1
|
Rusin LY. Evolution of homology: From archetype towards a holistic concept of cell type. J Morphol 2023; 284:e21569. [PMID: 36789784 DOI: 10.1002/jmor.21569] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/10/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
The concept of homology lies in the heart of comparative biological science. The distinction between homology as structure and analogy as function has shaped the evolutionary paradigm for a century and formed the axis of comparative anatomy and embryology, which accept the identity of structure as a ground measure of relatedness. The advent of single-cell genomics overturned the classical view of cell homology by establishing a backbone regulatory identity of cell types, the basic biological units bridging the molecular and phenotypic dimensions, to reveal that the cell is the most flexible unit of living matter and that many approaches of classical biology need to be revised to understand evolution and diversity at the cellular level. The emerging theory of cell types explicitly decouples cell identity from phenotype, essentially allowing for the divergence of evolutionarily related morphotypes beyond recognition, as well as it decouples ontogenetic cell lineage from cell-type phylogeny, whereby explicating that cell types can share common descent regardless of their structure, function or developmental origin. The article succinctly summarizes current progress and opinion in this field and formulates a more generalistic view of biological cell types as avatars, transient or terminal cell states deployed in a continuum of states by the developmental programme of one and the same omnipotent cell, capable of changing or combining identities with distinct evolutionary histories or inventing ad hoc identities that never existed in evolution or development. It highlights how the new logic grounded in the regulatory nature of cell identity transforms the concepts of cell homology and phenotypic stability, suggesting that cellular evolution is inherently and massively network-like, with one-to-one homologies being rather uncommon and restricted to shallower levels of the animal tree of life.
Collapse
Affiliation(s)
- Leonid Y Rusin
- Laboratory for Mathematic Methods and Models in Bioinformatics, Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, Russia
- EvoGenome Analytics LLC, Odintsovo, Moscow Region, Russia
| |
Collapse
|
2
|
Bao Y, Wu S, Yang T, Wang Z, Wang Y, Jiang X, Ma H. Analysis of long non-coding RNA expression profile of bovine monocyte-macrophage infected by Mycobacterium avium subsp. paratuberculosis. BMC Genomics 2022; 23:768. [PMID: 36418939 PMCID: PMC9685057 DOI: 10.1186/s12864-022-08997-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of paratuberculosis. As a potential zoonotic pathogen, MAP also seriously threatens human health and social security. At present, long non-coding RNA (lncRNA) has attracted wide attention as an useful biomarker in various diseases. Therefore, our study analyzed the lncRNA expression profiles and lncRNA-mRNA regulatory network of MAP infected bovine monocytes-macrophages and uninfected bovine cells by high-throughput sequencing. A total of 4641 differentially expressed lncRNAs genes were identified, including 3111 up-regulated genes and 1530 down-regulated genes. In addition, lncRNA-mRNA interaction analysis was performed to predict the target genes of lncRNA. Among them, after MAP infection, 86 lncRNAs targeted to mRNA, of which only 6 genes were significantly different. The results of Gene Ontology (GO) enrichment analysis showed that the differentially expressed genes significantly enriched in functional groups were related to immune regulation. Multiple signal pathways including NF-κB, NOD-like receptor, Cytokine-cytokine receptor, Toll-like receptor signaling pathway, Chemokine signaling pathway, and other important biochemical, metabolic and signal transduction pathways were enriched in Kyoto Encyclopedia of Genes and Genomes (KEGG). In this study, analysis of macrophage transcriptomes in response to MAP infection is expected to provide key information to deeply understand role of the pathogen in initiating an inappropriate and persistent infection in susceptible hosts and molecular mechanisms that might underlie the early phases of paratuberculosis.
