1
|
Charbonneau AA, Eckert DM, Gauvin CC, Lintner NG, Lawrence CM. Cyclic Tetra-Adenylate (cA 4) Recognition by Csa3; Implications for an Integrated Class 1 CRISPR-Cas Immune Response in Saccharolobus solfataricus. Biomolecules 2021; 11:biom11121852. [PMID: 34944496 PMCID: PMC8699464 DOI: 10.3390/biom11121852] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 01/09/2023] Open
Abstract
Csa3 family transcription factors are ancillary CRISPR-associated proteins composed of N-terminal CARF domains and C-terminal winged helix-turn-helix domains. The activity of Csa3 transcription factors is thought to be controlled by cyclic oligoadenyate (cOA) second messengers produced by type III CRISPR-Cas surveillance complexes. Here we show that Saccharolobus solfataricus Csa3a recognizes cyclic tetra-adenylate (cA4) and that Csa3a lacks self-regulating "ring nuclease" activity present in some other CARF domain proteins. The crystal structure of the Csa3a/cA4 complex was also determined and the structural and thermodynamic basis for cA4 recognition are described, as are conformational changes in Csa3a associated with cA4 binding. We also characterized the effect of cA4 on recognition of putative DNA binding sites. Csa3a binds to putative promoter sequences in a nonspecific, cooperative and cA4-independent manner, suggesting a more complex mode of transcriptional regulation. We conclude the Csa3a/cA4 interaction represents a nexus between the type I and type III CRISPR-Cas systems present in S. solfataricus, and discuss the role of the Csa3/cA4 interaction in coordinating different arms of this integrated class 1 immune system to mount a synergistic, highly orchestrated immune response.
Collapse
Affiliation(s)
- Alexander A. Charbonneau
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA; (A.A.C.); (C.C.G.); (N.G.L.)
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717, USA
| | - Debra M. Eckert
- School of Medicine, University of Utah, Salt Lake City, UT 84112, USA;
| | - Colin C. Gauvin
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA; (A.A.C.); (C.C.G.); (N.G.L.)
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717, USA
| | - Nathanael G. Lintner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA; (A.A.C.); (C.C.G.); (N.G.L.)
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717, USA
| | - C. Martin Lawrence
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA; (A.A.C.); (C.C.G.); (N.G.L.)
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717, USA
- Correspondence: ; Tel.: +1-406-994-5382
| |
Collapse
|
2
|
Athukoralage JS, White MF. Cyclic oligoadenylate signalling and regulation by ring nucleases during type III CRISPR defence. RNA (NEW YORK, N.Y.) 2021; 27:rna.078739.121. [PMID: 33986148 PMCID: PMC8284326 DOI: 10.1261/rna.078739.121] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/08/2021] [Indexed: 06/12/2023]
Abstract
In prokaryotes, CRISPR-Cas immune systems recognise and cleave foreign nucleic acids to defend against Mobile Genetic Elements (MGEs). Type III CRISPR-Cas complexes also synthesise cyclic oligoadenylate (cOA) second messengers, which activate CRISPR ancillary proteins involved in antiviral defence. In particular, cOA-stimulated nucleases degrade RNA and DNA non-specifically, which slows MGE replication but also impedes cell growth, necessitating mechanisms to eliminate cOA in order to mitigate collateral damage. Extant cOA is degraded by a new class of enzyme termed a 'ring nuclease', which cleaves cOA specifically and switches off CRISPR ancillary enzymes. Several ring nuclease families have been characterised to date, including a family used by MGEs to circumvent CRISPR immunity, and encompass diverse protein folds and distinct cOA cleavage mechanisms. In this review we outline cOA signalling, discuss how different ring nucleases regulate the cOA signalling pathway, and reflect on parallels between cyclic nucleotide-based immune systems to reveal new areas for exploration.
