1
|
Lee T, Mischler SE, Wolfe C. Classification of asbestos and their nonasbestiform analogues using FTIR and multivariate data analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133874. [PMID: 38430588 DOI: 10.1016/j.jhazmat.2024.133874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/08/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
This study presents a possible application of Fourier transform infrared (FTIR) spectrometry and multivariate data analysis, principal component analysis (PCA), and partial least squares-discriminant analysis (PLS-DA) for classifying asbestos and their nonasbestiform analogues. The objectives of the study are: 1) to classify six regulated asbestos types and 2) to classify between asbestos types and their nonasbestiform analogues. The respirable fraction of six regulated asbestos types and their nonasbestiform analogues were prepared in potassium bromide pellets and collected on polyvinyl chloride membrane filters for FTIR measurement. Both PCA and PLS-DA classified asbestos types and their nonasbestiform analogues on the score plots showed a very distinct clustering of samples between the serpentine (chrysotile) and amphibole groups. The PLS-DA model provided ∼95% correct prediction with a single asbestos type in the sample, although it did not provide all correct predictions for all the challenge samples due to their inherent complexity and the limited sample number. Further studies are necessary for a better prediction level in real samples and standardization of sampling and analysis procedures.
Collapse
Affiliation(s)
- Taekhee Lee
- Health Hazards Prevention Branch, Pittsburgh Mining Research Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Pittsburgh, PA 15236, USA.
| | - Steven E Mischler
- Health Hazards Prevention Branch, Pittsburgh Mining Research Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Pittsburgh, PA 15236, USA
| | - Cody Wolfe
- Health Hazards Prevention Branch, Pittsburgh Mining Research Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Pittsburgh, PA 15236, USA
| |
Collapse
|
2
|
Nithya R, Thirunavukkarasu A, Hemavathy RV, Sivashankar R, Kishore KA, Sabarish R. Functionalized nanofibers in gas sorption process: a critical review on the challenges and prospective research. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:969. [PMID: 37466735 DOI: 10.1007/s10661-023-11491-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/10/2023] [Indexed: 07/20/2023]
Abstract
Air pollution has become the most important environmental and human health threat as it is accounting for about 7 million deaths across the globe every year. Particulate matter (PM) derived from the combustion of fossil fuels, biomass, and other agricultural residues pollutes the atmospheric air which affects the quality of the environment and poses a great threat to human health. Ecological imbalance, climatic variation, and cardiovascular and respiratory problems among humans are significant extortions due to PM pollution. Scientific approaches were initiated to limit the levels of PM in the atmospheric air and the use of nanofiber mats has received wide attention as these possess versatile properties including nanoscale-sized pore structure, homogeneity in their size distribution with high specific surface area, and low basis weight. To exploit their filtration potential towards wide classes of pollutants and also to enhance the capturing efficacy, functionalized nanofibers are currently in practice with tailor-made modifications on the surface. The present review provides a comprehensive report on the different fabrication processes of functionalized nanofibers along with the controlling factors affecting the efficacy of the gas separation process. Also, it provides technical insights on the mass transfer aspects of PM filtration by elucidation their mechanism which can provide vital information on the rate-controlling diffusive flux(es). Conclusively, the practical challenges encountered in the large-scale air filtration systems such as filter cleaning, flow-rate regulation, pressure drop, and extent of reusability are discussed, and the review has identified potential gaps in the current research and can be considered for the prospective research in the area of PM separation process.
