1
|
Lian S, Liu P, Li X, Lv G, Song J, Zhang H, Wu R, Wang D, Wang J. BLV-miR-B1-5p Promotes Staphylococcus aureus Adhesion to Mammary Epithelial Cells by Targeting MUC1. Animals (Basel) 2023; 13:3811. [PMID: 38136848 PMCID: PMC10741194 DOI: 10.3390/ani13243811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Bovine leukemia virus (BLV) is widely prevalent worldwide and can persistently infect mammary epithelial cells in dairy cows, leading to reduced cellular antimicrobial capacity. BLV-encoded microRNAs (BLV-miRNAs) can modify host genes and promote BLV replication. We previously showed that BLV-miR-B1-5p significantly promoted Staphylococcus aureus (S. aureus) adhesion to bovine mammary epithelial (MAC-T) cells; however, the pathway responsible for this effect remained unclear. This study aims to examine how BLV-miR-B1-5p promotes S. aureus adhesion to MAC-T cells via miRNA target gene prediction and validation. Target site prediction showed that BLV-miR-B1-5p could target the mucin family gene mucin 1 (MUC1). Real-time polymerase chain reaction, immunofluorescence, and dual luciferase reporter assay further confirmed that BLV-miR-B1-5p could target and inhibit the expression of MUC1 in bovine MAC-T cells while interfering with the expression of MUC1 promoted S. aureus adhesion to MAC-T cells. These results indicate that BLV-miR-B1-5p promotes S. aureus adhesion to mammary epithelial cells by targeting MUC1.
Collapse
Affiliation(s)
- Shuai Lian
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (S.L.); (P.L.); (X.L.); (G.L.); (J.S.); (H.Z.); (R.W.)
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
| | - Pengfei Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (S.L.); (P.L.); (X.L.); (G.L.); (J.S.); (H.Z.); (R.W.)
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
| | - Xiao Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (S.L.); (P.L.); (X.L.); (G.L.); (J.S.); (H.Z.); (R.W.)
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
| | - Guanxin Lv
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (S.L.); (P.L.); (X.L.); (G.L.); (J.S.); (H.Z.); (R.W.)
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
| | - Jiahe Song
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (S.L.); (P.L.); (X.L.); (G.L.); (J.S.); (H.Z.); (R.W.)
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
| | - Han Zhang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (S.L.); (P.L.); (X.L.); (G.L.); (J.S.); (H.Z.); (R.W.)
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
| | - Rui Wu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (S.L.); (P.L.); (X.L.); (G.L.); (J.S.); (H.Z.); (R.W.)
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
- College of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| | - Di Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (S.L.); (P.L.); (X.L.); (G.L.); (J.S.); (H.Z.); (R.W.)
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
| | - Jianfa Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (S.L.); (P.L.); (X.L.); (G.L.); (J.S.); (H.Z.); (R.W.)
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
| |
Collapse
|
2
|
Fan P, Zhang L, Cheng T, Wang J, Zhou J, Zhao L, Hua C, Xia Q. MiR-590-5p inhibits pathological hypertrophy mediated heart failure by targeting RTN4. J Mol Histol 2021; 52:955-964. [PMID: 34406553 DOI: 10.1007/s10735-021-10009-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 08/08/2021] [Indexed: 10/20/2022]
Abstract
Heart failure (HF) is a rising epidemic and public health burden in modern society. It is of great need to find new biomarkers to ensure a timely diagnosis and to improve treatment and prognosis of the disease. The mouse model of HF was established by thoracic aortic constriction. Color Doppler ultrasound was performed to detect left ventricular end-diastolic diameter. Hematoxylin and eosin staining was conducted to observe the pathological changes of mouse myocardium. The RT-qPCR analysis was performed to detect miR-590-5p and RTN4 expression levels. Western blot was conducted to detect protein levels of the indicated genes. We found that the expression of miR-590-5p was downregulated in cardiac tissues of HF mice. Injection of AAV-miR-590-5p attenuated myocardium hypertrophy and myocyte apoptosis. Additionally, miR-590-5p overexpression promoted viability, inhibited apoptosis, and decreased ANF, BNP and beta-MHC protein levels in H9c2 cell. Mechanistically, miR-590-5p binds to RTN4 3'-untranslated region, as predicted by starBase online database and evidenced by luciferase reporter assay. Furthermore, miR-590-5p negatively regulates RTN4 mRNA expression and suppresses its translation. The final rescue experiments revealed that miR-590-5p modulated cardiomyocyte phenotypes by binding to RTN4. In conclusion, miR-590-5p modulates myocardium hypertrophy and myocyte apoptosis in HF by downregulating RTN4.
