1
|
Luo X, Lau CS, Le BQ, Tan TC, Too JH, Smith RAA, Yu N, Cool SM. Affinity-selected heparan sulfate collagen device promotes periodontal regeneration in an intrabony defect model in Macaca fascicularis. Sci Rep 2023; 13:11774. [PMID: 37479738 PMCID: PMC10362032 DOI: 10.1038/s41598-023-38818-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 07/15/2023] [Indexed: 07/23/2023] Open
Abstract
It is challenging to regenerate periodontal tissues fully. We have previously reported a heparan sulfate variant with enhanced affinity for bone morphogenetic protein-2, termed HS3, that enhanced periodontal tissue regeneration in a rodent model. Here we seek to transition this work closer to the clinic and investigate the efficacy of the combination HS3 collagen device in a non-human primate (NHP) periodontitis model. Wire-induced periodontitis was generated in ten Macaca fascicularis, and defects were treated with Emdogain or collagen (CollaPlug) loaded with (1) distilled water, (2) HS low (36 µg of HS3), or (3) HS high (180 µg of HS3) for 3 months. At the endpoint, microscopic assessment showed significantly less epithelial down-growth, greater alveolar bone filling, and enhanced cementum and periodontal ligament regeneration following treatment with the HS-collagen combination devices. When evaluated using a periodontal regeneration assessment score (PRAS) on a scale of 0-16, collagen scored 6.78 (± 2.64), Emdogain scored 10.50 (± 1.73) and HS low scored 10.40 (± 1.82). Notably, treatment with HS high scored 12.27 (± 2.20), while healthy control scored 14.80 (± 1.15). This study highlights the efficacy of an HS-collagen device for periodontal regeneration in a clinically relevant NHP periodontitis model and warrants its application in clinical trials.
Collapse
Affiliation(s)
- Xiaoman Luo
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Dr, Proteos, Singapore, 138673, Singapore
| | - Chau Sang Lau
- National Dental Research Institute Singapore, National Dental Centre Singapore, 5 Second Hospital Ave, Singapore, 168938, Singapore
- Duke-NUS Medical School, National University of Singapore, Singapore, 169857, Singapore
| | - Bach Quang Le
- Bioprocessing Technology Institute, Agency for Science Technology and Research (A*STAR), 20 Biopolis Way, Singapore, 138668, Singapore
| | - Tuan Chun Tan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Dr, Proteos, Singapore, 138673, Singapore
| | - Jian Hui Too
- National Dental Research Institute Singapore, National Dental Centre Singapore, 5 Second Hospital Ave, Singapore, 168938, Singapore
| | - Raymond Alexander Alfred Smith
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Dr, Proteos, Singapore, 138673, Singapore
- School of Chemical Engineering, The University of Queensland, 46 Staff House Rd, St Lucia, QLD, 4072, Australia
| | - Na Yu
- National Dental Research Institute Singapore, National Dental Centre Singapore, 5 Second Hospital Ave, Singapore, 168938, Singapore.
- Duke-NUS Medical School, National University of Singapore, Singapore, 169857, Singapore.
| | - Simon M Cool
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Dr, Proteos, Singapore, 138673, Singapore.
- School of Chemical Engineering, The University of Queensland, 46 Staff House Rd, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
2
|
Effects of Enamel Matrix Derivative on Cell Spheroids Made of Stem Cells Obtained from the Gingiva on Osteogenic Differentiation. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59020377. [PMID: 36837578 PMCID: PMC9960569 DOI: 10.3390/medicina59020377] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/04/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Background and Objectives: A derivative of the enamel matrix was used to speed up periodontal regeneration, including the formation of new cementum, alveolar bone, and periodontal ligament. In this study, human gingiva-derived stem cell-derived cell spheroids were used to assess the effects of an enamel matrix derivative on cell viability, osteogenic differentiation, and mineralization. Materials and Methods: Human gingiva-derived stem cells were used to create spheroids, which were then coupled with unloaded control groups and an enamel matrix derivative at a final concentration of 2.7, 27, 270, and 2700 μg/mL. The morphological examination of the created stem cell spheroids took place on days 1, 3, 5, and 7. The Live/Dead Kit assay was used to determine the qualitative viability of cells on days 3 and 7. Using the Cell Counting Kit-8, the quantitative vitality of the cell spheroids was assessed on days 1, 3, and 5. On days 7 and 14, alkaline phosphatase activity assays and Alizarin Red S staining were carried out to examine the osteogenic differentiation of the cell spheroids. RUNX2 and COL1A1 expression levels on days 7 and 14 were determined using real-time polymerase chain reaction. Results: The added enamel matrix derivative at the tested concentrations did not significantly alter the morphology of the applied stem cells' well-formed spheroids on day 1. On days 3 and 7, the majority of the spheroids' cells fluoresced green while they were being cultivated. Alkaline phosphatase activity data revealed a substantial rise in the 2700 μg/mL group on day 7 when compared to the unloaded control (p < 0.05). On days 7 and 14, calcium deposits were distinctly seen in each group. In the 27 and 2700 μg/mL groups, the treatment with the enamel matrix derivative resulted in noticeably higher values for the Alizarin Red S staining (p < 0.05). qPCR results showed that adding an enamel matrix derivative to the culture of the 27 μg/mL group raised the level of RUNX2 mRNA expression. Conclusions: These results lead us to the conclusion that a derivative of the enamel matrix may be used to promote osteogenic differentiation in stem cell spheroids.
