1
|
Proteomic time course of breast cancer cells highlights enhanced sensitivity to Stat3 and Src inhibitors prior to endocrine resistance development. Cancer Gene Ther 2023; 30:324-334. [PMID: 36266450 PMCID: PMC9935392 DOI: 10.1038/s41417-022-00548-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/28/2022] [Accepted: 10/06/2022] [Indexed: 11/08/2022]
Abstract
To prevent the development of endocrine-resistant breast cancer, additional targeted therapies are increasingly being trialled in combination with endocrine therapy. The molecular mechanisms facilitating cancer cell survival during endocrine treatment remain unknown but could help direct selection of additional targeted therapies. We present a novel proteomic timecourse dataset, profiling potential drug targets in a population of MCF7 cells during 1 year of tamoxifen treatment. Reverse phase protein arrays profiled >70 proteins across 30 timepoints. A biphasic response to tamoxifen was evident, which coincided with changes in growth rate. Tamoxifen strongly impeded cell growth for the first 160 days, followed by gradual growth recovery and eventual resistance development. The growth-impeded phase was distinguished by the phosphorylation of Stat3 (y705) and Src (y527). Tumour tissue from patients treated with neo-adjuvant endocrine therapy (<4 months) also displayed increased Stat3 and Src signalling. Inhibitors of Stat3 (napabucasin) and Src (dasatinib), were effective at killing tamoxifen-treated MCF7 and T47D cells. Sensitivity to both drugs was significantly enhanced once tamoxifen had induced the growth-impeded phase. This novel proteomic resource identifies key mechanisms enabling cell survival during tamoxifen treatment. It provides valuable insight into potential drug combinations and timing that may prevent the development of endocrine resistance.
Collapse
|
2
|
Relationship of micro-RNA, mRNA and eIF Expression in Tamoxifen-Adapted MCF-7 Breast Cancer Cells: Impact of miR-1972 on Gene Expression, Proliferation and Migration. Biomolecules 2022; 12:biom12070916. [PMID: 35883472 PMCID: PMC9312698 DOI: 10.3390/biom12070916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 12/04/2022] Open
Abstract
Background: Tamoxifen-adapted MCF-7-Tam cells represent an in-vitro model for acquired tamoxifen resistance, which is still a problem in clinics. We here investigated the correlation of microRNA-, mRNA- and eukaryotic initiation factors (eIFs) expression in this model. Methods: MicroRNA- and gene expression were analyzed by nCounter and qRT-PCR technology; eIFs by Western blotting. Protein translation mode was determined using a reporter gene assay. Cells were transfected with a miR-1972-mimic. Results: miR-181b-5p,-3p and miR-455-5p were up-, miR-375, and miR-1972 down-regulated and are significant in survival analysis. About 5% of the predicted target genes were significantly altered. Pathway enrichment analysis suggested a contribution of the FoxO1 pathway. The ratio of polio-IRES driven to cap-dependent protein translation shifted towards cap-dependent initiation. Protein expression of eIF2A, -4G, -4H and -6 decreased, whereas eIF3H was higher in MCF-7-Tam. Significant correlations between tamoxifen-regulated miRNAs and eIFs were found in representative breast cancer cell lines. Transfection with a miR-1972-mimic reverses tamoxifen-induced expression for a subset of genes and increased proliferation in MCF-7, but reduced proliferation in MCF-7-Tam, especially in the presence of 4OH-tamoxifen. Migration was inhibited in MCF-7-Tam cells. Translation mode remained unaffected. Conclusions: miR-1972 contributes to the orchestration of gene-expression and physiological consequences of tamoxifen adaption.
Collapse
|
3
|
Exosomal LINC01213 Plays a Role in the Transition of Androgen-Dependent Prostate Cancer Cells into Androgen-Independent Manners. JOURNAL OF ONCOLOGY 2022; 2022:8058770. [PMID: 35310913 PMCID: PMC8930242 DOI: 10.1155/2022/8058770] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/17/2022] [Indexed: 11/23/2022]
Abstract
Background Castration-resistant prostate cancer (CRPC), one of the prostate cancers, is a medical conundrum around the world. Some studies have demonstrated that many long noncoding RNAs in exosomes are very important in many types of cancer, including prostate cancer. However, until now, the function of exosomes in the occurrence and development of CRPC has not been reported. Methods In vitro, cell coculture was used in LNCap cells and PC-3 cells, while the isolation and purification of exosomes and the subsequent treatment assays were used in functional studies. In vitro assays were performed to detect the transformation of ADPC cells (androgen-dependent prostate cancer) into AIPC cells (androgen-independent prostate cancer). Subsequently, a lncRNA-sequencing assay was performed to detect different lncRNA expression profiles in ADPC cells cocultured with or without AIPC exosomes. The role of LINC01213 was analysed by a TCGA database after silencing the expression of LINC01213. CCK-8, qRT-PCR, and Western blotting studies were performed to analyse the possible mechanism by which exosomes participate in prostate cancer progression. Results In the coculture system, ADPC cells acquired androgen deprivation tolerance through exosome-mediated intercellular communication. Exosomes secreted by AIPC cells can promote the transformation of ADPC cells into androgen-independent cells in vitro and in vivo. lncRNA sequencing showed that LINC01213 was upregulated in exosomes derived from AIPC cell lines. The rescue experiments were preformed, and the results revealed that most of the functions of LINC01213 were performed by Wnt/β-catenin. Conclusions All the findings showed that exosomes play a key role in CRPC progression by upregulating LINC01213 and activating Wnt/β-catenin signalling.
