1
|
Hayashi S. Variation of tRNA modifications with and without intron dependency. Front Genet 2024; 15:1460902. [PMID: 39296543 PMCID: PMC11408192 DOI: 10.3389/fgene.2024.1460902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 08/26/2024] [Indexed: 09/21/2024] Open
Abstract
tRNAs have recently gained attention for their novel regulatory roles in translation and for their diverse functions beyond translation. One of the most remarkable aspects of tRNA biogenesis is the incorporation of various chemical modifications, ranging from simple base or ribose methylation to more complex hypermodifications such as formation of queuosine and wybutosine. Some tRNAs are transcribed as intron-containing pre-tRNAs. While the majority of these modifications occur independently of introns, some are catalyzed in an intron-inhibitory manner, and in certain cases, they occur in an intron-dependent manner. This review focuses on pre-tRNA modification, including intron-containing pre-tRNA, in both intron-inhibitory and intron-dependent fashions. Any perturbations in the modification and processing of tRNAs may lead to a range of diseases and disorders, highlighting the importance of understanding these mechanisms in molecular biology and medicine.
Collapse
Affiliation(s)
- Sachiko Hayashi
- Graduate School of Science, University of Hyogo, Ako-gun, Japan
| |
Collapse
|
2
|
Li Z, Iida J, Shiimori M, Okamura K. Exportin-5 binding precedes 5'- and 3'-end processing of tRNA precursors in Drosophila. J Biol Chem 2024; 300:107632. [PMID: 39098529 PMCID: PMC11402290 DOI: 10.1016/j.jbc.2024.107632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 08/06/2024] Open
Abstract
Exportin5 (Exp5) is the major miRNA nuclear export factor and recognizes structural features of pre-miRNA hairpins, while it also exports other minihelix-containing RNAs. In Drosophila, Exp5 is suggested to play a major role in tRNA export because the gene encoding the canonical tRNA export factor Exportin-t is missing in its genome. To understand molecular functions of fly Exp5, we studied the Exp5/RNA interactome in the cell line S2R + using the crosslinking and immunoprecipitation (CLIP) technology. The CLIP experiment captured known substrates such as tRNAs and miRNAs and detected candidates of novel Exp5 substrates including various mRNAs and long non-coding RNAs (lncRNAs). Some mRNAs and lncRNAs enriched PAR-CLIP tags compared to their expression levels, suggesting selective binding of Exp5 to them. Intronless mRNAs tended to enrich PAR-CLIP tags; therefore, we proposed that Exp5 might play a role in the export of specific classes of mRNAs/lncRNAs. This result suggested that Drosophila Exp5 might have a wider variety of substrates than initially thought. Surprisingly, Exp5 CLIP reads often contained sequences corresponding to the flanking 5'-leaders and 3'-trailers of tRNAs, which were thought to be removed prior to nuclear export. In fact, we found pre-tRNAs before end-processing were present in the cytoplasm, supporting the idea that tRNA end-processing is a cytoplasmic event. In summary, our results provide a genome-wide list of Exp5 substrate candidates and suggest that flies may lack a mechanism to distinguish pre-tRNAs with or without the flanking sequences.
Collapse
Affiliation(s)
- Ze Li
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Junko Iida
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Masami Shiimori
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Katsutomo Okamura
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan; Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
3
|
Jiang X, Zhan L, Tang X. RNA modifications in physiology and pathology: Progressing towards application in clinical settings. Cell Signal 2024; 121:111242. [PMID: 38851412 DOI: 10.1016/j.cellsig.2024.111242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
The potential to modify individual nucleotides through chemical means in order to impact the electrostatic charge, hydrophobic properties, and base pairing of RNA molecules is harnessed in the medical application of stable synthetic RNAs like mRNA vaccines and synthetic small RNA molecules. These modifications are used to either increase or decrease the production of therapeutic proteins. Additionally, naturally occurring biochemical alterations of nucleotides play a role in regulating RNA metabolism and function, thereby modulating essential cellular processes. Research elucidating the mechanisms through which RNA modifications govern fundamental cellular functions in multicellular organisms has enhanced our comprehension of how irregular RNA modification profiles can lead to human diseases. Collectively, these fundamental scientific findings have unveiled the molecular and cellular functions of RNA modifications, offering new opportunities for therapeutic intervention and paving the way for a variety of innovative clinical strategies.
Collapse
Affiliation(s)
- Xue Jiang
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu 223005, China
| | - Lijuan Zhan
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu 223005, China.
| | - Xiaozhu Tang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
4
|
Delaunay S, Helm M, Frye M. RNA modifications in physiology and disease: towards clinical applications. Nat Rev Genet 2024; 25:104-122. [PMID: 37714958 DOI: 10.1038/s41576-023-00645-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2023] [Indexed: 09/17/2023]
Abstract
The ability of chemical modifications of single nucleotides to alter the electrostatic charge, hydrophobic surface and base pairing of RNA molecules is exploited for the clinical use of stable artificial RNAs such as mRNA vaccines and synthetic small RNA molecules - to increase or decrease the expression of therapeutic proteins. Furthermore, naturally occurring biochemical modifications of nucleotides regulate RNA metabolism and function to modulate crucial cellular processes. Studies showing the mechanisms by which RNA modifications regulate basic cell functions in higher organisms have led to greater understanding of how aberrant RNA modification profiles can cause disease in humans. Together, these basic science discoveries have unravelled the molecular and cellular functions of RNA modifications, have provided new prospects for therapeutic manipulation and have led to a range of innovative clinical approaches.