Collapse
|
3
|
Khoshbin E, Ghasemi L, Najafi R, Karkehabadi H. Effects of CEM cement and emdogain on proliferation and differentiation of human stem cells from the apical papilla: a comparative in vitro study. Biotechnol Lett 2023; 45:69-81. [PMID: 36550335 DOI: 10.1007/s10529-022-03329-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVES This study compared the effects of calcium-enriched mixture (CEM) cement, Emdogain (EMD), and their combination (CEM/Emdogain) on the differentiation and proliferation of stem cells from the apical papilla (SCAPs). METHODS In this in vitro, experimental study, SCAPs were isolated from two sound immature impacted third molars and cultured. After ensuring their stemness by detecting cell surface markers they were exposed to CEM cement, Emdogain, and CEM cement coated with Emdogain for 24 and 72 h. The control cells did not undergo any intervention. Cell viability [by methyl thiazolyl tetrazolium (MTT) assay], expression of odontogenic differentiation genes [by quantitative reverse-transcription polymerase chain reaction (qRT-PCR)], and alkaline phosphatase (ALP) activity (by ALP staining kit) were evaluated. Data were analyzed by one-way ANOVA, t-test, and Mann-Whitney test (α = 0.05). RESULTS Cell viability in the CEM cement and CEM/Emdogain groups decreased compared with the control group at 72 h (P < 0.05). Expression of dentin sialophosphoprotein (DSPP), dentin matrix protein 1 (DMP1), bone sialoprotein (BSP) genes, and ALP activity significantly increased in all three experimental groups compared with the control group at both 24 and 72 h. This increase was substantially more significant in CEM/Emdogain group (P > 0.05). The number of mineralized nodules significantly increased in all groups at 72 h, with a higher rate in the CEM/Emdogain group. CONCLUSION All biomaterials increased the differentiation of SCAPs, expression of odontogenic differentiation genes, and ALP activity, but CEM/Emdogain was considerably more effective for this purpose.
Collapse
Affiliation(s)
- Elham Khoshbin
- Department of Endodontics, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Leila Ghasemi
- Department of Endodontics, School of Dentistry, Arak University of Medical Sciences, Arak, Iran
| | - Rezvan Najafi
- Department of Molecular Medicine and Genetics, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamed Karkehabadi
- Department of Endodontics, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
4
|
Mirkhani SMH, Amini Sedeh S, Esfahanian V. Comparison of Osteoblastic Differentiation of Human Periodontal Ligament Stem Cells through Application of Two β-tricalcium Phosphate Products: An in vitro Study. JOURNAL OF DENTISTRY (SHIRAZ, IRAN) 2022; 23:183-189. [PMID: 36380833 PMCID: PMC9652058 DOI: 10.30476/dentjods.2021.86700.1350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/31/2021] [Accepted: 05/10/2021] [Indexed: 01/25/2023]
Abstract
Statement of the Problem Osteoblastic differentiation of periodontal ligament stem cells (PLSCs) is essential for alveolar bone regeneration. Purpose The purpose of this study was to compare the potential of two β-tricalcium phosphate (βTCP) products to induce osteoblastic differentiation of human PLSCs. Materials and Method In this in vitro study, human PLSCs were cultured in mediums supplemented with Guidor Easy-Graft [βTCP+polylactide-co-glycolide (PLCG)+n-methyl-2-pyrrolidone (NMP)] [Sunstar Company, Swiss] or Sorbone [βTCP] [Meta Company, South Korea] as two alloplasts experimental groups, mesenchymal cells differentiated into osteoblasts without alloplast as positive control group, and mesenchymal cells without osteoblastic induction as negative control group. Osteoblastic differentiation was evaluated using Alizarine Red staining and spectrophotometry to assay calcium deposits and real-time polymerase chain reaction to examine expression of alkaline phosphatase (ALP) and osteopontin (OPN) antigens on day 21. Data were analyzed by using SPSS 22 software and one-way ANOVA and Bonferoni tests (p< 0.05). Results Spectrophotometry confirmed that calcium deposits were higher in Guidor Easy-Graft group compared to Sorbone group (p< 0.001) and higher in two experimental groups than controls (p< 0.05). According to real-time polymerase chain reaction, level of ALP expression was higher in Sorbone than Guidor and the levels of Guidor, positive control and negative control were equal; OPN levels of the positive control were more than the other groups. OPN levels of Sobone, Guidor and negative control were the same. Conclusion These findings indicated that Guidor Easy-Graft and Sorbone enhanced differentiation of human PLSCs to osteoblasts, and could be employed as appropriate bone-graft materials.
