang Y, Wang J, Tian LL, Yan YN, Cao WQ, Wang YY. Depletion of abundant human serum proteins by per se imprinted cryogels based on sample heterogeneity. Proteomics 2017; 17. [DOI: 10.1002/pmic.201600284] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 11/18/2016] [Accepted: 02/21/2017] [Indexed: 02/02/2023]
Affiliation(s)
- Chun Yang
- School of Chemistry & Chemical Engineering; Yangzhou University; Yangzhou Jiangsu Province, P. R. China
| | - Ya-Ru Liu
- School of Chemistry & Chemical Engineering; Yangzhou University; Yangzhou Jiangsu Province, P. R. China
| | - Yan Zhang
- School of Chemistry & Chemical Engineering; Yangzhou University; Yangzhou Jiangsu Province, P. R. China
| | - Jian Wang
- School of Chemistry & Chemical Engineering; Yangzhou University; Yangzhou Jiangsu Province, P. R. China
| | - Li-Li Tian
- School of Chemistry & Chemical Engineering; Yangzhou University; Yangzhou Jiangsu Province, P. R. China
| | - Ya-Nan Yan
- School of Chemistry & Chemical Engineering; Yangzhou University; Yangzhou Jiangsu Province, P. R. China
| | - Wei-Qin Cao
- School of Chemistry & Chemical Engineering; Yangzhou University; Yangzhou Jiangsu Province, P. R. China
| | - Yu-Yang Wang
- Testing Centre, Yangzhou University, P. R.; China
| |
Collapse
|
32
|
Mól PCG, Veríssimo LAA, Eller MR, Minim VPR, Minim LA. Development of an affinity cryogel for one step purification of lysozyme from chicken egg white. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1044-1045:17-23. [DOI: 10.1016/j.jchromb.2016.12.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/22/2016] [Accepted: 12/18/2016] [Indexed: 11/28/2022]
|
33
|
Macroporous acrylamide phantoms improve prediction of in vivo performance of in situ forming implants. J Control Release 2016; 243:225-231. [PMID: 27742445 DOI: 10.1016/j.jconrel.2016.10.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/02/2016] [Accepted: 10/11/2016] [Indexed: 02/06/2023]
Abstract
In situ forming implants (ISFIs) have shown promise as a sustained, local drug delivery system for therapeutics in a variety of applications. However, development of ISFIs has been hindered by poor correlation between in vitro study results and in vivo performance. In contrast to oral dosage forms, there is currently no clear consensus on a standard for in vitro drug dissolution studies for parenteral formulations. Recent studies have suggested that the disparity between in vivo and in vitro behavior of phase-inverting ISFIs may be, in part, due to differences in injection site stiffness. Accordingly, this study aimed to create acrylamide-based hydrogel phantoms of varying porosity and stiffness, which we hypothesized would better predict in vivo performance. Implant microstructure and shape were found to be dependent on the stiffness of the phantoms, while drug release was found to be dependent on both phantom porosity and stiffness. Specifically, SEM analysis revealed that implant porosity and interconnectivity decreased with increasing phantom stiffness and better mimicked the microstructure seen in vivo. Burst release of drug increased from 31% to 43% when in standard acrylamide phantoms vs macroporous phantoms (10kPa), improving the correlation to the burst release seen in vivo. Implants in 30kPa macroporous phantoms had the best correlation with in vivo burst release, significantly improving (p<0.05) the burst release relative to in vivo from 64%, using a standard PBS dissolution method, to 92%. These findings confirm that implant behavior is affected by injection site stiffness. Importantly, with appropriate optimization and validation, hydrogel phantoms such as the one investigated here could be used to improve the in vitro-in vivo correlation of in situ forming implant formulations and potentially augment their advancement to clinical use.