Collapse
|
4
|
Czapiewski P, Cornelius M, Hartig R, Kalinski T, Haybaeck J, Dittmer A, Dittmer J, Ignatov A, Nass N. BCL3 expression is strongly associated with the occurrence of breast cancer relapse under tamoxifen treatment in a retrospective cohort study. Virchows Arch 2022; 480:529-541. [PMID: 35020071 PMCID: PMC8989858 DOI: 10.1007/s00428-021-03238-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/26/2021] [Accepted: 11/10/2021] [Indexed: 12/27/2022]
Abstract
Patients with estrogen receptor positive breast cancer are usually receiving an anti-estrogen therapy by either aromatase inhibitors or selective estrogen receptor mediators such as tamoxifen. Nevertheless, acquired resistance to tamoxifen under treatment frequently hampers therapy. One proposed explanation for this phenomenon is the interaction of the tumor cells with cells of the tumor microenvironment via the Insulin-like growth factor RNA binding protein 5/B-cell lymphoma 3 (IGFBP5/BCL3) axis. Here we investigated whether a high expression of BCL3 either cytoplasmic or nuclear is associated with the occurrence of a relapse under anti-estrogen therapy in patients. Formaldehyde-fixed, paraffin-embedded samples of 180 breast cancer patients were analyzed for BCL3 expression by immunohistochemistry. An immunoreactive score (IRS) was calculated from staining intensity in cytoplasm and nucleus as well as the percentage of positive tumor cells. These scores were correlated with clinico-pathological parameters using cross-tabulation analysis and patients’ relapse free and overall survival by Kaplan–Meier analysis and Cox regression. A tamoxifen-adapted MCF-7 derived cell line was investigated for BCL3 localization by immunofluorescence. The cytosolic BCL3-IRS significantly correlated with the proliferation marker Ki-67, and with the occurrence of a relapse under tamoxifen treatment. Nuclear score correlated only with tamoxifen-relapse. In survival analysis, both scores were highly significant prognostic factors for relapse free, but not for overall survival. This was especially obvious for estrogen receptor positive and HER2/NEU negative cases as well as lobular breast cancer. Tamoxifen-treated, but not aromatase-treated patients had a poor survival when BCL3 scores were high. A tamoxifen adapted cell line exhibited a reduced expression and mainly nuclear localization of BCL3, compared to the parental estrogen receptor positive cell-line MCF-7. Altogether, these data strongly support a function of BCL3 in tamoxifen resistance and its potential use as a predictive biomarker for tamoxifen resistance.
Collapse
Affiliation(s)
- Piotr Czapiewski
- Department of Pathology, Medical Faculty, Otto-Von-Guericke University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.,Department of Pathology, Dessau Medical Center, Auenweg 38, 06847, Dessau, Germany
| | - Maximilian Cornelius
- Department of Pathology, Medical Faculty, Otto-Von-Guericke University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Roland Hartig
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-Von-Guericke University Magdeburg, Leipziger Str.44, 39120, Magdeburg, Germany.,Multi-Parametric Bioimaging and Cytometry Platform, Medical Faculty, Otto-Von-Guericke University Magdeburg, Leipziger Str.44, 39120, Magdeburg, Germany
| | - Thomas Kalinski
- Department of Pathology, Medical Faculty, Otto-Von-Guericke University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Johannes Haybaeck
- Diagnostic & Research Center for Molecular BioMedicine, Institute of Pathology, Medical University Graz, Neue Stiftingtalstrasse 6, 8010, Graz, Austria.,Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Müllerstraße 44, 6020, Innsbruck, Austria
| | - Angela Dittmer
- Clinic for Gynecology, Martin-Luther University, Halle-Wittenberg Ernst-Grube-Straße 40, 06120, Halle (Saale), Germany
| | - Jürgen Dittmer
- Clinic for Gynecology, Martin-Luther University, Halle-Wittenberg Ernst-Grube-Straße 40, 06120, Halle (Saale), Germany
| | - Atanas Ignatov
- Department of Obstetrics and Gynecology, Otto Von Guericke University Magdeburg, Gerhart-Hauptmann Str. 35, 39108, Magdeburg, Germany
| | - Norbert Nass
- Department of Pathology, Medical Faculty, Otto-Von-Guericke University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany. .,Dessau Medical Center, Department for Internal Medicine I, Auenweg 38, 06847, Dessau, Germany.