Collapse
Affiliation(s)
- Seyed Mohammad Hossein Mirkhani
- Postgraduate, Dept. of Periodontics, School of Dentistry, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Shirin Amini Sedeh
- Dept. of Periodontics, School of Dentistry, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Vahid Esfahanian
- Dept. of Periodontics, School of Dentistry, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| |
Collapse
|
5
|
Enamel Matrix Derivative Enhances the Odontoblastic Differentiation of Dental Pulp Stem Cells via Activating MAPK Signaling Pathways. Stem Cells Int 2022; 2022:2236250. [PMID: 35530415 PMCID: PMC9071913 DOI: 10.1155/2022/2236250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 03/27/2022] [Accepted: 04/05/2022] [Indexed: 12/03/2022] Open
Abstract
The odontoblastic differentiation of dental pulp stem cells (DPSCs) contributes to pulp-dentin regeneration. Enamel matrix derivative (EMD) is considered to be a critical epithelial signal to induce cell differentiation during odontogenesis and has been widely applied to clinical periodontal tissue regeneration. The purpose of this study was to explore the effect of EMD on DPSCs proliferation and odontoblastic differentiation, as well as the underlying mechanisms. We conducted in vitro and in vivo researches to get a comprehensive understanding of EMD. In vitro phase: cell proliferation was assessed by a cell counting kit-8 (CCK-8) assay; then, alkaline phosphatase (ALP) activity and staining, alizarin red staining, real-time RT-PCR, and western blot analysis were conducted to determine the odontoblastic potential and involvement of MAPK signaling pathways. In vivo phase: after ensuring the biocompatibility of VitroGel 3D-RGD via scanning electron microscopy (SEM), the hydrogel mixture was subcutaneously injected into nude mice followed by histological and immunohistochemical analyses. The results revealed that EMD did not interfere with DPSCs proliferation but promoted the odontoblastic differentiation of DPSCs in vitro and in vivo. Furthermore, blocking the MAPK pathways suppressed the EMD-enhanced differentiation of DPSCs. Finally, VitroGel 3D-RGD could well support the proliferation, differentiation, and regeneration of DPSCs. Overall, this study demonstrates that EMD enhances the odontoblastic differentiation of DPSCs through triggering MAPK signaling pathways. The findings provide a new insight into the mechanism by which EMD affects DPSCs differentiation and proposes EMD as a promising candidate for future stem cell therapy in endodontics.
Collapse
|
6
|
Enamel Matrix Derivatives for Periodontal Regeneration: Recent Developments and Future Perspectives. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:8661690. [PMID: 35449833 PMCID: PMC9017460 DOI: 10.1155/2022/8661690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/23/2022] [Indexed: 11/18/2022]
Abstract
In the era of the growing population, the demand for dental care is increasing at a fast pace for both older and younger people. One of the dental diseases that has attracted significant research is periodontitis. Periodontal therapy aims to regenerate tissues that are injured by periodontal disease. During recent decades, various pioneering strategies and products have been introduced for restoring or regeneration of periodontal deficiencies. One of these involves the regeneration of tissues under guidance using enamel matrix derivatives (EMDs) or combinations of these. EMDs are mainly comprised of amelogenins, which is one of the most common biological agents used in periodontics. Multiple studies have been reported regarding the role of EMD in periodontal tissue regeneration; however, the extensive mechanism remains elusive. The EMDs could promote periodontal regeneration mainly through inducing periodontal attachment during tooth formation. EMD mimics biological processes that occur during periodontal tissue growth. During root development, enamel matrix proteins are formed on the root surface by Hertwig's epithelial root sheath cells, initiating the process of cementogenesis. This article reviews the challenges and recent advances in preclinical and clinical applications of EMDs in periodontal regeneration. Moreover, we discuss the current evidence on the mechanisms of action of EMDs in the regeneration of periodontal tissues.