Collapse
|
3
|
Makarova KS, Timinskas A, Wolf YI, Gussow AB, Siksnys V, Venclovas Č, Koonin EV. Evolutionary and functional classification of the CARF domain superfamily, key sensors in prokaryotic antivirus defense. Nucleic Acids Res 2020; 48:8828-8847. [PMID: 32735657 DOI: 10.1093/nar/gkaa635] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 12/24/2022] Open
Abstract
CRISPR-associated Rossmann Fold (CARF) and SMODS-associated and fused to various effector domains (SAVED) are key components of cyclic oligonucleotide-based antiphage signaling systems (CBASS) that sense cyclic oligonucleotides and transmit the signal to an effector inducing cell dormancy or death. Most of the CARFs are components of a CBASS built into type III CRISPR-Cas systems, where the CARF domain binds cyclic oligoA (cOA) synthesized by Cas10 polymerase-cyclase and allosterically activates the effector, typically a promiscuous ribonuclease. Additionally, this signaling pathway includes a ring nuclease, often also a CARF domain (either the sensor itself or a specialized enzyme) that cleaves cOA and mitigates dormancy or death induction. We present a comprehensive census of CARF and SAVED domains in bacteria and archaea, and their sequence- and structure-based classification. There are 10 major families of CARF domains and multiple smaller groups that differ in structural features, association with distinct effectors, and presence or absence of the ring nuclease activity. By comparative genome analysis, we predict specific functions of CARF and SAVED domains and partition the CARF domains into those with both sensor and ring nuclease functions, and sensor-only ones. Several families of ring nucleases functionally associated with sensor-only CARF domains are also predicted.
Collapse
Affiliation(s)
- Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Albertas Timinskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Ayal B Gussow
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Virginijus Siksnys
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Česlovas Venclovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| |
Collapse
|
4
|
Brown S, Gauvin CC, Charbonneau AA, Burman N, Lawrence CM. Csx3 is a cyclic oligonucleotide phosphodiesterase associated with type III CRISPR-Cas that degrades the second messenger cA 4. J Biol Chem 2020; 295:14963-14972. [PMID: 32826317 DOI: 10.1074/jbc.ra120.014099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/16/2020] [Indexed: 12/27/2022] Open
Abstract
Cas10 is the signature gene for type III CRISPR-Cas surveillance complexes. Unlike type I and type II systems, type III systems do not require a protospacer adjacent motif and target nascent RNA associated with transcriptionally active DNA. Further, target RNA recognition activates the cyclase domain of Cas10, resulting in the synthesis of cyclic oligoadenylate second messengers. These second messengers are recognized by ancillary Cas proteins harboring CRISPR-associated Rossmann fold (CARF) domains and regulate the activities of these proteins in response to invading nucleic acid. Csx3 is a distant member of the CARF domain superfamily previously characterized as a Mn2+-dependent deadenylation exoribonuclease. However, its specific role in CRISPR-Cas defense remains to be determined. Here we show that Csx3 is strongly associated with type III systems and that Csx3 binds cyclic tetra-adenylate (cA4) second messenger with high affinity. Further, Csx3 harbors cyclic oligonucleotide phosphodiesterase activity that quickly degrades this cA4 signal. In addition, structural analysis identifies core elements that define the CARF domain fold, and the mechanistic basis for ring nuclease activity is discussed. Overall, the work suggests that Csx3 functions within CRISPR-Cas as a counterbalance to Cas10 to regulate the duration and amplitude of the cA4 signal, providing an off ramp from the programmed cell death pathway in cells that successfully cure viral infection.
Collapse
Affiliation(s)
- Sharidan Brown
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Colin C Gauvin
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA; Thermal Biology Institute, Montana State University, Bozeman, Montana, USA
| | - Alexander A Charbonneau
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA; Thermal Biology Institute, Montana State University, Bozeman, Montana, USA
| | - Nathaniel Burman
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - C Martin Lawrence
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA; Thermal Biology Institute, Montana State University, Bozeman, Montana, USA.
| |
Collapse
|
5
|
Athukoralage JS, McQuarrie S, Grüschow S, Graham S, Gloster TM, White MF. Tetramerisation of the CRISPR ring nuclease Crn3/Csx3 facilitates cyclic oligoadenylate cleavage. eLife 2020; 9:e57627. [PMID: 32597755 PMCID: PMC7371418 DOI: 10.7554/elife.57627] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/28/2020] [Indexed: 12/11/2022] Open
Abstract
Type III CRISPR systems detect foreign RNA and activate the cyclase domain of the Cas10 subunit, generating cyclic oligoadenylate (cOA) molecules that act as a second messenger to signal infection, activating nucleases that degrade the nucleic acid of both invader and host. This can lead to dormancy or cell death; to avoid this, cells need a way to remove cOA from the cell once a viral infection has been defeated. Enzymes specialised for this task are known as ring nucleases, but are limited in their distribution. Here, we demonstrate that the widespread CRISPR associated protein Csx3, previously described as an RNA deadenylase, is a ring nuclease that rapidly degrades cyclic tetra-adenylate (cA4). The enzyme has an unusual cooperative reaction mechanism involving an active site that spans the interface between two dimers, sandwiching the cA4 substrate. We propose the name Crn3 (CRISPR associated ring nuclease 3) for the Csx3 family.