Collapse
Affiliation(s)
- Yanhong Bao
- grid.464353.30000 0000 9888 756XCollege of Life Sciences, Jilin Agricultural University, Xincheng Street No.2888, Changchun, 130118 China
| | - Shuiyin Wu
- grid.464353.30000 0000 9888 756XCollege of Life Sciences, Jilin Agricultural University, Xincheng Street No.2888, Changchun, 130118 China
| | - Tianze Yang
- grid.464353.30000 0000 9888 756XCollege of Life Sciences, Jilin Agricultural University, Xincheng Street No.2888, Changchun, 130118 China
| | - Zi Wang
- grid.411647.10000 0000 8547 6673College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, 028000 China
| | - Yiming Wang
- grid.464353.30000 0000 9888 756XCollege of Animal Medicine, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118 China
| | - Xiuyun Jiang
- grid.464353.30000 0000 9888 756XCollege of Life Sciences, Jilin Agricultural University, Xincheng Street No.2888, Changchun, 130118 China ,grid.440668.80000 0001 0006 0255College of Life Sciences, Changchun Sci-Tech University, Changchun, 130600 P.R. China
| | - Hongxia Ma
- grid.464353.30000 0000 9888 756XCollege of Animal Medicine, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118 China ,grid.464353.30000 0000 9888 756XThe Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118 China ,grid.464353.30000 0000 9888 756XThe Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118 China
| |
Collapse
|
3
|
Genome-wide analysis of long noncoding RNAs, 24-nt siRNAs, DNA methylation and H3K27me3 marks in Brassica rapa. PLoS One 2021; 16:e0242530. [PMID: 33788851 PMCID: PMC8011741 DOI: 10.1371/journal.pone.0242530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/18/2021] [Indexed: 11/30/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are RNA fragments that generally do not code for a protein but are involved in epigenetic gene regulation. In this study, lncRNAs of Brassica rapa were classified into long intergenic noncoding RNAs, natural antisense RNAs, and intronic noncoding RNAs and their expression analyzed in relation to genome-wide 24-nt small interfering RNAs (siRNAs), DNA methylation, and histone H3 lysine 27 trimethylation marks (H3K27me3). More than 65% of the lncRNAs analyzed consisted of one exon, and more than 55% overlapped with inverted repeat regions (IRRs). Overlap of lncRNAs with IRRs or genomic regions encoding for 24-nt siRNAs resulted in increased DNA methylation levels when both were present. LncRNA did not overlap greatly with H3K27me3 marks, but the expression level of intronic noncoding RNAs that did coincide with H3K27me3 marks was higher than without H3K27me3 marks. The Brassica genus comprises important vegetables and oil seed crops grown across the world. B. rapa is a diploid (AA genome) thought to be one of the ancestral species of both B. juncea (AABB genome) and B. napus (AACC) through genome merging (allotetrapolyploidization). Complex genome restructuring and epigenetic alterations are thought to be involved in these allotetrapolyploidization events. Comparison of lncRNAs between B. rapa and B. nigra, B. oleracea, B. juncea, and B. napus showed the highest conservation with B. oleracea. This study presents a comprehensive analysis of the epigenome structure of B. rapa at multi-epigenetic levels (siRNAs, DNA methylation, H3K27me3, and lncRNAs) and identified a suite of candidate lncRNAs that may be epigenetically regulated in the Brassica genus.
Collapse
|
4
|
Long Noncoding RNA NEAT1 Regulates TGF- β2-Induced Epithelial-Mesenchymal Transition of Lens Epithelial Cells through the miR-34a/Snail1 and miR-204/Zeb1 Pathways. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8352579. [PMID: 32596382 PMCID: PMC7284955 DOI: 10.1155/2020/8352579] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/02/2020] [Indexed: 02/07/2023]
Abstract
The aim of this study was to explore whether the long noncoding RNA nuclear paraspeckle assembly transcript 1 (NEAT1)/miR-34a/Snail1 and NEAT1/miR-204/Zeb1 pathways are involved in epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs). Primary human LECs (HLECs) were separated and cultured. Our results identified that TGF-β2 induces NEAT1 overexpression in a dose-dependent manner and a time-dependent manner. Additionally, TGF-β2 induced downregulation of E-cadherin and upregulation of fibronectin in primary HLECs through a NEAT1-dependent mechanism. Microarray analysis showed that NEAT1 overexpression inhibited the miR-34a and miR-204 levels in the LECs. The expression of miR-34a and miR-204 was decreased, and the levels of Snail1 and Zeb1 were elevated in human posterior capsule opacification- (PCO-) attached LECs and the LECs obtained from anterior subcapsular cataract (ASC) by quantitative RT-PCR (qRT-PCR). Mechanistic studies revealed that NEAT1 negatively regulates miR-34a or miR-204, and miR-34a or miR-204 directly targets Snail1 or Zeb1 by luciferase assay and RNA-binding protein immunoprecipitation assay, respectively. Overall, the NEAT1/miR-34a/Snail1 and NEAT1/miR-204/Zeb1 pathways are involved in TGF-β2-induced EMT of HLECs. In summary, TGF-β2 induces NEAT1 overexpression, which in turn suggests that NEAT1 acts as a ceRNA targeting Snail1 or Zeb1 by binding miR-34a or miR-204, and promotes the progression of EMT of LECs.