Collapse
|
7
|
miR-141-3p Regulates EZH2 to Attenuate Porphyromonas gingivalis Lipopolysaccharide-Caused Inflammation and Inhibition of Osteogenic Differentiation in Human Periodontal Ligament Stem Cells. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:4634925. [PMID: 35509853 PMCID: PMC9061008 DOI: 10.1155/2022/4634925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/24/2022] [Accepted: 03/31/2022] [Indexed: 12/04/2022]
Abstract
Objective miR-141-3p has been demonstrated to be both anti-inflammatory and osteoprotective. This study is aimed at investigating the effect of miR-141-3p on osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) stimulated by Porphyromonas gingivalis lipopolysaccharide (PgLPS) and its mechanism. Methods PgLPS was used to induce an inflammatory environment, and overexpression of miR-141-3p was done to assess its effect on hPDLSCs in an inflammatory environment. The level of miR-141-3p and EZH2 in hPDLSCs from each treatment group was detected via qRT-PCR, and the inflammatory factors IL-6 and IL-8 in the supernatant of each group were detected by ELISA. ALP staining and alizarin red staining were used to assess the effect of miR-141-3p on the osteogenic differentiation ability of hPDLSCs, and also, western blot was used to detect expression of osteogenic differentiation-related proteins. Further, dual-luciferase reporter assay examined whether miR-141-3p targeted EZH2. Results PgLPS led to a significant decrease of miR-141-3p in hPDLSCs. Overexpression of miR-141-3p could enhance ALP activity and alizarin red staining intensity and increase Runx2, OPN and OCN protein expression levels in PgLPS-treated hPDLSCs. Additionally, miR-141-3p could reduce IL-6 and IL-8. miR-141-3p could target and negatively regulate EZH2, and overexpression of EZH2 reversed the promoting effect of miR-141-3p on osteogenic differentiation. Conclusion miR-141-3p can attenuate PgLPS-induced inhibition of osteogenic differentiation and inflammation in hPDLSCs by negatively regulating EZH2.
Collapse
|
8
|
Robo I, Heta S, Papakozma D, Ostreni V. Modification of implant surfaces to stimulate mesenchymal cell activation. BULLETIN OF THE NATIONAL RESEARCH CENTRE 2022; 46:52. [PMID: 35261541 PMCID: PMC8894561 DOI: 10.1186/s42269-022-00743-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The process of osteointegration, as key point has the activation of mesenchymal cells at implant-bone interspace, their differentiation into osteoblasts and connection between the implant surface and the surrounding bone. MAIN TEXT Implant surfaces composed by biocompatible, organism-friendly materials require changes in content and surface morphology; changes that may further stimulate mesenchymal cell activation. The way the implant surfaces are affected with advantages and disadvantages, that typically bring each methodology, is also the purpose of this study. The study is of review type, based on finding articles about implant surface modification, with the aim of promoting the mesenchymal cell activation, utilizing keyword combination. CONCLUSIONS Implant success beyond the human element of the practicioner and the protocol element of implant treatment, also relies on the application of the right type of implant, at the right implant site, in accordance with oral and individual health status of the patient. Implant success does not depend on type of "coating" material of the implants. Based at this physiological process, the success or implant failure is not a process depending on the type of selected implant, because types of synthetic or natural materials that promote osteointegration are relatively in large number.
Collapse
Affiliation(s)
- Ilma Robo
- Faculty of Dental Medicine, University of Medicine, Tiranë, Albania
| | - Saimir Heta
- Pediatric Surgery, Pediatric Surgeon, University Hospital, QSUT, Tiranë, Albania
| | | | - Vera Ostreni
- Pediatric Surgery, Pediatric Surgeon, University Hospital, QSUT, Tiranë, Albania
- Department of Morphology, University of Medicine, Tiranë, Albania
| |
Collapse
|
9
|
Effect of biodentine coated with emdogain on proliferation and differentiation of human stem cells from the apical papilla. Mol Biol Rep 2022; 49:3685-3692. [PMID: 35107735 DOI: 10.1007/s11033-022-07208-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/26/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND This study assessed the effect of Biodentine coated with Emdogain (Biodentine/Emdogain) on proliferation and differentiation of human stem cells from the apical papilla (SCAPs). METHODS AND RESULTS: In this in vitro, experimental study, SCAPs were isolated from two immature impacted third molars and cultured. After ensuring the stemness of the cells by assessing the cell surface markers, they were exposed to Biodentine, Emdogain, and Biodentine/Emdogain for 24 and 72 h. The control cells did not receive any intervention. Cell viability was evaluated by the methyl thiazolyl tetrazolium assay. Expression of odontogenic differentiation genes was analyzed by the quantitative reverse transcription polymerase chain reaction. Alkaline phosphatase (ALP) activity was quantified by the respective kit. Data were analyzed by one-way ANOVA, t-test, and Mann-Whitney test (α = 0.05). Cell viability did not change after 24 h of exposure to biomaterials. At 72 h, the viability of the cells exposed to Biodentine and Biodentine/Emdogain decreased compared with the control group. The expression of dentin sialophosphoprotein, dentin matrix protein 1, and bone sialoprotein genes, and ALP activity significantly increased in all three experimental groups, compared with the control group at both 24 and 72 h; this increase was significantly greater in Biodentine/Emdogain group. The number of mineralized nodules significantly increased in all groups after 72 h with a greater rate in Biodentine/Emdogain group. CONCLUSIONS All biomaterials increased the differentiation of SCAPs, expression of odontogenic genes, and ALP activity, but Biodentine/Emdogain was significantly more effective for this purpose.