Collapse
Affiliation(s)
- Ping Fan
- Department of Cardiovascular Medicine, The Air Force Hospital From Eastern Theater, Qinhuai District, No. 1, Malu Street, Nanjing, 210001, Jiangsu, China
| | - Likun Zhang
- Department of Cardiovascular Medicine, The Air Force Hospital From Eastern Theater, Qinhuai District, No. 1, Malu Street, Nanjing, 210001, Jiangsu, China
| | - Tianyu Cheng
- Department of Cardiovascular Medicine, The Air Force Hospital From Eastern Theater, Qinhuai District, No. 1, Malu Street, Nanjing, 210001, Jiangsu, China
| | - Jing Wang
- Department of Cardiovascular Medicine, The Air Force Hospital From Eastern Theater, Qinhuai District, No. 1, Malu Street, Nanjing, 210001, Jiangsu, China
- Department of General Practice, Confucius Temple Community Health Service Center, Nanjing, 210001, Jiangsu, China
| | - Junyun Zhou
- Department of Cardiovascular Medicine, The Air Force Hospital From Eastern Theater, Qinhuai District, No. 1, Malu Street, Nanjing, 210001, Jiangsu, China
| | - Li Zhao
- Department of Cardiovascular Medicine, The Air Force Hospital From Eastern Theater, Qinhuai District, No. 1, Malu Street, Nanjing, 210001, Jiangsu, China
| | - Cuie Hua
- Department of Cardiovascular Medicine, The Air Force Hospital From Eastern Theater, Qinhuai District, No. 1, Malu Street, Nanjing, 210001, Jiangsu, China.
| | - Quan Xia
- Department of Cardiovascular Medicine, The Air Force Hospital From Eastern Theater, Qinhuai District, No. 1, Malu Street, Nanjing, 210001, Jiangsu, China.
| |
Collapse
|
3
|
Analysis of Nucleotide Sequence of Tax, miRNA and LTR of Bovine Leukemia Virus in Cattle with Different Levels of Persistent Lymphocytosis in Russia. Pathogens 2021; 10:pathogens10020246. [PMID: 33672613 PMCID: PMC7924208 DOI: 10.3390/pathogens10020246] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 11/17/2022] Open
Abstract
Bovine Leukemia Virus (BLV) is the etiological agent of enzootic bovine leucosis (EBL), a lymphoproliferative disease of the bovine species. In BLV-infected cells, the long terminal repeat (LTR), the viral Tax protein and viral miRNAs promote viral and cell proliferation as well as tumorigenesis. Although their respective roles are decisive in BLV biology, little is known about the genetic sequence variation of these parts of the BLV genome and their impact on disease outcome. Therefore, the objective of this study was to assess the relationship between disease progression and sequence variation of the BLV Tax, miRNA and LTR regions in infected animals displaying either low or high levels of persistent lymphocytosis (PL). A statistically significant association was observed between the A(+187)C polymorphism in the downstream activator sequence (DAS) region in LTR (p-value = 0.00737) and high lymphocytosis. Our study also showed that the mutation A(−4)G in the CAP site occurred in 70% of isolates with low PL and was not found in the high PL group. Conversely, the mutations G(−133)A/C in CRE2 (46.7%), C(+160)T in DAS (30%) and A(310)del in BLV-mir-B4-5p, A(357)G in BLV-mir-B4-3p, A(462)G in BLV-mir-B5-5p, and GA(497–498)AG in BLV-mir-B5-3p (26.5%) were often seen in isolates with high PL and did not occur in the low PL group. In conclusion, we found several significant polymorphisms among BLV genomic sequences in Russia that would explain a progression towards higher or lower lymphoproliferation. The data presented in this article enabled the classification between two different genotypes; however, clear association between genotypes and the PL development was not found.