Collapse
Affiliation(s)
- Sylvain Delaunay
- Deutsches Krebsforschungszentrum (DKFZ), Division of Mechanisms Regulating Gene Expression, Heidelberg, Germany
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Michaela Frye
- Deutsches Krebsforschungszentrum (DKFZ), Division of Mechanisms Regulating Gene Expression, Heidelberg, Germany.
| |
Collapse
|
5
|
Li P, Wang W, Zhou R, Ding Y, Li X. The m 5 C methyltransferase NSUN2 promotes codon-dependent oncogenic translation by stabilising tRNA in anaplastic thyroid cancer. Clin Transl Med 2023; 13:e1466. [PMID: 37983928 PMCID: PMC10659772 DOI: 10.1002/ctm2.1466] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/15/2023] [Accepted: 10/19/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Translation dysregulation plays a crucial role in tumourigenesis and cancer progression. Oncogenic translation relies on the stability and availability of tRNAs for protein synthesis, making them potential targets for cancer therapy. METHODS This study performed immunohistochemistry analysis to assess NSUN2 levels in thyroid cancer. Furthermore, to elucidate the impact of NSUN2 on anaplastic thyroid cancer (ATC) malignancy, phenotypic assays were conducted. Drug inhibition and time-dependent plots were employed to analyse drug resistance. Liquid chromatography-mass spectrometry and bisulphite sequencing were used to investigate the m5 C methylation of tRNA at both global and single-base levels. Puromycin intake and high-frequency codon reporter assays verified the protein translation level. By combining mRNA and ribosome profiling, a series of downstream proteins and codon usage bias were identified. The acquired data were further validated by tRNA sequencing. RESULTS This study observed that the tRNA m5 C methyltransferase NSUN2 was up-regulated in ATC and is associated with dedifferentiation. Furthermore, NSUN2 knockdown repressed ATC formation, proliferation, invasion and migration both in vivo and in vitro. Moreover, NSUN2 repression enhanced the sensitivity of ATC to genotoxic drugs. Mechanically, NSUN2 catalyses tRNA structure-related m5 C modification, stabilising tRNA that maintains homeostasis and rapidly transports amino acids, particularly leucine. This stable tRNA has a substantially increased efficiency necessary to support a pro-cancer translation program including c-Myc, BCL2, RAB31, JUNB and TRAF2. Additionally, the NSUN2-mediated variations in m5C levels and different tRNA Leu iso-decoder families, partially contribute to a codon-dependent translation bias. Surprisingly, targeting NSUN2 disrupted the c-Myc to NSUN2 cycle in ATC. CONCLUSIONS This research revealed that a pro-tumour m5C methyltransferase, dynamic tRNA stability regulation and downstream oncogenes, c-Myc, elicits a codon-dependent oncogenic translation network that enhances ATC growth and formation. Furthermore, it provides new opportunities for targeting translation reprogramming in cancer cells.
Collapse
Affiliation(s)
- Peng Li
- Department of General SurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan ProvinceChina
- Department of Hepatobiliary SurgerySichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Wenlong Wang
- Department of General SurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan ProvinceChina
| | - Ruixin Zhou
- Department of General SurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Ying Ding
- Department of General SurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Xinying Li
- Department of General SurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan ProvinceChina
| |
Collapse
|
6
|
Schultz SK, Kothe U. Fluorescent labeling of tRNA for rapid kinetic interaction studies with tRNA-binding proteins. Methods Enzymol 2023; 692:103-126. [PMID: 37925176 DOI: 10.1016/bs.mie.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
Transfer RNA (tRNA) plays a critical role during translation and interacts with numerous proteins during its biogenesis, functional cycle and degradation. In particular, tRNA is extensively post-transcriptionally modified by various tRNA modifying enzymes which each target a specific nucleotide at different positions within tRNAs to introduce different chemical modifications. Fluorescent assays can be used to study the interaction between a protein and tRNA. Moreover, rapid mixing fluorescence stopped-flow assays provide insights into the kinetics of the tRNA-protein interaction in order to elucidate the tRNA binding mechanism for the given protein. A prerequisite for these studies is a fluorescently labeled molecule, such as fluorescent tRNA, wherein a change in fluorescence occurs upon protein binding. In this chapter, we discuss the utilization of tRNA modifications in order to introduce fluorophores at particular positions within tRNAs. Particularly, we focus on in vitro thiolation of a uridine at position 8 within tRNAs using the tRNA modification enzyme ThiI, followed by labeling of the thiol group with fluorescein. As such, this fluorescently labeled tRNA is primarily unmodified, with the exception of the thiolation modification to which the fluorophore is attached, and can be used as a substrate to study the binding of different tRNA-interacting factors. Herein, we discuss the example of studying the tRNA binding mechanism of the tRNA modifying enzymes TrmB and DusA using internally fluorescein-labeled tRNA.