Collapse
|
10
|
Elements of 3D Bioprinting in Periodontal Regeneration: Frontiers and Prospects. Processes (Basel) 2021. [DOI: 10.3390/pr9101724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Periodontitis is a chronic infectious disease worldwide, caused by the accumulation of bacterial plaque, which can lead to the destruction of periodontal supporting tissue and eventually tooth loss. The goal of periodontal treatment is to remove pathogenic factors and control the periodontal inflammation. However, the complete regeneration of periodontal supporting tissue is still a major challenge according to current technology. Tissue engineering recovers the injured tissue through seed cells, bio-capable scaffold and bioactive factors. Three-D-bioprinting is an emerging technology in regeneration medicine/tissue engineering, because of its high accuracy and high efficiency, providing a new strategy for periodontal regeneration. This article represents the materials of 3D bioprinting in periodontal regeneration from three aspects: oral seed cell, bio-scaffold and bio-active factors.
Collapse
|
11
|
Wang J, Du C, Xu L. Circ_0081572 inhibits the progression of periodontitis through regulating the miR-378h/RORA axis. Arch Oral Biol 2021; 124:105053. [PMID: 33524877 DOI: 10.1016/j.archoralbio.2021.105053] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Revealing the role and mechanism of circ_0081572 in periodontitis progression. DESIGN Quantitative real-time PCR (qRT-PCR) was applied to measure the expression of circ_0081572, microRNA (miR)-378h and retinoid acid-related orphan receptor A (RORA). Lipopolysaccharide (LPS) was used to treat periodontal ligament cells (PDLCs) to construct periodontitis cell model in vitro. Cell counting kit 8 (CCK8) assay and flow cytometry were used to measure cell viability and apoptosis. The caspase 3 activity was detected by Caspase 3 Activity Assay Kit. Western blot assay was performed to detect the expression of apoptosis-associated proteins and RORA. The inflammation response and oxidative stress were determined by detecting the levels of inflammatory cytokines and reactive oxygen species (ROS). The relationship between miR-378h and circ_0081572 or RORA was verified by dual-luciferase reporter assay, RNA immunoprecipitation (RIP) assay and biotin-labeled RNA pull-down assay. RESULTS Circ_0081572 was a stability circRNA with downregulated expression in the gingival tissues of periodontitis patients. Overexpression of circ_0081572 could alleviate LPS-induced PDLCs injury. Circ_0081572 could serve as a sponge for miR-378h. Furthermore, miR-378h could reverse the inhibition of circ_0081572 on LPS-induced PDLCs injury. In addition, RORA could be targeted by miR-378h, and its silencing could reverse the suppressive effect of miR-378h inhibitor and circ_0081572 overexpression on LPS-induced PDLCs injury. CONCLUSIONS Our results suggested that circ_0081572 might prevent periodontitis by regulating the miR-378h /RORA axis.
Collapse
Affiliation(s)
- Jing Wang
- Department of Orthodontics, Chinese PLA General Hospital, Beijing, 100853, China
| | - Chenchen Du
- Department of Stomatology, Xinjiang Karamay People's Hospital, Karamay, Xinjiang, 834000, China
| | - Lulu Xu
- Department of Orthodontics, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
12
|
Deciphering the Underlying Mechanism of Eucommiae Cortex against Osteoporotic Fracture by Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:7049812. [PMID: 32963568 PMCID: PMC7492876 DOI: 10.1155/2020/7049812] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/28/2020] [Indexed: 12/13/2022]
Abstract
Background Du Zhong (DZ), or Eucommiae Cortex, a traditional Chinese herbal medicine, has been used to treat osteoporosis. Although it has been reported that DZ can improve bone mass in ovariectomized rats, its pharmacological mechanisms in treating osteoporotic fractures (OPF) remain unclear. Methods In this study, we used a network pharmacological manner to explore its potential complicated mechanism in treating OPF. We obtained DZ compounds from TCMSP and BATMAN-TCM databases and collected potential targets of these compounds through target fishing based on TCMSP and BATMAN-TCM databases. Next, we collected the OPF targets by using CTD, GeneCards, OMIM, HPO, and GenCLiP 3 databases. And then the overlapping genes between DZ potential targets and OPF targets were used to build up the protein-protein interaction (PPI) network and to analyze their interactions and find out the big hub genes in this network. Subsequently, clusterProfiler package in R language was utilized to conduct the enrichment of Gene Ontology biological process and KEGG pathways. Results There were totally 93 active compounds and 916 related targets in DZ. After the enrichment analysis, we collected top 25 cellular biological processes and top 25 pathways based on the adjusted P value and found that the DZ anti-OPF effect was mainly associated with the regulation of ROS and inflammatory response. Furthermore, 64 hub genes in PPI network, such as MAPK1 (degree = 41), SRC (degree = 39), PIK3R1 (degree = 36), VEGFA (degree = 31), TP53 (degree = 29), EGFR (degree = 29), JUN (degree = 29), AGT (degree = 29), MAPK1, SRC, PIK3R1, VEGFA, and TP53, were considered as potential therapeutic targets, implying the underlying mechanisms of DZ acting on OPF. Conclusion We investigated the possible therapeutic mechanisms of DZ from a systemic perspective. These key targets and pathways provided promising directions for the future research to reveal the exact regulating mechanisms of DZ in treating OPF.
