1
|
Yao XH, Shen F, Hao J, Huang L, Keng B. A review of Legionella transmission risk in built environments: sources, regulations, sampling, and detection. Front Public Health 2024; 12:1415157. [PMID: 39131570 PMCID: PMC11309999 DOI: 10.3389/fpubh.2024.1415157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/08/2024] [Indexed: 08/13/2024] Open
Abstract
The risk of Legionella transmission in built environments remains a significant concern. Legionella can spread within buildings through aerosol transmission, prompting the exploration of airborne transmission pathways and proposing corresponding prevention and control measures based on building characteristics. To this end, a comprehensive literature review on the transmission risk of Legionella in built environments was performed. Four electronic databases (PubMed, Web of Science, Google Scholar, and CNKI) were searched from inception to March 2024 for publications reporting the risk of Legionella transmission in built environments. Relevant articles and gray literature reports were hand-searched, and 96 studies were finally included. Legionella pollution comes from various sources, mainly originates in a variety of built environments in which human beings remain for extended periods. The sources, outbreaks, national standards, regulations, and monitoring techniques for Legionella in buildings are reviewed, in addition to increases in Legionella transmission risk due to poor maintenance of water systems and long-distance transmission events caused by aerosol characteristics. Air and water sampling using various analytical methods helps identify Legionella in the environment, recognize sources in the built environments, and control outbreaks. By comparing the standard regulations of national organizations globally, the authors further highlight gaps and deficiencies in Legionella surveillance in China. Such advancements offer essential insights and references for understanding and addressing Legionella transmission risk in the built environment, with the potential to contribute to safeguarding public health and building environment safety.
Collapse
Affiliation(s)
- Xiao Hui Yao
- Department of Environmental Health, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Fan Shen
- Department of Environmental Health, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Jing Hao
- Department of Environmental Health, Beijing Fengtai District Center for Disease Prevention and Control, Beijing, China
| | - Lu Huang
- Department of Environmental Health, Beijing Dongcheng District Center for Disease Prevention and Control, Beijing, China
| | - Bin Keng
- Department of Environmental Health, Beijing Huairou District Center for Disease Prevention and Control, Beijing, China
| |
Collapse
|
2
|
Quon H, Jiang S. Quantitative Microbial Risk Assessment of Antibiotic-Resistant E. coli, Legionella pneumophila, and Mycobacteria in Nonpotable Wastewater Reuse Applications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12888-12898. [PMID: 39004818 PMCID: PMC11270989 DOI: 10.1021/acs.est.4c01690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024]
Abstract
Antibiotic-resistant bacteria (ARB) have become a major threat to public health and modern medicine. A simple death kinetics-based dose-response model (SD-DRM) was incorporated into a quantitative microbial risk assessment (QMRA) to assess the risks of exposure to reclaimed wastewater harboring antibiotic-resistant E. coli, Legionella pneumophila, and Mycobacterium avium for multiple exposure scenarios. The fractions of ARB and trace antibiotics present in the body were incorporated to demonstrate their impact on infection risks. Both ARB and antibiotic susceptible bacteria, ASB, are assumed to have the same dose-response in the absence of antibiotics but behave differently in the presence of residual antibiotics in the body. Annual risk of L. pneumophila infection exceeded the EPA 10-4 pppy (per person per year) benchmark at concentrations in reclaimed water greater than 103-104 CFU/L, depending on parameter variation. Enteropathogenic E. coli infection risks meet the EPA annual benchmark at concentrations around 105-106 total E. coli. The results illustrated that an increase in residual antibiotics from 0 to 40% of the minimum inhibitory concentration (MIC) reduced the risk by about 1 order of magnitude for E. coli but was more likely to result in an untreatable infection.