Collapse
Affiliation(s)
- Januka S Athukoralage
- Biomedical Sciences Research Complex, School of Biology, University of St AndrewsSt AndrewsUnited Kingdom
| | - Stuart McQuarrie
- Biomedical Sciences Research Complex, School of Biology, University of St AndrewsSt AndrewsUnited Kingdom
| | - Sabine Grüschow
- Biomedical Sciences Research Complex, School of Biology, University of St AndrewsSt AndrewsUnited Kingdom
| | - Shirley Graham
- Biomedical Sciences Research Complex, School of Biology, University of St AndrewsSt AndrewsUnited Kingdom
| | - Tracey M Gloster
- Biomedical Sciences Research Complex, School of Biology, University of St AndrewsSt AndrewsUnited Kingdom
| | - Malcolm F White
- Biomedical Sciences Research Complex, School of Biology, University of St AndrewsSt AndrewsUnited Kingdom
| |
Collapse
|
6
|
Shah SA, Alkhnbashi OS, Behler J, Han W, She Q, Hess WR, Garrett RA, Backofen R. Comprehensive search for accessory proteins encoded with archaeal and bacterial type III CRISPR-cas gene cassettes reveals 39 new cas gene families. RNA Biol 2018; 16:530-542. [PMID: 29911924 PMCID: PMC6546367 DOI: 10.1080/15476286.2018.1483685] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A study was undertaken to identify conserved proteins that are encoded adjacent to cas gene cassettes of Type III CRISPR-Cas (Clustered Regularly Interspaced Short Palindromic Repeats – CRISPR associated) interference modules. Type III modules have been shown to target and degrade dsDNA, ssDNA and ssRNA and are frequently intertwined with cofunctional accessory genes, including genes encoding CRISPR-associated Rossman Fold (CARF) domains. Using a comparative genomics approach, and defining a Type III association score accounting for coevolution and specificity of flanking genes, we identified and classified 39 new Type III associated gene families. Most archaeal and bacterial Type III modules were seen to be flanked by several accessory genes, around half of which did not encode CARF domains and remain of unknown function. Northern blotting and interference assays in Synechocystis confirmed that one particular non-CARF accessory protein family was involved in crRNA maturation. Non-CARF accessory genes were generally diverse, encoding nuclease, helicase, protease, ATPase, transporter and transmembrane domains with some encoding no known domains. We infer that additional families of non-CARF accessory proteins remain to be found. The method employed is scalable for potential application to metagenomic data once automated pipelines for annotation of CRISPR-Cas systems have been developed. All accessory genes found in this study are presented online in a readily accessible and searchable format for researchers to audit their model organism of choice: http://accessory.crispr.dk.
Collapse
Affiliation(s)
- Shiraz A Shah
- a Copenhagen Prospective Studies on Asthma in Childhood , Herlev and Gentofte Hospital, University of Copenhagen , Denmark.,d Danish Archaea Centre, Department of Biology , University of Copenhagen , Copenhagen N , Denmark
| | - Omer S Alkhnbashi
- b Freiburg Bioinformatics Group, Department of Computer Science , University of Freiburg , Freiburg , Germany
| | - Juliane Behler
- c Genetics and Experimental Bioinformatics, Faculty of Biology , University of Freiburg, Freiburg , Germany
| | - Wenyuan Han
- d Danish Archaea Centre, Department of Biology , University of Copenhagen , Copenhagen N , Denmark
| | - Qunxin She
- d Danish Archaea Centre, Department of Biology , University of Copenhagen , Copenhagen N , Denmark
| | - Wolfgang R Hess
- c Genetics and Experimental Bioinformatics, Faculty of Biology , University of Freiburg, Freiburg , Germany.,e Freiburg Institute for Advanced Studies , University of Freiburg , Freiburg , Germany
| | - Roger A Garrett
- d Danish Archaea Centre, Department of Biology , University of Copenhagen , Copenhagen N , Denmark
| | - Rolf Backofen
- b Freiburg Bioinformatics Group, Department of Computer Science , University of Freiburg , Freiburg , Germany.,f BIOSS Centre for Biological Signaling Studies , University of Freiburg , Freiburg , Germany
