1
|
Frantsuzova E, Bogun A, Kopylova O, Vetrova A, Solyanikova I, Streletskii R, Delegan Y. Genomic, Phylogenetic and Physiological Characterization of the PAH-Degrading Strain Gordonia polyisoprenivorans 135. BIOLOGY 2024; 13:339. [PMID: 38785821 PMCID: PMC11117675 DOI: 10.3390/biology13050339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
The strain Gordonia polyisoprenivorans 135 is able to utilize a wide range of aromatic compounds. The aim of this work was to study the features of genetic organization and biotechnological potential of the strain G. polyisoprenivorans 135 as a degrader of aromatic compounds. The study of the genome of the strain 135 and the pangenome of the G. polyisoprenivorans species revealed that some genes, presumably involved in PAH catabolism, are atypical for Gordonia and belong to the pangenome of Actinobacteria. Analyzing the intergenic regions of strain 135 alongside the "panIGRome" of G. polyisoprenivorans showed that some intergenic regions in strain 135 also differ from those located between the same pairs of genes in related strains. The strain G. polyisoprenivorans 135 in our work utilized naphthalene (degradation degree 39.43%) and grew actively on salicylate. At present, this is the only known strain of G. polyisoprenivorans with experimentally confirmed ability to utilize these compounds.
Collapse
Affiliation(s)
- Ekaterina Frantsuzova
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (E.F.); (A.B.); (O.K.); (A.V.); (I.S.)
| | - Alexander Bogun
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (E.F.); (A.B.); (O.K.); (A.V.); (I.S.)
| | - Olga Kopylova
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (E.F.); (A.B.); (O.K.); (A.V.); (I.S.)
- Pushchino Branch of Federal State Budgetary Educational Institution of Higher Education “Russian Biotechnology University (ROSBIOTECH)”, 142290 Pushchino, Moscow Region, Russia
| | - Anna Vetrova
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (E.F.); (A.B.); (O.K.); (A.V.); (I.S.)
| | - Inna Solyanikova
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (E.F.); (A.B.); (O.K.); (A.V.); (I.S.)
- Regional Microbiological Center, Belgorod State University, 308015 Belgorod, Russia
| | - Rostislav Streletskii
- Laboratory of Ecological Soil Science, Faculty of Soil Science, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Yanina Delegan
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (E.F.); (A.B.); (O.K.); (A.V.); (I.S.)
| |
Collapse
|
2
|
Behra PRK, Pettersson BMF, Ramesh M, Das S, Dasgupta S, Kirsebom LA. Comparative genome analysis of mycobacteria focusing on tRNA and non-coding RNA. BMC Genomics 2022; 23:704. [PMID: 36243697 PMCID: PMC9569102 DOI: 10.1186/s12864-022-08927-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Mycobacterium genus encompasses at least 192 named species, many of which cause severe diseases such as tuberculosis. Non-tuberculosis mycobacteria (NTM) can also infect humans and animals. Some are of emerging concern because they show high resistance to commonly used antibiotics while others are used and evaluated in bioremediation or included in anticancer vaccines. RESULTS We provide the genome sequences for 114 mycobacterial type strains and together with 130 available mycobacterial genomes we generated a phylogenetic tree based on 387 core genes and supported by average nucleotide identity (ANI) data. The 244 genome sequences cover most of the species constituting the Mycobacterium genus. The genome sizes ranged from 3.2 to 8.1 Mb with an average of 5.7 Mb, and we identified 14 new plasmids. Moreover, mycobacterial genomes consisted of phage-like sequences ranging between 0 and 4.64% dependent on mycobacteria while the number of IS elements varied between 1 and 290. Our data also revealed that, depending on the mycobacteria, the number of tRNA and non-coding (nc) RNA genes differ and that their positions on the chromosome varied. We identified a conserved core set of 12 ncRNAs, 43 tRNAs and 18 aminoacyl-tRNA synthetases among mycobacteria. CONCLUSIONS Phages, IS elements, tRNA and ncRNAs appear to have contributed to the evolution of the Mycobacterium genus where several tRNA and ncRNA genes have been horizontally transferred. On the basis of our phylogenetic analysis, we identified several isolates of unnamed species as new mycobacterial species or strains of known mycobacteria. The predicted number of coding sequences correlates with genome size while the number of tRNA, rRNA and ncRNA genes does not. Together these findings expand our insight into the evolution of the Mycobacterium genus and as such they establish a platform to understand mycobacterial pathogenicity, their evolution, antibiotic resistance/tolerance as well as the function and evolution of ncRNA among mycobacteria.