Collapse
Affiliation(s)
- Hunter Quon
- Department of Civil and Environmental
Engineering, University of California, Irvine, California 92697-2175, United States
| | - Sunny Jiang
- Department of Civil and Environmental
Engineering, University of California, Irvine, California 92697-2175, United States
| |
Collapse
|
3
|
Tang L, Rhoads WJ, Eichelberg A, Hamilton KA, Julian TR. Applications of Quantitative Microbial Risk Assessment to Respiratory Pathogens and Implications for Uptake in Policy: A State-of-the-Science Review. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:56001. [PMID: 38728217 PMCID: PMC11086748 DOI: 10.1289/ehp12695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Respiratory tract infections are major contributors to the global disease burden. Quantitative microbial risk assessment (QMRA) holds potential as a rapidly deployable framework to understand respiratory pathogen transmission and inform policy on infection control. OBJECTIVES The goal of this paper was to evaluate, motivate, and inform further development of the use of QMRA as a rapid tool to understand the transmission of respiratory pathogens and improve the evidence base for infection control policies. METHODS We conducted a literature review to identify peer-reviewed studies of complete QMRA frameworks on aerosol inhalation or contact transmission of respiratory pathogens. From each of the identified studies, we extracted and summarized information on the applied exposure model approaches, dose-response models, and parameter values, including risk characterization. Finally, we reviewed linkages between model outcomes and policy. RESULTS We identified 93 studies conducted in 16 different countries with complete QMRA frameworks for diverse respiratory pathogens, including SARS-CoV-2, Legionella spp., Staphylococcus aureus, influenza, and Bacillus anthracis. Six distinct exposure models were identified across diverse and complex transmission pathways. In 57 studies, exposure model frameworks were informed by their ability to model the efficacy of potential interventions. Among interventions, masking, ventilation, social distancing, and other environmental source controls were commonly assessed. Pathogen concentration, aerosol concentration, and partitioning coefficient were influential exposure parameters as identified by sensitivity analysis. Most (84%, n = 78 ) studies presented policy-relevant content including a) determining disease burden to call for policy intervention, b) determining risk-based threshold values for regulations, c) informing intervention and control strategies, and d) making recommendations and suggestions for QMRA application in policy. CONCLUSIONS We identified needs to further the development of QMRA frameworks for respiratory pathogens that prioritize appropriate aerosol exposure modeling approaches, consider trade-offs between model validity and complexity, and incorporate research that strengthens confidence in QMRA results. https://doi.org/10.1289/EHP12695.
Collapse
Affiliation(s)
- Lizhan Tang
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - William J. Rhoads
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Antonia Eichelberg
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Kerry A. Hamilton
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona, USA
- Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, Arizona, USA
| | - Timothy R. Julian
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
4
|
He J, Li J, Chen B, Yang W, Yu X, Zhang F, Li Y, Shu H, Zhu X. Study of aerosol dispersion and control in dental practice. Clin Oral Investig 2024; 28:120. [PMID: 38280059 DOI: 10.1007/s00784-024-05524-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/19/2024] [Indexed: 01/29/2024]
Abstract
OBJECTIVES In this study, we investigated the dispersion patterns of aerosols and droplets in dental clinics and developed a suction device to evaluate its effectiveness in reducing aerosols during dental procedures. MATERIALS AND METHODS Firstly, the continuous images of oral aerosols and droplets were photographed with a high-speed camera, and the trajectories of these particles were recognized and processed by Image J to determine key parameters affecting particle dispersion: diffusion velocity, distance, and angle. Secondly, based on the parameter data, the flow field of aerosol particles around the oral cavity was simulated using computational fluid dynamics (CFD), and the flow field under adsorption conditions was simulated to demonstrate the aerodynamic characteristics and capture efficiencies of the single-channel and three-channel adsorption ports at different pressures. Finally, according to the simulated data, a three-channel suction device was developed, and the capture efficiency of the device was tested by the fluorescein tracer method. RESULTS The dispersion experimental data showed that aerosol particles' maximum diffusion velocity, distance, and angle were 6.2 m/s, 0.55 m, and 130°, respectively. The simulated aerosol flow-field distribution was consistent with the aerosol dispersion patterns. The adsorption simulation results showed that the outlet flow rate of single-channel adsorption was 184.5 L/s at - 350 Pa, and the aerosol capture efficiency could reach 79.4%. At - 350 Pa and - 150 Pa, the outlet flow rate of three-channel adsorption was 228.9 L/s, and the capture efficiency was 99.23%. The adsorption experimental data showed that the capture efficiency of three-channel suction device was 97.71%. CONCLUSIONS A three-channel suction device was designed by simulations and experiments, which can capture most aerosols in the dental clinic and prevent them from spreading. CLINICAL RELEVANCE Using three-channel suction devices during oral treatment effectively reduces the spread of oral aerosols, which is essential to prevent the spread of epidemics and ensure the health and safety of patients and dental staff.
Collapse
Affiliation(s)
- Junjie He
- School of Mechanical Engineering, Guizhou University, Guiyang, Guizhou, China
| | - Jiachun Li
- School of Mechanical Engineering, Guizhou University, Guiyang, Guizhou, China.