Collapse
|
34
|
Yang C, Zhou XL, Liu YR, Wang J, Tian LL, Zhang Y, Hu XY. Charged groups synergically enhance protein imprinting in amphoteric polyacrylamide cryogels. J Appl Polym Sci 2016. [DOI: 10.1002/app.43851] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Chun Yang
- College of Chemistry & Chemical Engineering; Yangzhou University; Yangzhou Jiangsu China
| | - Xing-Lu Zhou
- College of Chemistry & Chemical Engineering; Yangzhou University; Yangzhou Jiangsu China
| | - Ya-Ru Liu
- College of Chemistry & Chemical Engineering; Yangzhou University; Yangzhou Jiangsu China
| | - Jian Wang
- College of Chemistry & Chemical Engineering; Yangzhou University; Yangzhou Jiangsu China
| | - Li-Li Tian
- College of Chemistry & Chemical Engineering; Yangzhou University; Yangzhou Jiangsu China
| | - Yan Zhang
- College of Chemistry & Chemical Engineering; Yangzhou University; Yangzhou Jiangsu China
| | - Xia-Ya Hu
- College of Chemistry & Chemical Engineering; Yangzhou University; Yangzhou Jiangsu China
| |
Collapse
|
35
|
Oelschlaeger C, Bossler F, Willenbacher N. Synthesis, Structural and Micromechanical Properties of 3D Hyaluronic Acid-Based Cryogel Scaffolds. Biomacromolecules 2016; 17:580-9. [DOI: 10.1021/acs.biomac.5b01529] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- C. Oelschlaeger
- Karlsruhe Institute of Technology (KIT), Institute for Mechanical Process Engineering and Mechanics, 76131 Karlsruhe, Germany
| | - F. Bossler
- Karlsruhe Institute of Technology (KIT), Institute for Mechanical Process Engineering and Mechanics, 76131 Karlsruhe, Germany
| | - N. Willenbacher
- Karlsruhe Institute of Technology (KIT), Institute for Mechanical Process Engineering and Mechanics, 76131 Karlsruhe, Germany
| |
Collapse
|
36
|
Júnior WFDS, Cano R, Totola AH, Carvalho LMD, Cerri MO, Coimbra JSDR, Carvalho GGPD, Carvalho BMAD. Adsorption of immunoglobulin Y in supermacroporous continuous cryogel with immobilized Cu2+ ions. J Chromatogr A 2015; 1395:16-22. [DOI: 10.1016/j.chroma.2015.03.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 03/18/2015] [Accepted: 03/20/2015] [Indexed: 02/01/2023]
|
37
|
Göktürk I, Üzek R, Uzun L, Denizli A. Synthesis of a specific monolithic column with artificial recognition sites for L-glutamic acid via cryo-crosslinking of imprinted nanoparticles. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:1133-40. [PMID: 25749280 DOI: 10.3109/21691401.2015.1011806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In this study, a new molecular imprinting (MIP)-based monolithic cryogel column was prepared using chemically crosslinked molecularly imprinted nanoparticles, to achieve a simplified chromatographic separation (SPE) for a model compound, L-glutamic acid (L-Glu). Cryogelation through crosslinking of imprinted nanoparticles forms stable monolithic cryogel columns. This technique reduces the leakage of nanoparticles and increases the surface area, while protecting the structural features of the cryogel for stable and efficient recognition of the template molecule. A non-imprinted monolithic cryogel column (NIP) was also prepared, using non-imprinted nanoparticles produced without the addition of L-Glu during polymerization. The molecularly imprinted monolithic cryogel column (MIP) indicates apparent recognition selectivity and a good adsorption capacity compared to the NIP. Also, we have achieved a significant increase in the adsorption capacity, using the advantage of high surface area of the nanoparticles.