Collapse
Affiliation(s)
- Sarah K Schultz
- Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada; Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Ute Kothe
- Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada; Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
7
|
Wang L, Lin S. Emerging functions of tRNA modifications in mRNA translation and diseases. J Genet Genomics 2022; 50:223-232. [PMID: 36309201 DOI: 10.1016/j.jgg.2022.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
tRNAs are essential modulators that recognize mRNA codons and bridge amino acids for mRNA translation. The tRNAs are heavily modified, which is essential for forming a complex secondary structure that facilitates codon recognition and mRNA translation. In recent years, studies have identified the regulatory roles of tRNA modifications in mRNA translation networks. Misregulation of tRNA modifications is closely related to the progression of developmental diseases and cancers. In this review, we summarize the tRNA biogenesis process and then discuss the effects and mechanisms of tRNA modifications on tRNA processing and mRNA translation. Finally, we provide a comprehensive overview of tRNA modifications' physiological and pathological functions, focusing on diseases including cancers.
Collapse
Affiliation(s)
- Lu Wang
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, China; Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Shuibin Lin
- Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
8
|
Nagato Y, Tomikawa C, Yamaji H, Soma A, Takai K. Intron-Dependent or Independent Pseudouridylation of Precursor tRNA Containing Atypical Introns in Cyanidioschyzon merolae. Int J Mol Sci 2022; 23:ijms232012058. [PMID: 36292915 PMCID: PMC9602550 DOI: 10.3390/ijms232012058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/25/2022] Open
Abstract
Eukaryotic precursor tRNAs (pre-tRNAs) often have an intron between positions 37 and 38 of the anticodon loop. However, atypical introns are found in some eukaryotes and archaea. In an early-diverged red alga Cyanidioschyzon merolae, the tRNAIle(UAU) gene contains three intron coding regions, located in the D-, anticodon, and T-arms. In this study, we focused on the relationship between the intron removal and formation of pseudouridine (Ψ), one of the most universally modified nucleosides. It had been reported that yeast Pus1 is a multiple-site-specific enzyme that synthesizes Ψ34 and Ψ36 in tRNAIle(UAU) in an intron-dependent manner. Unexpectedly, our biochemical experiments showed that the C. merolae ortholog of Pus1 pseudouridylated an intronless tRNAIle(UAU) and that the modification position was determined to be 55 which is the target of Pus4 but not Pus1 in yeast. Furthermore, unlike yeast Pus1, cmPus1 mediates Ψ modification at positions 34, 36, and/or 55 only in some specific intron-containing pre-tRNAIle(UAU) variants. cmPus4 was confirmed to be a single-site-specific enzyme that only converts U55 to Ψ, in a similar manner to yeast Pus4. cmPus4 did not catalyze the pseudouridine formation in pre-tRNAs containing an intron in the T-arm.
Collapse
Affiliation(s)
- Yasuha Nagato
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Ehime, Japan
| | - Chie Tomikawa
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Ehime, Japan
- Correspondence: ; Tel.: +81-89-927-9947
| | - Hideyuki Yamaji
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Ehime, Japan
| | - Akiko Soma
- Graduate School of Horticulture, Chiba University, Matsudo 271-8510, Chiba, Japan
| | - Kazuyuki Takai
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Ehime, Japan
| |
Collapse
|
9
|
Lateef OM, Akintubosun MO, Olaoba OT, Samson SO, Adamczyk M. Making Sense of "Nonsense" and More: Challenges and Opportunities in the Genetic Code Expansion, in the World of tRNA Modifications. Int J Mol Sci 2022; 23:938. [PMID: 35055121 PMCID: PMC8779196 DOI: 10.3390/ijms23020938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 01/09/2023] Open
Abstract
The evolutional development of the RNA translation process that leads to protein synthesis based on naturally occurring amino acids has its continuation via synthetic biology, the so-called rational bioengineering. Genetic code expansion (GCE) explores beyond the natural translational processes to further enhance the structural properties and augment the functionality of a wide range of proteins. Prokaryotic and eukaryotic ribosomal machinery have been proven to accept engineered tRNAs from orthogonal organisms to efficiently incorporate noncanonical amino acids (ncAAs) with rationally designed side chains. These side chains can be reactive or functional groups, which can be extensively utilized in biochemical, biophysical, and cellular studies. Genetic code extension offers the contingency of introducing more than one ncAA into protein through frameshift suppression, multi-site-specific incorporation of ncAAs, thereby increasing the vast number of possible applications. However, different mediating factors reduce the yield and efficiency of ncAA incorporation into synthetic proteins. In this review, we comment on the recent advancements in genetic code expansion to signify the relevance of systems biology in improving ncAA incorporation efficiency. We discuss the emerging impact of tRNA modifications and metabolism in protein design. We also provide examples of the latest successful accomplishments in synthetic protein therapeutics and show how codon expansion has been employed in various scientific and biotechnological applications.