Collapse
|
13
|
Bao H, Guo H, Feng Z, Li X. Deciphering the underlying mechanism of Xianlinggubao capsule against osteoporosis by network pharmacology. BMC Complement Med Ther 2020; 20:208. [PMID: 32620113 PMCID: PMC7333287 DOI: 10.1186/s12906-020-03007-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 06/26/2020] [Indexed: 12/18/2022] Open
Abstract
Background Xianlinggubao formula (XLGB), a Chinese State Food and Drug Administration-permitted traditional Chinese herbal medicine, has been extensively used to treat osteoporosis. Although XLGB was shown to improve bone mass in ovariectomized rats and clinically alleviate osteoporosis symptoms, its pharmacological mechanisms remain unclear. Methods In this study, we used a network pharmacological approach to explore the potential mechanism of XLGB in treating osteoporosis. We obtained XLGB compounds from the TCMSP and TCMID databases and identified potential targets of these compounds through target fishing based on the TCMSP and Swiss Target Prediction databases. Next, we identified the osteoporosis targets by using the CTD, TTD, GeneCards, OMIM and PharmGKB databases. Then, the overlapping genes between the XLGB potential targets and the osteoporosis targets were used to establish a protein-protein interaction (PPI) network and to analyze their interactions and identify the major hub genes in this network. Subsequently, the Metascape database was utilized to conduct the enrichment of Gene Ontology biological processes and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Results There were 104 active compounds and 295 related targets identified overall. After the Metascape enrichment analysis, we identified the top 25 cellular biological processes and top 15 pathways based on the logP value and found that the XLGB-mediated anti-osteoporosis effect was mainly associated with reactive oxygen species, organonitrogen compound response and cell migration. Furthermore, 36 hub genes of XLGB, such as EGF, EGFR, MTOR, MAPK14 and NFKB1, were considered potential therapeutic targets, suggesting the underlying mechanisms of XLGB acting on osteoporosis. Conclusion We investigated the possible therapeutic mechanisms of XLGB from a systemic perspective. These key targets and pathways provide promising directions for future research to reveal the exact regulatory mechanisms of XLGB.
Collapse
Affiliation(s)
- Hangsheng Bao
- Foshan Hospital of Traditional Chinese Medicine, Foshan, 528000, China
| | - Huizhi Guo
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zongquan Feng
- Foshan Hospital of Traditional Chinese Medicine, Foshan, 528000, China
| | - Xin Li
- Department of Nephrology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
14
|
circRNA CDR1as Regulated the Proliferation of Human Periodontal Ligament Stem Cells under a Lipopolysaccharide-Induced Inflammatory Condition. Mediators Inflamm 2019; 2019:1625381. [PMID: 31582895 PMCID: PMC6754938 DOI: 10.1155/2019/1625381] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 06/05/2019] [Accepted: 07/15/2019] [Indexed: 12/21/2022] Open
Abstract
circRNA CDR1as (CDR1as) has been demonstrated to play important roles in a variety of inflammation-related diseases by acting as miRNA sponges. The present study is aimed at investigating the potential roles of CDR1as in the proliferation of human periodontal ligament stem cells (PDLSCs) under an inflammatory condition induced by Porphyromonas gingivalis-derived lipopolysaccharide (LPS). Human periodontal ligament cells (PDLCs) were isolated from periodontal ligament tissue, and PDLSCs were sorted from PDLCs based on the STRO-1 expression through fluorescence-activated cell sorting. We further found that CDR1as was significantly downregulated in LPS-treated PDLSCs compared to untreated cells, as well as in normal periodontal ligament tissues compared to periodontitis tissues. Knockdown of CDR1as promoted LPS-induced proliferative inhibition of PDLSCs, whereas overexpression of CDR1as alleviated the LPS-induced proliferative ability of PDLSCs. Mechanistically, CDR1as functioned as an miR-7 sponge to activate the ERK signal pathway to mediate the inhibition effect of LPS on cell proliferation. Taken together, our findings revealed the effects of the interacting pair of CDR1as/miR-7 on the proliferation ability of PDLSCs within their surrounding inflammatory microenvironment of periodontitis.