Collapse
Affiliation(s)
- Rajarathinam Nithya
- Department of Industrial Biotechnology, Government College of Technology, Coimbatore, India
| | | | - R V Hemavathy
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, India
| | - Raja Sivashankar
- Department of Chemical Engineering, National Institute of Technology, Warangal, India
| | - Kola Anand Kishore
- Department of Chemical Engineering, National Institute of Technology, Warangal, India
| | - Radoor Sabarish
- Department of Materials and Production engineering, King Mongkut's University of Technology, North Bangkok, Thailand
| |
Collapse
|
3
|
Lee T, Barone T, Rubinstein E, Mischler S. Asbestos fiber length and width comparison between manual and semi-automated measurements. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2022; 19:370-380. [PMID: 35394902 DOI: 10.1080/15459624.2022.2063878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The objective of the present study is to find a fast and accurate procedure to measure the length and width of asbestos fibers using images acquired by a scanning electron microscope (SEM), a phase-contrast microscope (PCM), and a polarized light microscope (PLM). The accuracy of the procedure was evaluated by comparing fiber length and width measurements to manual measurements. Four different types of images were used in the evaluation: (1) backscattered electron SEM images of fibrous tremolite, (2) secondary electron SEM images of fibrous grunerite, (3) PCM images of fibrous grunerite, and (4) PLM images of fibrous grunerite. Fiber length and width were measured with ImageJ (manual measurement) and Image-Pro software and were compared on an individual fiber basis and over the number-length and number-width distribution of each sample. The results of the comparison showed that the individual length and width measurements with ImageJ and Image-Pro software had a nearly 1:1 relationship except for the width measurement in PLM images (8% of the variance in ImageJ width measurements was not explained by Image-Pro width measurements). Similarly, the number-length distributions were not significantly different (p > 0.05) between ImageJ and Image-Pro, but the number-width distributions were significantly different (p < 0.05) for PLM and secondary electron SEM images. Although the image analysis procedure for measuring fiber length and width with Image-Pro is not a fully automated procedure and still requires some manual intervention, it can be a more efficient and equally accurate alternative to time-consuming manual fiber length and width measurements for well dispersed fibers with high aspect ratios.
Collapse
Affiliation(s)
- Taekhee Lee
- Health Hazards Prevention Branch, Pittsburgh Mining Research Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Pittsburgh, Pennsylvania, USA
| | - Teresa Barone
- Health Hazards Prevention Branch, Pittsburgh Mining Research Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Pittsburgh, Pennsylvania, USA
| | - Elaine Rubinstein
- Human Systems Integration Branch, Pittsburgh Mining Research Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Pittsburgh, Pennsylvania, USA
| | - Steven Mischler
- Health Hazards Prevention Branch, Pittsburgh Mining Research Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Matei E, Predescu AM, Râpă M, Țurcanu AA, Mateș I, Constantin N, Predescu C. Natural Polymers and Their Nanocomposites Used for Environmental Applications. NANOMATERIALS 2022; 12:nano12101707. [PMID: 35630932 PMCID: PMC9146209 DOI: 10.3390/nano12101707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 02/04/2023]
Abstract
The aim of this review is to bring together the main natural polymer applications for environmental remediation, as a class of nexus materials with advanced properties that offer the opportunity of integration in single or simultaneous decontamination processes. By identifying the main natural polymers derived from agro-industrial sources or monomers converted by biotechnology into sustainable polymers, the paper offers the main performances identified in the literature for: (i) the treatment of water contaminated with heavy metals and emerging pollutants such as dyes and organics, (ii) the decontamination and remediation of soils, and (iii) the reduction in the number of suspended solids of a particulate matter (PM) type in the atmosphere. Because nanotechnology offers new horizons in materials science, nanocomposite tunable polymers are also studied and presented as promising materials in the context of developing sustainable and integrated products in society to ensure quality of life. As a class of future smart materials, the natural polymers and their nanocomposites are obtained from renewable resources, which are inexpensive materials with high surface area, porosity, and high adsorption properties due to their various functional groups. The information gathered in this review paper is based on the publications in the field from the last two decades. The future perspectives of these fascinating materials should take into account the scale-up, the toxicity of nanoparticles, and the competition with food production, as well as the environmental regulations.