Collapse
Affiliation(s)
- Olubodun Michael Lateef
- Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland; (O.M.L.); (M.O.A.); (S.O.S.)
| | | | - Olamide Tosin Olaoba
- Laboratory of Functional and Structural Biochemistry, Federal University of Sao Carlos, Sao Carlos 13565-905, SP, Brazil;
| | - Sunday Ocholi Samson
- Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland; (O.M.L.); (M.O.A.); (S.O.S.)
| | - Malgorzata Adamczyk
- Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland; (O.M.L.); (M.O.A.); (S.O.S.)
| |
Collapse
|
10
|
tRNA modifications and their potential roles in pancreatic cancer. Arch Biochem Biophys 2021; 714:109083. [PMID: 34785212 DOI: 10.1016/j.abb.2021.109083] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 12/23/2022]
Abstract
Since the breakthrough discovery of N6-methyladenosine (m6A), the field of RNA epitranscriptomics has attracted increasing interest in the biological sciences. Transfer RNAs (tRNAs) are extensively modified, and various modifications play a crucial role in the formation and stability of tRNA, which is universally required for accurate and efficient functioning of tRNA. Abnormal tRNA modification can lead to tRNA degradation or specific cleavage of tRNA into fragmented derivatives, thus affecting the translation process and frequently accompanying a variety of human diseases. Increasing evidence suggests that tRNA modification pathways are also misregulated in human cancers. In this review, we summarize tRNA modifications and their biological functions, describe the type and frequency of tRNA modification alterations in cancer, and highlight variations in tRNA-modifying enzymes and the multiple functions that they regulate in different types of cancers. Furthermore, the current implications and the potential role of tRNA modifications in the progression of pancreatic cancer are discussed. Collectively, this review describes recent advances in tRNA modification in cancers and its potential significance in pancreatic cancer. Further study of the mechanism of tRNA modifications in pancreatic cancer may provide possibilities for therapies targeting enzymes responsible for regulating tRNA modifications in pancreatic cancer.
Collapse
|
11
|
Kessler AC, Maraia RJ. The nuclear and cytoplasmic activities of RNA polymerase III, and an evolving transcriptome for surveillance. Nucleic Acids Res 2021; 49:12017-12034. [PMID: 34850129 PMCID: PMC8643620 DOI: 10.1093/nar/gkab1145] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/26/2021] [Accepted: 11/02/2021] [Indexed: 12/23/2022] Open
Abstract
A 1969 report that described biochemical and activity properties of the three eukaryotic RNA polymerases revealed Pol III as highly distinguishable, even before its transcripts were identified. Now known to be the most complex, Pol III contains several stably-associated subunits referred to as built-in transcription factors (BITFs) that enable highly efficient RNA synthesis by a unique termination-associated recycling process. In vertebrates, subunit RPC7(α/β) can be of two forms, encoded by POLR3G or POLR3GL, with differential activity. Here we review promoter-dependent transcription by Pol III as an evolutionary perspective of eukaryotic tRNA expression. Pol III also provides nonconventional functions reportedly by promoter-independent transcription, one of which is RNA synthesis from DNA 3'-ends during repair. Another is synthesis of 5'ppp-RNA signaling molecules from cytoplasmic viral DNA in a pathway of interferon activation that is dysfunctional in immunocompromised patients with mutations in Pol III subunits. These unconventional functions are also reviewed, including evidence that link them to the BITF subunits. We also review data on a fraction of the human Pol III transcriptome that evolved to include vault RNAs and snaRs with activities related to differentiation, and in innate immune and tumor surveillance. The Pol III of higher eukaryotes does considerably more than housekeeping.
Collapse
Affiliation(s)
- Alan C Kessler
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892 USA
| | - Richard J Maraia
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892 USA
| |
Collapse
|
12
|
Fagan SG, Helm M, Prehn JHM. tRNA-derived fragments: A new class of non-coding RNA with key roles in nervous system function and dysfunction. Prog Neurobiol 2021; 205:102118. [PMID: 34245849 DOI: 10.1016/j.pneurobio.2021.102118] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 01/12/2023]
Abstract
tRNA-derived small RNAs (tsRNA) are a recently identified family of non-coding RNA that have been associated with a variety of cellular functions including the regulation of protein translation and gene expression. Recent sequencing and bioinformatic studies have identified the broad spectrum of tsRNA in the nervous system and demonstrated that this new class of non-coding RNA is produced from tRNA by specific cleavage events catalysed by ribonucleases such as angiogenin and dicer. Evidence is also accumulating that production of tsRNA is increased during disease processes where they regulate stress responses, proteostasis, and neuronal survival. Mutations to tRNA cleaving and modifying enzymes have been implicated in several neurodegenerative disorders, and tsRNA levels in the blood are advancing as biomarkers for neurological disease. In this review we summarize the physiological importance of tsRNA in the central nervous system and their relevance to neurological disease.