Collapse
Affiliation(s)
- Ilgım Göktürk
- a Nanomedicine and Nanotechnology Division, Hacettepe University , Ankara , Turkey.,b Department of Chemistry , Hacettepe University , Ankara , Turkey
| | - Recep Üzek
- b Department of Chemistry , Hacettepe University , Ankara , Turkey
| | - Lokman Uzun
- b Department of Chemistry , Hacettepe University , Ankara , Turkey
| | - Adil Denizli
- b Department of Chemistry , Hacettepe University , Ankara , Turkey
| |
Collapse
|
38
|
Perçin I, Khalaf R, Brand B, Morbidelli M, Gezici O. Strong cation-exchange chromatography of proteins on a sulfoalkylated monolithic cryogel. J Chromatogr A 2015; 1386:13-21. [DOI: 10.1016/j.chroma.2015.01.075] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/15/2015] [Accepted: 01/25/2015] [Indexed: 10/24/2022]
|
39
|
Béduer A, Braschler T, Peric O, Fantner GE, Mosser S, Fraering PC, Benchérif S, Mooney DJ, Renaud P. A compressible scaffold for minimally invasive delivery of large intact neuronal networks. Adv Healthc Mater 2015; 4:301-12. [PMID: 25178838 DOI: 10.1002/adhm.201400250] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/31/2014] [Indexed: 12/21/2022]
Abstract
Millimeter to centimeter-sized injectable neural scaffolds based on macroporous cryogels are presented. The polymer-scaffolds are made from alginate and carboxymethyl-cellulose by a novel simple one-pot cryosynthesis. They allow surgical sterility by means of autoclaving, and present native laminin as an attachment motive for neural adhesion and neurite development. They are designed to protect an extended, living neuronal network during compression to a small fraction of the original volume in order to enable minimally invasive delivery. The scaffolds behave as a mechanical meta-material: they are soft at the macroscopic scale, enabling injection through narrow-bore tubing and potentially good cellular scaffold integration in soft target tissues such as the brain. At the same time, the scaffold material has a high local Young modulus, allowing protection of the neuronal network during injection. Based on macroscopic and nanomechanical characterization, the generic geometrical and mechanical design rules are presented, enabling macroporous cellular scaffold injectability.
Collapse
Affiliation(s)
- Amélie Béduer
- STI-IMT-LMIS4, Station 17, EPFL; 1015 Lausanne Switzerland
| | - Thomas Braschler
- STI-IMT-LMIS4, Station 17, EPFL; 1015 Lausanne Switzerland
- School of Engineering and Applied Sciences; Harvard University; 02138 Cambridge MA USA
| | - Oliver Peric
- STI-IBI-LBNI, Station 17, EPFL; 1015 Lausanne Switzerland
| | | | | | | | - Sidi Benchérif
- School of Engineering and Applied Sciences; Harvard University; 02138 Cambridge MA USA
| | - David J. Mooney
- School of Engineering and Applied Sciences; Harvard University; 02138 Cambridge MA USA
| | | |
Collapse
|
40
|
Samanman S, Numnuam A, Limbut W, Kanatharana P, Thavarungkul P. Highly-sensitive label-free electrochemical carcinoembryonic antigen immunosensor based on a novel Au nanoparticles–graphene–chitosan nanocomposite cryogel electrode. Anal Chim Acta 2015; 853:521-532. [DOI: 10.1016/j.aca.2014.10.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/30/2014] [Accepted: 10/06/2014] [Indexed: 01/05/2023]
|
41
|
Larsson E, Boujemaoui A, Malmström E, Carlmark A. Thermoresponsive cryogels reinforced with cellulose nanocrystals. RSC Adv 2015. [DOI: 10.1039/c5ra12603g] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Thermoresponsive cryogels reinforced with cellulose nanocrystals which were either physically entangled or covalently crosslinked into the structure.
Collapse
Affiliation(s)
- E. Larsson
- KTH Royal Institute of Technology
- School of Chemical Science and Engineering
- SE-100 44 Stockholm
- Sweden
| | - A. Boujemaoui
- KTH Royal Institute of Technology
- School of Chemical Science and Engineering
- SE-100 44 Stockholm
- Sweden
| | - E. Malmström
- KTH Royal Institute of Technology
- School of Chemical Science and Engineering
- SE-100 44 Stockholm
- Sweden
| | - A. Carlmark
- KTH Royal Institute of Technology
- School of Chemical Science and Engineering
- SE-100 44 Stockholm
- Sweden
| |
Collapse
|
42
|
Zaborina OE, Gasanov RG, Peregudov AS, Lozinsky VI. Cryostructuring of polymeric systems. 38. The causes of the covalently-crosslinked cryogels formation upon the homopolymerization of N,N-dimethylacrylamide in moderately-frozen aqueous media. Eur Polym J 2014. [DOI: 10.1016/j.eurpolymj.2014.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Carvalho B, Carvalho L, Silva W, Minim L, Soares A, Carvalho G, da Silva S. Direct capture of lactoferrin from cheese whey on supermacroporous column of polyacrylamide cryogel with copper ions. Food Chem 2014; 154:308-14. [DOI: 10.1016/j.foodchem.2014.01.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 11/06/2013] [Accepted: 01/05/2014] [Indexed: 11/29/2022]
|