Collapse
|
15
|
Magri AMP, Fernandes KR, Kido HW, Fernandes GS, Fermino SDS, Gabbai-Armelin PR, Braga FJC, Góes CP, Prado JLDS, Neves Granito R, Rennó ACM. Bioglass/PLGA associated to photobiomodulation: effects on the healing process in an experimental model of calvarial bone defect. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:105. [PMID: 31494718 DOI: 10.1007/s10856-019-6307-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
Bioactive glasses (BG) are known for their ability to bond to bone tissue. However, in critical situations, even the osteogenic properties of BG may be not enough to induce bone consolidation. Thus, the enrichment of BG with polymers such as Poly (D, L-lactic-co-glycolic) acid (PLGA) and associated to photobiomodulation (PBM) may be a promising strategy to promote bone tissue healing. The aim of the present study was to investigate the in vivo performance of PLGA supplemented BG, associated to PBM therapy, using an experimental model of cranial bone defect in rats. Rats were distributed in 4 different groups (Bioglass, Bioglass/PBM, Bioglas/PLGA and BG/PLGA/PBM). After the surgical procedure to induce cranial bone defects, the pre-set samples were implanted and PBM treatment (low-level laser therapy) started (808 nm, 100 mW, 30 J/cm2). After 2 and 6 weeks, animals were euthanized, and the samples were retrieved for the histopathological, histomorphometric, picrosirius red staining and immunohistochemistry analysis. At 2 weeks post-surgery, it was observed granulation tissue and areas of newly formed bone in all experimental groups. At 6 weeks post-surgery, BG/PLGA (with or without PBM) more mature tissue around the biomaterial particles. Furthermore, there was a higher deposition of collagen for BG/PLGA in comparison with BG/PLGA/PBM, at second time-point. Histomorphometric analysis demonstrated higher values of BM.V/TV for BG compared to BG/PLGA (2 weeks post-surgery) and N.Ob/T.Ar for BG/PLGA compared to BG and BG/PBM (6 weeks post-surgery). This current study concluded that the use of BG/PLGA composites, associated or not to PBM, is a promising strategy for bone tissue engineering.
Collapse
Affiliation(s)
- Angela Maria Paiva Magri
- Federal University of São Paulo (UNIFESP), Rua Silva Jardim, 136, Santos, SP, 11015020, Brazil.
- University Center of the Guaxupé Educational Foundation (UNIFEG), Avenida Dona Floriana, Guaxupé, MG, 37800000, Brazil.
| | | | - Hueliton Wilian Kido
- Federal University of São Paulo (UNIFESP), Rua Silva Jardim, 136, Santos, SP, 11015020, Brazil
| | | | | | | | | | - Cíntia Pereirade Góes
- Federal University of São Paulo (UNIFESP), Rua Silva Jardim, 136, Santos, SP, 11015020, Brazil
| | | | - Renata Neves Granito
- Federal University of São Paulo (UNIFESP), Rua Silva Jardim, 136, Santos, SP, 11015020, Brazil
| | - Ana Claudia Muniz Rennó
- Federal University of São Paulo (UNIFESP), Rua Silva Jardim, 136, Santos, SP, 11015020, Brazil
| |
Collapse
|
16
|
Zhou H, Jiao G, Dong M, Chi H, Wang H, Wu W, Liu H, Ren S, Kong M, Li C, Zhang L, Chen Y. Orthosilicic Acid Accelerates Bone Formation in Human Osteoblast-Like Cells Through the PI3K-Akt-mTOR Pathway. Biol Trace Elem Res 2019; 190:327-335. [PMID: 30421162 DOI: 10.1007/s12011-018-1574-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/07/2018] [Indexed: 12/28/2022]
Abstract
Silicon is one of the essential trace elements in the human body; the deficiency of which may lead to bone diseases. Numerous animal experiments have shown that an appropriate increase in the intake of silicon is beneficial to enhancing bone density and toughness to prevent osteoporosis. However, the molecular mechanisms of the silicon-mediated osteogenesis process have not been sufficiently clarified. In this study, we determined the possible osteogenesis-related mechanisms of orthosilicic acid at a molecular level. We detected the relevant pathway and osteogenic indicators by immunofluorescence (IF), Western blot, alkaline phosphatase (ALP) staining (using 5-bromo-4-chloro-3-indolyl phosphate/nitro blue tetrazolium [BCIP/NBT]), ALP enzyme labeling method, osteocalcin (OCN), and N-terminal propeptide of type 1 procollagen (P1NP) enzyme-linked immunosorbent assay (ELISA). We found that orthosilicic acid is capable of enhancing the expression of phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), phospho-protein kinase B (P-Akt), phospho-mammalian target of rapamycin (P-mTOR), and related osteogenic markers (runt-related transcription factor 2 [RUNX2], type I collagen [COL1], ALP, OCN, and P1NP). However, with the addition of PI3K-Akt-mTOR pathway-specific inhibitor LY294002, the expression of PI3K, P-Akt, P-mTOR, RUNX2, COL1, ALP, OCN, and P1NP decreased. The results indicated that the PI3K-Akt-mTOR pathway played a positive regulatory role in the process of orthosilicic acid-mediated osteogenesis in vitro.