Collapse
Affiliation(s)
- Steven G Fagan
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, St. Stephen'S Green, Dublin 2, Ireland; SFI FutureNeuro Research Centre, Royal College of Surgeons in Ireland, St. Stephen's Green, Dublin 2, Ireland
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences - IPBS, Johannes Gutenberg-University, 55128, Mainz, Germany
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, St. Stephen'S Green, Dublin 2, Ireland; SFI FutureNeuro Research Centre, Royal College of Surgeons in Ireland, St. Stephen's Green, Dublin 2, Ireland.
| |
Collapse
|
13
|
Porter JJ, Heil CS, Lueck JD. Therapeutic promise of engineered nonsense suppressor tRNAs. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 12:e1641. [PMID: 33567469 PMCID: PMC8244042 DOI: 10.1002/wrna.1641] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022]
Abstract
Nonsense mutations change an amino acid codon to a premature termination codon (PTC) generally through a single-nucleotide substitution. The generation of a PTC results in a defective truncated protein and often in severe forms of disease. Because of the exceedingly high prevalence of nonsense-associated diseases and a unifying mechanism, there has been a concerted effort to identify PTC therapeutics. Most clinical trials for PTC therapeutics have been conducted with small molecules that promote PTC read through and incorporation of a near-cognate amino acid. However, there is a need for PTC suppression agents that recode PTCs with the correct amino acid while being applicable to PTC mutations in many different genomic landscapes. With these characteristics, a single therapeutic will be able to treat several disease-causing PTCs. In this review, we will focus on the use of nonsense suppression technologies, in particular, suppressor tRNAs (sup-tRNAs), as possible therapeutics for correcting PTCs. Sup-tRNAs have many attractive qualities as possible therapeutic agents although there are knowledge gaps on their function in mammalian cells and technical hurdles that need to be overcome before their promise is realized. This article is categorized under: RNA Processing > tRNA Processing Translation > Translation Regulation.
Collapse
Affiliation(s)
- Joseph J. Porter
- Department of Pharmacology and PhysiologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Christina S. Heil
- Department of Pharmacology and PhysiologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - John D. Lueck
- Department of Pharmacology and PhysiologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
- Department of NeurologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
| |
Collapse
|
14
|
Zorn P, Misiak D, Gekle M, Köhn M. Identification and initial characterization of POLIII-driven transcripts by msRNA-sequencing. RNA Biol 2021; 18:1807-1817. [PMID: 33404286 PMCID: PMC8583065 DOI: 10.1080/15476286.2020.1871216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are powerful regulators of gene expression but medium-sized (50–300 nts in length) ncRNAs (msRNAs) are barely picked-up precisely by RNA-sequencing. Here we describe msRNA-sequencing (msRNAseq), a modified protocol that associated with a computational analyses pipeline identified about ~1800 msRNA loci, including over 300 putatively novel msRNAs, in human and murine cells. We focused on the identification and initial characterization of three POLIII-derived transcripts. The validation of these uncharacterized msRNAs identified an ncRNA in antisense orientation from the POLR3E locus transcribed by POLIII. This msRNA, termed POLAR (POLR3E Antisense RNA), has a strikingly short half-life, localizes to paraspeckles (PSPs) and associates with PSP-associated proteins indicating that msRNAseq identifies functional msRNAs. Thus, our analyses will pave the way for analysing the roles of msRNAs in cells, development and diseases.
Collapse
Affiliation(s)
| | - Danny Misiak
- Institute of Molecular Medicine, University of Halle-Wittenberg, Halle (Saale), Germany
| | - Michael Gekle
- Julius-Bernstein-Institute of Physiology, University of Halle-Wittenberg, Germany
| | | |
Collapse
|
15
|
Pan Y, Yan TM, Wang JR, Jiang ZH. The nature of the modification at position 37 of tRNAPhe correlates with acquired taxol resistance. Nucleic Acids Res 2021; 49:38-52. [PMID: 33290562 PMCID: PMC7797046 DOI: 10.1093/nar/gkaa1164] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/30/2020] [Accepted: 11/15/2020] [Indexed: 11/12/2022] Open
Abstract
Acquired drug resistance is a major obstacle in cancer therapy. Recent studies revealed that reprogramming of tRNA modifications modulates cancer survival in response to chemotherapy. However, dynamic changes in tRNA modification were not elucidated. In this study, comparative analysis of the human cancer cell lines and their taxol resistant strains based on tRNA mapping was performed by using UHPLC-MS/MS. It was observed for the first time in all three cell lines that 4-demethylwyosine (imG-14) substitutes for hydroxywybutosine (OHyW) due to tRNA-wybutosine synthesizing enzyme-2 (TYW2) downregulation and becomes the predominant modification at the 37th position of tRNAphe in the taxol-resistant strains. Further analysis indicated that the increase in imG-14 levels is caused by downregulation of TYW2. The time courses of the increase in imG-14 and downregulation of TYW2 are consistent with each other as well as consistent with the time course of the development of taxol-resistance. Knockdown of TYW2 in HeLa cells caused both an accumulation of imG-14 and reduction in taxol potency. Taken together, low expression of TYW2 enzyme promotes the cancer survival and resistance to taxol therapy, implying a novel mechanism for taxol resistance. Reduction of imG-14 deposition offers an underlying rationale to overcome taxol resistance in cancer chemotherapy.