Collapse
|
5
|
Lee T, Walker R, Hummer J, Ashley E, Mischler S. Size Separation of Amosite by Filtration and Shaking Methods. ASBESTOS AND OTHER ELONGATE MINERAL PARTICLES : NEW AND CONTINUING CHALLENGES IN THE 21ST CENTURY 2021; 1632:265-280. [PMID: 37216607 PMCID: PMC10194352 DOI: 10.1520/stp163220200067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The objectives of this study are (1) to separate fibrous grunerite (amosite) by its length using filtration and shaking techniques utilized in a previous study and (2) to create two distinct length groups (short and long) of the amosite with higher output in a cost-effective way. The shaking system included an electrodynamic exciter, a linear power amplifier, and an audio-frequency signal generator and was attached to a cowl sampler as a funnel loaded with a polycarbonate filter. A suspension of amosite was passed through the 10-μm pore size polycarbonate filter in the shaking system and was transferred to a filtration system through five different pore sizes of polycarbonate membrane filters in series from the top: 10-, 5-, 2-, 1-, and 0.2-μm pore sizes. Each polycarbonate filter was tightly clamped with two conductive 25-mm spacers with a 25-mm stainless steel support screen to prevent leakage. The amosite length and diameter were manually measured with images from a field emission scanning electron microscope (FESEM). A sequence of fields was selected at random locations, and an image of each field was acquired. The length and width of approximately 500 fibers for each sample were measured with ImageJ software. Two significantly different length groups (short and long) of amosite were collected (p <0.05). Approximately 95% of separated amosite (n = 499) using the filtration system were shorter than 5 μm (short fiber group), and approximately 80% of separated amosite (n = 503) using the shaking system were longer than 5 μm (long fiber group).
Collapse
Affiliation(s)
- Taekhee Lee
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Pittsburgh Mining Research Division, Health Hazards Prevention Branch, 626 Cochrans Mill Rd., Pittsburgh, PA 15236, USA
| | - Rachel Walker
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Pittsburgh Mining Research Division, Health Hazards Prevention Branch, 626 Cochrans Mill Rd., Pittsburgh, PA 15236, USA
| | - Jon Hummer
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Pittsburgh Mining Research Division, Health Hazards Prevention Branch, 626 Cochrans Mill Rd., Pittsburgh, PA 15236, USA
| | - Elizabeth Ashley
- Chemical and Biological Monitoring Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, OH 45213, USA
| | - Steven Mischler
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Pittsburgh Mining Research Division, Health Hazards Prevention Branch, 626 Cochrans Mill Rd., Pittsburgh, PA 15236, USA
| |
Collapse
|
6
|
Mamun A, Blachowicz T, Sabantina L. Electrospun Nanofiber Mats for Filtering Applications-Technology, Structure and Materials. Polymers (Basel) 2021; 13:1368. [PMID: 33922156 PMCID: PMC8122750 DOI: 10.3390/polym13091368] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 12/12/2022] Open
Abstract
Air pollution is one of the biggest health and environmental problems in the world and a huge threat to human health on a global scale. Due to the great impact of respiratory viral infections, chronic obstructive pulmonary disease, lung cancer, asthma, bronchitis, emphysema, lung disease, and heart disease, respiratory allergies are increasing significantly every year. Because of the special properties of electrospun nanofiber mats, e.g., large surface-to-volume ratio and low basis weight, uniform size, and nanoporous structure, nanofiber mats are the preferred choice for use in large-scale air filtration applications. In this review, we summarize the significant studies on electrospun nanofiber mats for filtration applications, present the electrospinning technology, show the structure and mechanism of air filtration. In addition, an overview of current air filtration materials derived from bio- and synthetic polymers and blends is provided. Apart from this, the use of biopolymers in filtration applications is still relatively new and this field is still under-researched. The application areas of air filtration materials are discussed here and future prospects are summarized in conclusion. In order to develop new effective filtration materials, it is necessary to understand the interaction between technology, materials, and filtration mechanisms, and this study was intended to contribute to this effort.
Collapse
Affiliation(s)
- Al Mamun
- Junior Research Group “Nanomaterials”, Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany;
| | - Tomasz Blachowicz
- Institute of Physics-CSE, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Lilia Sabantina
- Junior Research Group “Nanomaterials”, Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany;
| |
Collapse
|