| |
Collapse
|
7
|
Han W, Pan S, López-Méndez B, Montoya G, She Q. Allosteric regulation of Csx1, a type IIIB-associated CARF domain ribonuclease by RNAs carrying a tetraadenylate tail. Nucleic Acids Res 2017; 45:10740-10750. [PMID: 28977519 PMCID: PMC5737841 DOI: 10.1093/nar/gkx726] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/08/2017] [Indexed: 12/26/2022] Open
Abstract
CRISPR–Cas systems protect prokaryotes against invading viruses and plasmids. The system is associated with a large number of Cas accessory proteins among which many contain a CARF (CRISPR-associated Rossmann fold) domain implicated in ligand binding and a HEPN (higher eukaryotes and prokaryotes nucleotide-binding) nuclease domain. Here, such a dual domain protein, i.e. the Sulfolobus islandicus Csx1 (SisCsx1) was characterized. The enzyme exhibited metal-independent single-strand specific ribonuclease activity. In fact, SisCsx1 showed a basal RNase activity in the absence of ligand; upon the binding of an RNA ligand carrying four continuous adenosines at the 3′-end (3′-tetra-rA), the activated SisCsx1 degraded RNA substrate with a much higher turnover rate. Amino acid substitution mutants of SisCsx1 were obtained, and characterization of these mutant proteins showed that the CARF domain of the enzyme is responsible for binding to 3′-tetra-rA and the ligand binding strongly activates RNA cleavage by the HEPN domain. Since RNA polyadenylation is an important step in RNA decay in prokaryotes, and poly(A) RNAs can activate CARF domain proteins, the poly(A) RNA may function as an important signal in the cellular responses to viral infection and environmental stimuli, leading to degradation of both viral and host transcripts and eventually to cell dormancy or cell death.
Collapse
Affiliation(s)
- Wenyuan Han
- Archaea Center, Department of Biology, University of Copenhagen, Ole Maal?es Vej 5, Copenhagen Biocenter, DK-2200 Copenhagen N, Denmark
| | - Saifu Pan
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China
| | - Blanca López-Méndez
- Protein Structure & Function Programme, Protein Production and Characterization Platform, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Guillermo Montoya
- Macromolecular Crystallography Group, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Qunxin She
- Archaea Center, Department of Biology, University of Copenhagen, Ole Maal⊘es Vej 5, Copenhagen Biocenter, DK-2200 Copenhagen N, Denmark.,State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China
| |
Collapse
|
8
|
Niewoehner O, Garcia-Doval C, Rostøl JT, Berk C, Schwede F, Bigler L, Hall J, Marraffini LA, Jinek M. Type III CRISPR-Cas systems produce cyclic oligoadenylate second messengers. Nature 2017; 548:543-548. [PMID: 28722012 DOI: 10.1038/nature23467] [Citation(s) in RCA: 311] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 07/10/2017] [Indexed: 12/26/2022]
Abstract
In many prokaryotes, type III clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated (Cas) systems detect and degrade invasive genetic elements by an RNA-guided, RNA-targeting multisubunit interference complex. The CRISPR-associated protein Csm6 additionally contributes to interference by functioning as a standalone RNase that degrades invader RNA transcripts, but the mechanism linking invader sensing to Csm6 activity is not understood. Here we show that Csm6 proteins are activated through a second messenger generated by the type III interference complex. Upon target RNA binding by the interference complex, its Cas10 subunit converts ATP into a cyclic oligoadenylate product, which allosterically activates Csm6 by binding to its CRISPR-associated Rossmann fold (CARF) domain. CARF domain mutations that abolish allosteric activation inhibit Csm6 activity in vivo, and mutations in the Cas10 Palm domain phenocopy loss of Csm6. Together, these results point to an unprecedented mechanism for regulation of CRISPR interference that bears striking conceptual similarity to oligoadenylate signalling in mammalian innate immunity.