Collapse
MESH Headings
- A549 Cells
- Base Sequence
- Cell Line, Tumor
- Chromatography, High Pressure Liquid
- Down-Regulation
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/physiology
- Female
- Gene Expression Regulation, Enzymologic
- Gene Knockdown Techniques
- Guanosine/analogs & derivatives
- Guanosine/chemistry
- Guanosine/metabolism
- HeLa Cells
- Humans
- Molecular Structure
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Nucleic Acid Conformation
- Ovarian Neoplasms/pathology
- Paclitaxel/pharmacology
- RNA Processing, Post-Transcriptional/genetics
- RNA, Neoplasm/chemistry
- RNA, Neoplasm/physiology
- RNA, Transfer, Phe/chemistry
- RNA, Transfer, Phe/physiology
- Tandem Mass Spectrometry
- Tumor Stem Cell Assay
Collapse
Affiliation(s)
- Yu Pan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Tong-Meng Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Jing-Rong Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| |
Collapse
|
16
|
Accornero F, Ross RL, Alfonzo JD. From canonical to modified nucleotides: balancing translation and metabolism. Crit Rev Biochem Mol Biol 2020; 55:525-540. [PMID: 32933330 DOI: 10.1080/10409238.2020.1818685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Every type of nucleic acid in cells may undergo some kind of post-replicative or post-transcriptional chemical modification. Recent evidence has highlighted their importance in biology and their chemical complexity. In the following pages, we will describe new discoveries of modifications, with a focus on tRNA and mRNA. We will highlight current challenges and advances in modification detection and we will discuss how changes in nucleotide post-transcriptional modifications may affect cell homeostasis leading to malfunction. Although, RNA modifications prevail in all forms of life, the present review will focus on eukaryotic systems, where the great degree of intracellular compartmentalization provides barriers and filters for the level at which a given RNA is modified and will of course affect its fate and function. Additionally, although we will mention rRNA modification and modifications of the mRNA 5'-CAP structure, this will only be discussed in passing, as many substantive reviews have been written on these subjects. Here we will not spend much time describing all the possible modifications that have been observed; truly a daunting task. For reference, Bujnicki and coworkers have created MODOMICS, a useful repository for all types of modifications and their associated enzymes. Instead we will discuss a few examples, which illustrate our arguments on the connection of modifications, metabolism and ultimately translation. The fact remains, a full understanding of the long reach of nucleic acid modifications in cells requires both a global and targeted study of unprecedented scale, which at the moment may well be limited only by technology.
Collapse
Affiliation(s)
- Federica Accornero
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA.,The Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Robert L Ross
- Department of Chemistry, Rieveschl Laboratories for Mass Spectrometry, University of Cincinnati, Cincinnati, OH, USA
| | - Juan D Alfonzo
- The Center for RNA Biology, The Ohio State University, Columbus, OH, USA.,Department of Microbiology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
17
|
Khalique A, Mattijssen S, Haddad AF, Chaudhry S, Maraia RJ. Targeting mitochondrial and cytosolic substrates of TRIT1 isopentenyltransferase: Specificity determinants and tRNA-i6A37 profiles. PLoS Genet 2020; 16:e1008330. [PMID: 32324744 PMCID: PMC7200024 DOI: 10.1371/journal.pgen.1008330] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 05/05/2020] [Accepted: 03/18/2020] [Indexed: 11/29/2022] Open
Abstract
The tRNA isopentenyltransferases (IPTases), which add an isopentenyl group to N6 of A37 (i6A37) of certain tRNAs, are among a minority of enzymes that modify cytosolic and mitochondrial tRNAs. Pathogenic mutations to the human IPTase, TRIT1, that decrease i6A37 levels, cause mitochondrial insufficiency that leads to neurodevelopmental disease. We show that TRIT1 encodes an amino-terminal mitochondrial targeting sequence (MTS) that directs mitochondrial import and modification of mitochondrial-tRNAs. Full understanding of IPTase function must consider the tRNAs selected for modification, which vary among species, and in their cytosol and mitochondria. Selection is principally via recognition of the tRNA A36-A37-A38 sequence. An exception is unmodified tRNATrpCCA-A37-A38 in Saccharomyces cerevisiae, whereas tRNATrpCCA is readily modified in Schizosaccharomyces pombe, indicating variable IPTase recognition systems and suggesting that additional exceptions may account for some of the tRNA-i6A37 paucity in higher eukaryotes. Yet TRIT1 had not been characterized for restrictive type substrate-specific recognition. We used i6A37-dependent tRNA-mediated suppression and i6A37-sensitive northern blotting to examine IPTase activities in S. pombe and S. cerevisiae lacking endogenous IPTases on a diversity of tRNA-A36-A37-A38 substrates. Point mutations to the TRIT1 MTS that decrease human mitochondrial import, decrease modification of mitochondrial but not cytosolic tRNAs in both yeasts. TRIT1 exhibits clear substrate-specific restriction against a cytosolic-tRNATrpCCA-A37-A38. Additional data suggest that position 32 of tRNATrpCCA is a conditional determinant for substrate-specific i6A37 modification by the restrictive IPTases, Mod5 and TRIT1. The cumulative biochemical and phylogenetic sequence analyses provide new insights into IPTase activities and determinants of tRNA-i6A37 profiles in cytosol and mitochondria.