Collapse
|
5
|
Erwin DH. The origin of animal body plans: a view from fossil evidence and the regulatory genome. Development 2020; 147:147/4/dev182899. [DOI: 10.1242/dev.182899] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
ABSTRACT
The origins and the early evolution of multicellular animals required the exploitation of holozoan genomic regulatory elements and the acquisition of new regulatory tools. Comparative studies of metazoans and their relatives now allow reconstruction of the evolution of the metazoan regulatory genome, but the deep conservation of many genes has led to varied hypotheses about the morphology of early animals and the extent of developmental co-option. In this Review, I assess the emerging view that the early diversification of animals involved small organisms with diverse cell types, but largely lacking complex developmental patterning, which evolved independently in different bilaterian clades during the Cambrian Explosion.
Collapse
Affiliation(s)
- Douglas H. Erwin
- Department of Paleobiology, MRC-121, National Museum of Natural History, PO Box 37012, Washington, DC 20013-7012, USA
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| |
Collapse
|
6
|
Roncarati R, Lupini L, Shankaraiah RC, Negrini M. The Importance of microRNAs in RAS Oncogenic Activation in Human Cancer. Front Oncol 2019; 9:988. [PMID: 31612113 PMCID: PMC6777413 DOI: 10.3389/fonc.2019.00988] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022] Open
Abstract
microRNAs (miRNAs) regulate gene expression by modulating the translation of protein-coding RNAs. Their aberrant expression is involved in various human diseases, including cancer. Here, we summarize the experimental pieces of evidence that proved how dysregulated miRNA expression can lead to RAS (HRAS, KRAS, or NRAS) activation irrespective of their oncogenic mutations. These findings revealed relevant pathogenic mechanisms as well as mechanisms of resistance to target therapies. Based on this knowledge, potential approaches for the control of RAS oncogenic activation can be envisioned.
Collapse
Affiliation(s)
- Roberta Roncarati
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.,CNR, Institute of Genetics and Biomedical Research, National Research Council of Italy, Milan, Italy
| | - Laura Lupini
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Ram C Shankaraiah
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Massimo Negrini
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
7
|
Long Noncoding RNA MALAT1 Acts as a Competing Endogenous RNA to Regulate TGF- β2 Induced Epithelial-Mesenchymal Transition of Lens Epithelial Cells by a MicroRNA-26a-Dependent Mechanism. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1569638. [PMID: 31143769 PMCID: PMC6501259 DOI: 10.1155/2019/1569638] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 03/31/2019] [Accepted: 04/08/2019] [Indexed: 02/07/2023]
Abstract
The aim of the present study was to characterize whether the long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1)/miR-26a/Smad4 axis is involved in epithelial–mesenchymal transition (EMT) of lens epithelial cells (LECs). Primary human LECs were separated and cultured. Microarray analysis showed that a total of 568 lncRNAs are differentially expressed in primary HLECs in the presence of TGF-β2 and MALAT1 is mostly significantly dysregulated lncRNAs, which is increased by nearly 17-fold. In addition, upregulation of MALAT1 and downregulation of miR-26a were detected in human posterior capsule opacification (PCO) attached LECs and the LECs obtained from patients with anterior polar cataracts by quantitative RT-PCR (qRT-PCR). Next, our results showed that TGF-β2 induces overexpression of EMT markers in primary HLECs via a MALAT1-dependent mechanism. The mechanism is that MALAT1 negatively regulates miR-26a and miR-26a directly targets Smad4 by luciferase reporter assays and RNA-binding protein immunoprecipitation assay. In summary, TGF-β2 induces MALAT1 overexpression, which in turn MALAT1 acts as a ceRNA targeting Smad4 by binding miR-26a and promotes the progression of EMT of LECs.
Collapse
|