Collapse
|
4
|
Zyrianova IM, Kovalchuk SN. Bovine leukemia virus tax gene/Tax protein polymorphism and its relation to Enzootic Bovine Leukosis. Virulence 2021; 11:80-87. [PMID: 31885330 PMCID: PMC6961721 DOI: 10.1080/21505594.2019.1708051] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Bovine leukemia virus (BLV) is an oncogenic retrovirus of the Deltaretrovirus genus, which causes persistent infection in its natural hosts – cattle, zebu, and water buffalo with diverse clinical manifestations through the defeat of B-cells. The BLV proviral genome, along with structural genes (gag, pro, pol, and env), includes nonstructural ones (R3, G4, tax, rex, AS, pre-miRs (for miRNAs). We have shown in our previous data the association of some pre-miRs-B’ (for BLV miRNA) alleles with leukocyte (WBC – white blood cell) number in BLV-infected cows. Multifunctional properties of Tax protein have led us to an assumption that tax gene/Tax protein could have too population variations related to WBC counts. Here we report about several tax alleles/Tax protein variants, which have a highly significant association with an increase or a decrease of WBC number in BLV-infected cows. We have provided evidence that Tax A, H variants (tax b, c, d, f, e alleles) are correlated with reduced WBC counts at the level of BLV-negative groups of animals and thus could be the feature of the aleukemic (AL) form of BLV infection. We suggest this finding could be used in BLV testing for the presence of Tax A, H in the proviral DNA consider such strains of BLV as AL ones, and because of this, minimize the clinical losses due to BLV infection in cattle.
Collapse
Affiliation(s)
- Irina M Zyrianova
- Department of Molecular Biotechnology, Federal State Budget Scientific Institution Center of Experimental Embryology and Reproductive Biotechnologies, Moscow, Russian Federation
| | - Svetlana N Kovalchuk
- Department of Molecular Biotechnology, Federal State Budget Scientific Institution Center of Experimental Embryology and Reproductive Biotechnologies, Moscow, Russian Federation
| |
Collapse
|
5
|
Ablation of non-coding RNAs affects bovine leukemia virus B lymphocyte proliferation and abrogates oncogenesis. PLoS Pathog 2020; 16:e1008502. [PMID: 32407379 PMCID: PMC7252678 DOI: 10.1371/journal.ppat.1008502] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/27/2020] [Accepted: 03/26/2020] [Indexed: 12/21/2022] Open
Abstract
Viruses have developed different strategies to escape from immune response. Among these, viral non-coding RNAs are invisible to the immune system and may affect the fate of the host cell. Bovine leukemia virus (BLV) encodes both short (miRNAs) and long (antisense AS1 and AS2) non-coding RNAs. To elucidate the mechanisms associated with BLV non-coding RNAs, we performed phenotypic and transcriptomic analyzes in a reverse genetics system. RNA sequencing of B-lymphocytes revealed that cell proliferation is the most significant mechanism associated with ablation of the viral non-coding RNAs. To assess the biological relevance of this observation, we determined the cell kinetic parameters in vivo using intravenous injection of BrdU and CFSE. Fitting the data to a mathematical model provided the rates of cell proliferation and death. Our data show that deletion of miRNAs correlates with reduced proliferation of the infected cell and lack of pathogenesis. BLV is a retrovirus that integrates into the genomic DNA of B-lymphocytes from a series of ruminant species (cattle, sheep, zebu, water buffalo and yack). Expression of viral proteins is almost undetectable in infected animals. In contrast, the BLV genome contains a cluster of 10 microRNAs that are abundantly transcribed in BLV-infected cells in vivo. In this report, we show that these microRNAs primarily regulate host cell proliferation. Ablation of the viral microRNAs affects BLV replication and suppresses leukemia development.
Collapse
|