Collapse
Affiliation(s)
- Abdul Khalique
- Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, of the National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sandy Mattijssen
- Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, of the National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alexander F. Haddad
- Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, of the National Institutes of Health, Bethesda, Maryland, United States of America
| | - Shereen Chaudhry
- Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, of the National Institutes of Health, Bethesda, Maryland, United States of America
| | - Richard J. Maraia
- Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, of the National Institutes of Health, Bethesda, Maryland, United States of America
- Commissioned Corps, United States Public Health Service, Rockville, Maryland, United States of America
| |
Collapse
|
18
|
Song J, Zhuang Y, Zhu C, Meng H, Lu B, Xie B, Peng J, Li M, Yi C. Differential roles of human PUS10 in miRNA processing and tRNA pseudouridylation. Nat Chem Biol 2019; 16:160-169. [PMID: 31819270 DOI: 10.1038/s41589-019-0420-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 10/27/2019] [Indexed: 11/09/2022]
Abstract
Pseudouridine synthases (PUSs) are responsible for installation of pseudouridine (Ψ) modification in RNA. However, the activity and function of the PUS enzymes remain largely unexplored. Here we focus on human PUS10 and find that it co-expresses with the microprocessor (DROSHA-DGCR8 complex). Depletion of PUS10 results in a marked reduction of the expression level of a large number of mature miRNAs and concomitant accumulation of unprocessed primary microRNAs (pri-miRNAs) in multiple human cells. Mechanistically, PUS10 directly binds to pri-miRNAs and interacts with the microprocessor to promote miRNA biogenesis. Unexpectedly, this process is independent of the catalytic activity of PUS10. Additionally, we develop a sequencing method to profile Ψ in the tRNAome and report PUS10-dependent Ψ sites in tRNA. Collectively, our findings reveal differential functions of PUS10 in nuclear miRNA processing and in cytoplasmic tRNA pseudouridylation.
Collapse
Affiliation(s)
- Jinghui Song
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Yuan Zhuang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Chenxu Zhu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.,Ludwig Institute for Cancer Research, La Jolla, CA, USA
| | - Haowei Meng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Bo Lu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Bingteng Xie
- Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
| | - Jinying Peng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Mo Li
- Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China.
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China. .,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China. .,Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
| |
Collapse
|
19
|
Ramos J, Han L, Li Y, Hagelskamp F, Kellner SM, Alkuraya FS, Phizicky EM, Fu D. Formation of tRNA Wobble Inosine in Humans Is Disrupted by a Millennia-Old Mutation Causing Intellectual Disability. Mol Cell Biol 2019; 39:e00203-19. [PMID: 31263000 PMCID: PMC6751630 DOI: 10.1128/mcb.00203-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/11/2019] [Accepted: 06/27/2019] [Indexed: 12/20/2022] Open
Abstract
The formation of inosine at the wobble position of eukaryotic tRNAs is an essential modification catalyzed by the ADAT2/ADAT3 complex. In humans, a valine-to-methionine mutation (V144M) in ADAT3 that originated ∼1,600 years ago is the most common cause of autosomal recessive intellectual disability (ID) in Arabia. While the mutation is predicted to affect protein structure, the molecular and cellular effects of the V144M mutation are unknown. Here, we show that cell lines derived from ID-affected individuals expressing only ADAT3-V144M exhibit decreased wobble inosine in certain tRNAs. Moreover, extracts from the same cell lines of ID-affected individuals display a severe reduction in tRNA deaminase activity. While ADAT3-V144M maintains interactions with ADAT2, the purified ADAT2/3-V144M complexes exhibit defects in activity. Notably, ADAT3-V144M exhibits an increased propensity to form aggregates associated with cytoplasmic chaperonins that can be suppressed by ADAT2 overexpression. These results identify a key role for ADAT2-dependent folding of ADAT3 in wobble inosine modification and indicate that proper formation of an active ADAT2/3 complex is crucial for proper neurodevelopment.