Collapse
Affiliation(s)
- Phani Rama Krishna Behra
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Centre, Box 596, SE-751 24 Uppsala, Sweden
| | - B. M. Fredrik Pettersson
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Centre, Box 596, SE-751 24 Uppsala, Sweden
| | - Malavika Ramesh
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Centre, Box 596, SE-751 24 Uppsala, Sweden
| | - Sarbashis Das
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Centre, Box 596, SE-751 24 Uppsala, Sweden
| | - Santanu Dasgupta
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Centre, Box 596, SE-751 24 Uppsala, Sweden
| | - Leif A. Kirsebom
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Centre, Box 596, SE-751 24 Uppsala, Sweden
| |
Collapse
|
3
|
Mai J, Rao C, Watt J, Sun X, Lin C, Zhang L, Liu J. Mycobacterium tuberculosis 6C sRNA binds multiple mRNA targets via C-rich loops independent of RNA chaperones. Nucleic Acids Res 2019; 47:4292-4307. [PMID: 30820540 PMCID: PMC6486639 DOI: 10.1093/nar/gkz149] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 02/19/2019] [Accepted: 02/22/2019] [Indexed: 12/15/2022] Open
Abstract
Bacterial small regulatory RNAs (sRNAs) are the most abundant class of post-transcriptional regulators and have been well studied in Gram-negative bacteria. Little is known about the functions and mechanisms of sRNAs in high GC Gram-positive bacteria including Mycobacterium and Streptomyces. Here, we performed an in-depth study of 6C sRNA of Mycobacterium tuberculosis, which is conserved among high GC Gram-positive bacteria. Forty-seven genes were identified as possible direct targets of 6C sRNA and 15 of them were validated using an in vivo translational lacZ fusion system. We found that 6C sRNA plays a pleotropic role and regulates genes involved in various cellular processes, including DNA replication and protein secretion. Mapping the interactions of 6C sRNA with mRNA targets panD and dnaB revealed that the C-rich loops of 6C sRNA act as direct binding sites to mRNA targets. Unlike in Gram-negative bacteria where RNA binding proteins Hfq and ProQ are required, the interactions of 6C sRNA with mRNAs appear to be independent of RNA chaperones. Our findings suggest that the multiple G–C pairings between single stranded regions are sufficient to establish stable interactions between 6C sRNA and mRNA targets, providing a mechanism for sRNAs in high GC Gram-positive bacteria.
Collapse
Affiliation(s)
- Juntao Mai
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Chitong Rao
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jacqueline Watt
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Xian Sun
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Chen Lin
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Lu Zhang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China.,Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, China
| | - Jun Liu
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Müller AU, Leibundgut M, Ban N, Weber-Ban E. Structure and functional implications of WYL domain-containing bacterial DNA damage response regulator PafBC. Nat Commun 2019; 10:4653. [PMID: 31604936 PMCID: PMC6789036 DOI: 10.1038/s41467-019-12567-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/16/2019] [Indexed: 01/15/2023] Open
Abstract
In mycobacteria, transcriptional activator PafBC is responsible for upregulating the majority of genes induced by DNA damage. Understanding the mechanism of PafBC activation is impeded by a lack of structural information on this transcription factor that contains a widespread, but poorly understood WYL domain frequently encountered in bacterial transcription factors. Here, we determine the crystal structure of Arthrobacter aurescens PafBC. The protein consists of two modules, each harboring an N-terminal helix-turn-helix DNA-binding domain followed by a central WYL and a C-terminal extension (WCX) domain. The WYL domains exhibit Sm-folds, while the WCX domains adopt ferredoxin-like folds, both characteristic for RNA-binding proteins. Our results suggest a mechanism of regulation in which WYL domain-containing transcription factors may be activated by binding RNA or other nucleic acid molecules. Using an in vivo mutational screen in Mycobacterium smegmatis, we identify potential co-activator binding sites on PafBC.