Collapse
Affiliation(s)
- Hongming Zhou
- Department of Orthopedics, Qilu Hospital of Shandong University and Spine and Spinal Cord Disease Research Center, Shandong University, Jinan, Shandong, China
- Department of Emergency Trauma Surgery, Linyi Central Hospital, Linyi, Shandong Province, China
| | - Guangjun Jiao
- Department of Orthopedics, Qilu Hospital of Shandong University and Spine and Spinal Cord Disease Research Center, Shandong University, Jinan, Shandong, China
| | - Meng Dong
- Department of Orthopedics, Zibo Central Hospital, Zibo, Shandong Province, China
| | - Hai Chi
- Department of Orthopedics, Qilu Hospital of Shandong University and Spine and Spinal Cord Disease Research Center, Shandong University, Jinan, Shandong, China
| | - Hongliang Wang
- Department of Orthopedics, Qilu Hospital of Shandong University and Spine and Spinal Cord Disease Research Center, Shandong University, Jinan, Shandong, China
| | - Wenliang Wu
- Department of Orthopedics, Qilu Hospital of Shandong University and Spine and Spinal Cord Disease Research Center, Shandong University, Jinan, Shandong, China
| | - Haichun Liu
- Department of Orthopedics, Qilu Hospital of Shandong University and Spine and Spinal Cord Disease Research Center, Shandong University, Jinan, Shandong, China
| | - Shanwu Ren
- Department of Orthopedics, Qilu Hospital of Shandong University and Spine and Spinal Cord Disease Research Center, Shandong University, Jinan, Shandong, China
| | - Meng Kong
- Department of Orthopedics, Qilu Hospital of Shandong University and Spine and Spinal Cord Disease Research Center, Shandong University, Jinan, Shandong, China
| | - Ci Li
- Department of Orthopedics, Qilu Hospital of Shandong University and Spine and Spinal Cord Disease Research Center, Shandong University, Jinan, Shandong, China
| | - Lu Zhang
- Department of Orthopedics, Qilu Hospital of Shandong University and Spine and Spinal Cord Disease Research Center, Shandong University, Jinan, Shandong, China
| | - Yunzhen Chen
- Department of Orthopedics, Qilu Hospital of Shandong University and Spine and Spinal Cord Disease Research Center, Shandong University, Jinan, Shandong, China.
- Department of Orthopedics, Qilu Hospital of Shandong University, No. 107, Wen Hua Xi Road, Ji'nan, 250012, Shandong Province, China.
| |
Collapse
|
17
|
Takeuchi T, Masuno K, Kato H, Taguchi Y, Umeda M, Okusa N, Tanaka A, Tominaga K. A Human Amelogenin-Derived Oligopeptide Enhances Osteogenic Differentiation of Human Periodontal Ligament Stem Cells. J HARD TISSUE BIOL 2019. [DOI: 10.2485/jhtb.28.251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
| | - Kazuya Masuno
- Department of Innovations in Dental Education, Osaka Dental University
| | - Hirohito Kato
- Department of Periodontology, Osaka Dental University
| | | | - Makoto Umeda
- Department of Periodontology, Osaka Dental University
| | - Nobutaka Okusa
- Department of Forensic Dentistry, Osaka Dental University
| | - Akio Tanaka
- Department of Pathology, Osaka Dental University
| | | |
Collapse
|
18
|
Park JB. Application of enamel matrix derivative and deproteinized bovine bone for the treatment of peri-implantitis after decontamination with an ultrasonic scaler: A case report. Medicine (Baltimore) 2018; 97:e13461. [PMID: 30508970 PMCID: PMC6283095 DOI: 10.1097/md.0000000000013461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
RATIONALE The purpose of this report is to present a case of peri-implantitis with successful regeneration. The surface of the affected dental implant was decontaminated with an ultrasonic scaler and treated with bovine-derived hydroxyapatite and enamel matrix derivative. PATIENT CONCERNS A 52-year-old male was referred for evaluation of a dental implant placed in the mandibular right second premolar area. DIAGNOSIS The radiographic evaluation showed the loss of supporting bone around the dental implant. Bleeding upon probing and suppuration were observed, with the deepest probing depth at 6 mm. INTERVENTIONS The area was firstly treated with a nonsurgical approach. After re-evaluation, a full-thickness flap was elevated. The area was well debrided using various instruments, including curettes and an ultrasonic scaler. The defect area was grafted with bovine-derived hydroxyapatite and enamel matrix derivative. OUTCOMES Histopathologic evaluation revealed chronic inflammation with fibrosis and calcification. The evaluation at 2 years and 3 months after surgery showed that the prosthesis was functioning well. Bleeding upon probing and suppuration was not noted, and reduction of probing depth was seen, with the deepest depth at 4 mm. The area showed maintenance of graft material with increased radiopacity around the dental implant. LESSONS In conclusion, a case of peri-implantitis can be successfully treated with bovine-derived hydroxyapatite and enamel matrix derivative after surface decontamination with an ultrasonic scaler.
Collapse
|