Collapse
Affiliation(s)
- Ole Niewoehner
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Carmela Garcia-Doval
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Jakob T Rostøl
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Avenue, New York, New York 10065-6399, USA
| | - Christian Berk
- Department of Chemistry and Applied Biosciences, Institute for Pharmaceutical Sciences, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Frank Schwede
- BIOLOG Life Science Institute GmbH, Flughafendamm 9a, D-28199 Bremen, Germany
| | - Laurent Bigler
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Jonathan Hall
- Department of Chemistry and Applied Biosciences, Institute for Pharmaceutical Sciences, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Luciano A Marraffini
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Avenue, New York, New York 10065-6399, USA
| | - Martin Jinek
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
9
|
Kazlauskiene M, Kostiuk G, Venclovas Č, Tamulaitis G, Siksnys V. A cyclic oligonucleotide signaling pathway in type III CRISPR-Cas systems. Science 2017; 357:605-609. [PMID: 28663439 DOI: 10.1126/science.aao0100] [Citation(s) in RCA: 317] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 06/22/2017] [Indexed: 12/26/2022]
Abstract
Type III CRISPR-Cas systems in prokaryotes provide immunity against invading nucleic acids through the coordinated degradation of transcriptionally active DNA and its transcripts by the Csm effector complex. The Cas10 subunit of the complex contains an HD nuclease domain that is responsible for DNA degradation and two Palm domains with elusive functions. In addition, Csm6, a ribonuclease that is not part of the complex, is also required to provide full immunity. We show here that target RNA binding by the Csm effector complex of Streptococcus thermophilus triggers Cas10 to synthesize cyclic oligoadenylates (cA n ; n = 2 to 6) by means of the Palm domains. Acting as signaling molecules, cyclic oligoadenylates bind Csm6 to activate its nonspecific RNA degradation. This cyclic oligoadenylate-based signaling pathway coordinates different components of CRISPR-Cas to prevent phage infection and propagation.
Collapse
Affiliation(s)
- Migle Kazlauskiene
- Institute of Biotechnology, Vilnius University, Saulėtekio Avenue 7, 10257 Vilnius, Lithuania
| | - Georgij Kostiuk
- Institute of Biotechnology, Vilnius University, Saulėtekio Avenue 7, 10257 Vilnius, Lithuania
| | - Česlovas Venclovas
- Institute of Biotechnology, Vilnius University, Saulėtekio Avenue 7, 10257 Vilnius, Lithuania
| | - Gintautas Tamulaitis
- Institute of Biotechnology, Vilnius University, Saulėtekio Avenue 7, 10257 Vilnius, Lithuania.
| | - Virginijus Siksnys
- Institute of Biotechnology, Vilnius University, Saulėtekio Avenue 7, 10257 Vilnius, Lithuania.
| |
Collapse
|
10
|
Chowdhury S, Carter J, Rollins MF, Golden SM, Jackson RN, Hoffmann C, Nosaka L, Bondy-Denomy J, Maxwell KL, Davidson AR, Fischer ER, Lander GC, Wiedenheft B. Structure Reveals Mechanisms of Viral Suppressors that Intercept a CRISPR RNA-Guided Surveillance Complex. Cell 2017; 169:47-57.e11. [PMID: 28340349 DOI: 10.1016/j.cell.2017.03.012] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/23/2017] [Accepted: 03/06/2017] [Indexed: 12/22/2022]
Abstract
Genetic conflict between viruses and their hosts drives evolution and genetic innovation. Prokaryotes evolved CRISPR-mediated adaptive immune systems for protection from viral infection, and viruses have evolved diverse anti-CRISPR (Acr) proteins that subvert these immune systems. The adaptive immune system in Pseudomonas aeruginosa (type I-F) relies on a 350 kDa CRISPR RNA (crRNA)-guided surveillance complex (Csy complex) to bind foreign DNA and recruit a trans-acting nuclease for target degradation. Here, we report the cryo-electron microscopy (cryo-EM) structure of the Csy complex bound to two different Acr proteins, AcrF1 and AcrF2, at an average resolution of 3.4 Å. The structure explains the molecular mechanism for immune system suppression, and structure-guided mutations show that the Acr proteins bind to residues essential for crRNA-mediated detection of DNA. Collectively, these data provide a snapshot of an ongoing molecular arms race between viral suppressors and the immune system they target.
Collapse
Affiliation(s)
- Saikat Chowdhury
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Joshua Carter
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - MaryClare F Rollins
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Sarah M Golden
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Ryan N Jackson
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Connor Hoffmann
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Lyn'Al Nosaka
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Joseph Bondy-Denomy
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Karen L Maxwell
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Alan R Davidson
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Elizabeth R Fischer
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
| | - Gabriel C Lander
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Blake Wiedenheft
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA.
| |
Collapse
|