Collapse
Affiliation(s)
- Andreas U Müller
- ETH Zurich, Institute of Molecular Biology and Biophysics, CH-8093, Zurich, Switzerland
| | - Marc Leibundgut
- ETH Zurich, Institute of Molecular Biology and Biophysics, CH-8093, Zurich, Switzerland
| | - Nenad Ban
- ETH Zurich, Institute of Molecular Biology and Biophysics, CH-8093, Zurich, Switzerland
| | - Eilika Weber-Ban
- ETH Zurich, Institute of Molecular Biology and Biophysics, CH-8093, Zurich, Switzerland.
| |
Collapse
|
5
|
Behra PRK, Pettersson BMF, Das S, Dasgupta S, Kirsebom LA. Comparative genomics of Mycobacterium mucogenicum and Mycobacterium neoaurum clade members emphasizing tRNA and non-coding RNA. BMC Evol Biol 2019; 19:124. [PMID: 31215393 PMCID: PMC6582537 DOI: 10.1186/s12862-019-1447-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 05/27/2019] [Indexed: 02/07/2023] Open
Abstract
Background Mycobacteria occupy various ecological niches and can be isolated from soil, tap water and ground water. Several cause diseases in humans and animals. To get deeper insight into our understanding of mycobacterial evolution focusing on tRNA and non-coding (nc)RNA, we conducted a comparative genome analysis of Mycobacterium mucogenicum (Mmuc) and Mycobacterium neoaurum (Mneo) clade members. Results Genome sizes for Mmuc- and Mneo-clade members vary between 5.4 and 6.5 Mbps with the complete MmucT (type strain) genome encompassing 6.1 Mbp. The number of tRNA genes range between 46 and 79 (including one pseudo tRNA gene) with 39 tRNA genes common among the members of these clades, while additional tRNA genes were probably acquired through horizontal gene transfer. Selected tRNAs and ncRNAs (RNase P RNA, tmRNA, 4.5S RNA, Ms1 RNA and 6C RNA) are expressed, and the levels for several of these are higher in stationary phase compared to exponentially growing cells. The rare tRNAIleTAT isoacceptor and two for mycobacteria novel ncRNAs: the Lactobacillales-derived GOLLD RNA and a homolog to the antisense Salmonella typhimurium phage Sar RNA, were shown to be present and expressed in certain Mmuc-clade members. Conclusions Phages, IS elements, horizontally transferred tRNA gene clusters, and phage-derived ncRNAs appears to have influenced the evolution of the Mmuc- and Mneo-clades. While the number of predicted coding sequences correlates with genome size, the number of tRNA coding genes does not. The majority of the tRNA genes in mycobacteria are transcribed mainly from single genes and the levels of certain ncRNAs, including RNase P RNA (essential for the processing of tRNAs), are higher at stationary phase compared to exponentially growing cells. We provide supporting evidence that Ms1 RNA represents a mycobacterial 6S RNA variant. The evolutionary routes for the ncRNAs RNase P RNA, tmRNA and Ms1 RNA are different from that of the core genes. Electronic supplementary material The online version of this article (10.1186/s12862-019-1447-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Phani Rama Krishna Behra
- Department of Cell and Molecular Biology, Biomedical Centre, Box 596, SE-751 24, Uppsala, Sweden
| | - B M Fredrik Pettersson
- Department of Cell and Molecular Biology, Biomedical Centre, Box 596, SE-751 24, Uppsala, Sweden
| | - Sarbashis Das
- Department of Cell and Molecular Biology, Biomedical Centre, Box 596, SE-751 24, Uppsala, Sweden
| | - Santanu Dasgupta
- Department of Cell and Molecular Biology, Biomedical Centre, Box 596, SE-751 24, Uppsala, Sweden
| | - Leif A Kirsebom
- Department of Cell and Molecular Biology, Biomedical Centre, Box 596, SE-751 24, Uppsala, Sweden.