| | - Bo Chen
- School of Mechanical Engineering, Guizhou University, Guiyang, Guizhou, China
| | - Wei Yang
- School of Medicine, Guizhou University, Guiyang, Guizhou, China
| | - Xiaoyan Yu
- Guiyang Stomatological Hospital, Guiyang, Guizhou, China
| | - Fan Zhang
- School of Mechanical Engineering, Guizhou University, Guiyang, Guizhou, China
| | - Yugang Li
- School of Mechanical Engineering, Guizhou University, Guiyang, Guizhou, China
| | - Haiyin Shu
- School of Medicine, Guizhou University, Guiyang, Guizhou, China
| | - Xiankun Zhu
- Guiyang Stomatological Hospital, Guiyang, Guizhou, China
| |
Collapse
|
5
|
Ashbolt NJ. Conceptual model to inform Legionella-amoebae control, including the roles of extracellular vesicles in engineered water system infections. Front Cell Infect Microbiol 2023; 13:1200478. [PMID: 37274310 PMCID: PMC10232903 DOI: 10.3389/fcimb.2023.1200478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/08/2023] [Indexed: 06/06/2023] Open
Abstract
Extracellular vesicles (EVs or exosomes) are well described for bacterial pathogens associated with our gastrointestinal system, and more recently as a novel mechanism for environmental persistence, dissemination and infection for human enteric viruses. However, the roles played by EVs in the ancient arms race that continues between amoebae and one of their prey, Legionella pneumophila, is poorly understood. At best we know of intracellular vesicles of amoebae containing a mix of bacterial prey species, which also provides an enhanced niche for bacteriophage infection/spread. Free-living amoeba-associated pathogens have recently been recognized to have enhanced resistance to disinfection and environmental stressors, adding to previously understood (but for relatively few species of) bacteria sequestered within amoebal cysts. However, the focus of the current work is to review the likely impacts of large numbers of respiratory-sized EVs containing numerous L. pneumophila cells studied in pure and biofilm systems with mixed prey species. These encapsulated pathogens are orders of magnitude more resistant to disinfection than free cells, and our engineered systems with residual disinfectants could promote evolution of resistance (including AMR), enhanced virulence and EV release. All these are key features for evolution within a dead-end human pathogen post lung infection. Traditional single-hit pathogen infection models used to estimate the probability of infection/disease and critical environmental concentrations via quantitative microbial risk assessments may also need to change. In short, recognizing that EV-packaged cells are highly virulent units for transmission of legionellae, which may also modulate/avoid human host immune responses. Key data gaps are raised and a previous conceptual model expanded upon to clarify where biofilm EVs could play a role promoting risk as well as inform a more wholistic management program to proactively control legionellosis.
Collapse
|
6
|
Talapko J, Frauenheim E, Juzbašić M, Tomas M, Matić S, Jukić M, Samardžić M, Škrlec I. Legionella pneumophila-Virulence Factors and the Possibility of Infection in Dental Practice. Microorganisms 2022; 10:microorganisms10020255. [PMID: 35208710 PMCID: PMC8879694 DOI: 10.3390/microorganisms10020255] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/08/2022] [Accepted: 01/21/2022] [Indexed: 02/07/2023] Open
Abstract
Legionella pneumophila is defined as a bacterium that can cause severe pneumonia. It is found in the natural environment and in water, and is often found in water tanks. It can be an integral part of biofilms in nature, and the protozoa in which it can live provide it with food and protect it from harmful influences; therefore, it has the ability to move into a sustainable but uncultured state (VBNC). L. pneumophila has been shown to cause infections in dental practices. The most common transmission route is aerosol generated in dental office water systems, which can negatively affect patients and healthcare professionals. The most common way of becoming infected with L. pneumophila in a dental office is through water from dental instruments, and the dental unit. In addition to these bacteria, patients and the dental team may be exposed to other harmful bacteria and viruses. Therefore, it is vital that the dental team regularly maintains and decontaminates the dental unit, and sterilizes all accessories that come with it. In addition, regular water control in dental offices is necessary.
Collapse
Affiliation(s)
- Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (E.F.); (M.J.); (M.T.); (S.M.); (M.J.); (M.S.)
| | - Erwin Frauenheim
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (E.F.); (M.J.); (M.T.); (S.M.); (M.J.); (M.S.)
| | - Martina Juzbašić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (E.F.); (M.J.); (M.T.); (S.M.); (M.J.); (M.S.)
| | - Matej Tomas
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (E.F.); (M.J.); (M.T.); (S.M.); (M.J.); (M.S.)
| | - Suzana Matić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (E.F.); (M.J.); (M.T.); (S.M.); (M.J.); (M.S.)
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, HR-31000 Osijek, Croatia
| | - Melita Jukić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (E.F.); (M.J.); (M.T.); (S.M.); (M.J.); (M.S.)
- General Hospital Vukovar, Županijska 35, HR-32000 Vukovar, Croatia
| | - Marija Samardžić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (E.F.); (M.J.); (M.T.); (S.M.); (M.J.); (M.S.)
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (E.F.); (M.J.); (M.T.); (S.M.); (M.J.); (M.S.)
- Correspondence:
| |
Collapse
|