Collapse
Affiliation(s)
- Jillian Ramos
- Department of Biology, University of Rochester, Rochester, New York, USA
- Center for RNA Biology, University of Rochester and University of Rochester Medical Center, Rochester, New York, USA
| | - Lu Han
- Center for RNA Biology, University of Rochester and University of Rochester Medical Center, Rochester, New York, USA
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York, USA
| | - Yan Li
- Department of Biology, University of Rochester, Rochester, New York, USA
- Center for RNA Biology, University of Rochester and University of Rochester Medical Center, Rochester, New York, USA
| | - Felix Hagelskamp
- Department of Chemistry, Ludwig Maximilians Universität München, Munich, Germany
| | - Stefanie M Kellner
- Department of Chemistry, Ludwig Maximilians Universität München, Munich, Germany
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Eric M Phizicky
- Center for RNA Biology, University of Rochester and University of Rochester Medical Center, Rochester, New York, USA
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York, USA
| | - Dragony Fu
- Department of Biology, University of Rochester, Rochester, New York, USA
- Center for RNA Biology, University of Rochester and University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
20
|
Schaffer AE, Pinkard O, Coller JM. tRNA Metabolism and Neurodevelopmental Disorders. Annu Rev Genomics Hum Genet 2019; 20:359-387. [PMID: 31082281 DOI: 10.1146/annurev-genom-083118-015334] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
tRNAs are short noncoding RNAs required for protein translation. The human genome includes more than 600 putative tRNA genes, many of which are considered redundant. tRNA transcripts are subject to tightly controlled, multistep maturation processes that lead to the removal of flanking sequences and the addition of nontemplated nucleotides. Furthermore, tRNAs are highly structured and posttranscriptionally modified. Together, these unique features have impeded the adoption of modern genomics and transcriptomics technologies for tRNA studies. Nevertheless, it has become apparent from human neurogenetic research that many tRNA biogenesis proteins cause brain abnormalities and other neurological disorders when mutated. The cerebral cortex, cerebellum, and peripheral nervous system show defects, impairment, and degeneration upon tRNA misregulation, suggesting that they are particularly sensitive to changes in tRNA expression or function. An integrated approach to identify tRNA species and contextually characterize tRNA function will be imperative to drive future tool development and novel therapeutic design for tRNA-associated disorders.
Collapse
Affiliation(s)
- Ashleigh E Schaffer
- Department of Genetics and Genome Sciences and Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio 44106, USA;
| | - Otis Pinkard
- Department of Genetics and Genome Sciences and Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio 44106, USA;
| | - Jeffery M Coller
- Department of Genetics and Genome Sciences and Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio 44106, USA;
| |
Collapse
|
21
|
Lant JT, Berg MD, Heinemann IU, Brandl CJ, O'Donoghue P. Pathways to disease from natural variations in human cytoplasmic tRNAs. J Biol Chem 2019; 294:5294-5308. [PMID: 30643023 DOI: 10.1074/jbc.rev118.002982] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Perfectly accurate translation of mRNA into protein is not a prerequisite for life. Resulting from errors in protein synthesis, mistranslation occurs in all cells, including human cells. The human genome encodes >600 tRNA genes, providing both the raw material for genetic variation and a buffer to ensure that resulting translation errors occur at tolerable levels. On the basis of data from the 1000 Genomes Project, we highlight the unanticipated prevalence of mistranslating tRNA variants in the human population and review studies on synthetic and natural tRNA mutations that cause mistranslation or de-regulate protein synthesis. Although mitochondrial tRNA variants are well known to drive human diseases, including developmental disorders, few studies have revealed a role for human cytoplasmic tRNA mutants in disease. In the context of the unexpectedly large number of tRNA variants in the human population, the emerging literature suggests that human diseases may be affected by natural tRNA variants that cause mistranslation or de-regulate tRNA expression and nucleotide modification. This review highlights examples relevant to genetic disorders, cancer, and neurodegeneration in which cytoplasmic tRNA variants directly cause or exacerbate disease and disease-linked phenotypes in cells, animal models, and humans. In the near future, tRNAs may be recognized as useful genetic markers to predict the onset or severity of human disease.
Collapse
Affiliation(s)
| | | | | | | | - Patrick O'Donoghue
- From the Departments of Biochemistry and .,Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
22
|
Affiliation(s)
- Patrick O’Donoghue
- Department of Biochemistry, The University of Western Ontario, London, ON, Canada
- Department of Chemistry, The University of Western Ontario, London, ON, Canada
| | - Jiqiang Ling
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Department of Chemistry, Yale University, New Haven, CT, USA
| |
Collapse
|
23
|
Differentially Expressed tRNA-Derived Small RNAs Co-Sediment Primarily with Non-Polysomal Fractions in Drosophila. Genes (Basel) 2017; 8:genes8110333. [PMID: 29156628 PMCID: PMC5704246 DOI: 10.3390/genes8110333] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 12/17/2022] Open
Abstract
Recent studies point to the existence of poorly characterized small regulatory RNAs generated from mRNAs, rRNAs and tRNAs. To explore the subcellular location of tRNA-derived small RNAs, 0–1 and 7–8 h Drosophila embryos were fractionated on sucrose density gradients. Analysis of 12,553,921 deep-sequencing reads from unfractionated and fractionated Drosophila embryos has revealed that tRFs, which are detected mainly from the 5’ends of tRNAs, co-sediment with the non-polysomal fractions. Interestingly, the expression levels of a subset of tRFs change temporally following the maternal-to-zygotic transition in embryos. We detected non-polysomal association of tRFs in S2 cells as well. Differential tRF expression pattern points to developmental significance at the organismal level. These results suggest that tRFs are associated primarily with the non-polysomal complexes in Drosophila embryos and S2 cells.
Collapse
|