| |
Collapse
|
6
|
Baumgart M, Unthan S, Kloß R, Radek A, Polen T, Tenhaef N, Müller MF, Küberl A, Siebert D, Brühl N, Marin K, Hans S, Krämer R, Bott M, Kalinowski J, Wiechert W, Seibold G, Frunzke J, Rückert C, Wendisch VF, Noack S. Corynebacterium glutamicum Chassis C1*: Building and Testing a Novel Platform Host for Synthetic Biology and Industrial Biotechnology. ACS Synth Biol 2018; 7:132-144. [PMID: 28803482 DOI: 10.1021/acssynbio.7b00261] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Targeted top-down strategies for genome reduction are considered to have a high potential for providing robust basic strains for synthetic biology and industrial biotechnology. Recently, we created a library of 26 genome-reduced strains of Corynebacterium glutamicum carrying broad deletions in single gene clusters and showing wild-type-like biological fitness. Here, we proceeded with combinatorial deletions of these irrelevant gene clusters in two parallel orders, and the resulting library of 28 strains was characterized under various environmental conditions. The final chassis strain C1* carries a genome reduction of 13.4% (412 deleted genes) and shows wild-type-like growth behavior in defined medium with d-glucose as carbon and energy source. Moreover, C1* proves to be robust against several stresses (including oxygen limitation) and shows long-term growth stability under defined and complex medium conditions. In addition to providing a novel prokaryotic chassis strain, our results comprise a large strain library and a revised genome annotation list, which will be valuable sources for future systemic studies of C. glutamicum.
Collapse
Affiliation(s)
- Meike Baumgart
- Institute
of Bio- and Geosciences, IBG-1: Biotechnology, Systemic
Microbiology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Simon Unthan
- Institute
of Bio- and Geosciences, IBG-1: Biotechnology, Systems Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Ramona Kloß
- Institute
of Bio- and Geosciences, IBG-1: Biotechnology, Systems Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Andreas Radek
- Institute
of Bio- and Geosciences, IBG-1: Biotechnology, Systems Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Tino Polen
- Institute
of Bio- and Geosciences, IBG-1: Biotechnology, Systemic
Microbiology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Niklas Tenhaef
- Institute
of Bio- and Geosciences, IBG-1: Biotechnology, Systems Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Moritz Fabian Müller
- Institute
of Bio- and Geosciences, IBG-1: Biotechnology, Systems Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Andreas Küberl
- Institute
of Bio- and Geosciences, IBG-1: Biotechnology, Systemic
Microbiology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Daniel Siebert
- Institute
for Microbiology and Biotechnology, Ulm University, 89081 Ulm, Germany
| | - Natalie Brühl
- Institute
of Biochemistry, University of Cologne, 50923 Cologne, Germany
| | - Kay Marin
- Evonik Nutrition & Care GmbH, 45128 Essen, Germany
| | - Stephan Hans
- Evonik Nutrition & Care GmbH, 45128 Essen, Germany
| | - Reinhard Krämer
- Institute
of Biochemistry, University of Cologne, 50923 Cologne, Germany
| | - Michael Bott
- Institute
of Bio- and Geosciences, IBG-1: Biotechnology, Systemic
Microbiology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Jörn Kalinowski
- Microbial
Genomics and Biotechnology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - Wolfgang Wiechert
- Institute
of Bio- and Geosciences, IBG-1: Biotechnology, Systems Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
- Computational
Systems Biotechnology, RWTH Aachen University, 52062 Aachen, Germany
| | - Gerd Seibold
- Institute
for Microbiology and Biotechnology, Ulm University, 89081 Ulm, Germany
| | - Julia Frunzke
- Institute
of Bio- and Geosciences, IBG-1: Biotechnology, Systemic
Microbiology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Christian Rückert
- Microbial
Genomics and Biotechnology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - Volker F. Wendisch
- Chair
of Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, 33615 Bielefeld, Germany
| | - Stephan Noack
- Institute
of Bio- and Geosciences, IBG-1: Biotechnology, Systems Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|