| |
Collapse
|
5
|
The tamoxifen-regulated, long non-coding RNA LINC00992 affects proliferation, migration, and expression of tamoxifen resistance-associated genes in MCF-7 breast cancer cells. Contemp Oncol (Pozn) 2022; 26:294-305. [PMID: 36816389 PMCID: PMC9933353 DOI: 10.5114/wo.2023.125000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/12/2023] Open
Abstract
Introduction Tamoxifen-adapted MCF-7 breast cancer cells (MCF-7-TAM-R) are a model for acquired tamoxifen resistance in oestrogen receptor-positive breast cancer. In this system, the expression of long-non-coding RNA LINC00992 is decreased. LINC00992 might therefore contribute to tamoxifen adaption and associated gene expres-sion changes. Here, we investigated whether a modulation of LINC00992 modifies gene expression, proliferation, and migration. Material and methods Up- and down-- regulation of LINC00992 was performed using plasmid vectors and siRNA. Gene expression was measured via nCounter® and quantitative real-time polymerase chain reaction. Database analysis was performed using GEPIA2 and cBioportal. Furthermore, we performed scratch assays, colony-forming assays, and proliferation assays with MCF-7 and MCF-7-TAM-R after up-regulation of LINC00992. Results Up- and down-regulation of LINC00992 caused gene expression changes in 4 of the 42 tamoxifen-regulated genes tested. Especially ubiquitin D, single-minded homologue 1 (SIM1) carcinoembryonic antigen-related cell adhesion molecule 5 and the G-protein coupled oestrogen receptor 1 were affected. In tamoxifen-adapted MCF-7-TAM-R cells, LINC00992 overexpression resulted in augmented viability and proliferation and enhanced migration. Database analyses revealed that luminal breast cancers have increased expression of LINC00992 compared to Her2-type/neu- or basal type. Furthermore, higher expression of LINC00992 was associated with poor prognosis in luminal-A carcinomas. Conclusions Changes in the expression of tamoxifen-regulated genes could be induced by manipulating LINC00992's abundance, suggesting that it is at least partially involved in the establishment of the tamoxifen-induced gene expression pattern. LINC00992 may also serve as a prognostic biomarker and may indicate the development of tamoxifen resistance.
Collapse
|
6
|
Gvaldin DY, Pushkin AA, Timoshkina NN, Rostorguev EE, Nalgiev AM, Kit OI. Integrative analysis of mRNA and miRNA sequencing data for gliomas of various grades. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2020. [DOI: 10.1186/s43042-020-00119-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Abstract
Background
The purpose of this study was to characterize subtype-specific patterns of mRNA and miRNA expression of gliomas using The Cancer Genome Atlas (TCGA) data to search for genetic determinants that predict prognosis in terms of overall survival and to create interaction networks for grade 2 and 3 (G2 and G3) astrocytomas, oligodendrogliomas and grade 4 (G4) glioblastoma multiforme. Based on open-access TCGA data, 5 groups were formed: astrocytoma G2 (n = 58), astrocytoma G3 (n = 128), oligodendroglioma G2 (n = 102), oligodendroglioma G3 (n = 72) and glioblastoma G4 (n = 564); normal samples of brain tissue were also analysed (n = 15). Data of patient age, sex, survival and expression patterns of mRNA and miRNA were extracted for each sample. After stratification of the data into groups, a differential analysis of expression was carried out, genes and miRNAs that affect overall survival were identified and gene set enrichment analysis (GSEA) and interaction analysis were performed.
Results
A total of 939 samples of glial tumours were analysed, for which subtype-specific expression profiles of genes and miRNAs were identified and networks of mRNA-miRNA interactions were constructed. Genes whose aberrant expression level was associated with survival were determined, and pairwise correlations between differential gene expression (DEG) and differential miRNA expression (DE miRNA) were calculated.
Conclusions
The developed panel of genes and miRNAs allowed us to differentiate glioma subtypes and evaluate prognosis in terms of the overall survival of patients. The regulatory miRNA-mRNA pairs unique to the five glioma subtypes identified in this study can stimulate the development of new therapeutic approaches based on subtype-specific mechanisms of oncogenesis.
Collapse
|
7
|
Jiang Z, Cheng P, Luo B, Huang J. Construction and Analysis of a Long Non-Coding RNA-Associated Competing Endogenous RNA Network Identified Potential Prognostic Biomarkers in Luminal Breast Cancer. Onco Targets Ther 2020; 13:4271-4282. [PMID: 32547061 PMCID: PMC7244246 DOI: 10.2147/ott.s240973] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/26/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose To construct a competing endogenous RNA (ceRNA) topology network of RNA-seq data and micro RNA-seq (miRNA-seq) data to identify key prognostic long non-coding RNA (lncRNAs) in luminal breast cancer, and validate the results by human luminal breast cancer samples. Materials and Methods The RNA-seq data and miRNA-seq data of luminal A breast cancer in the The Cancer Genome Atlas (TCGA) database were downloaded and compared with those in the miRcode database to obtain lncRNA–miRNA relationship pairs. Final target genes were predicted by all three databases (miRDB, miRTarBase, and TargetScan), thereby obtaining the miRNA-messenger RNA (miRNA-mRNA) relationship pairs and a ceRNA topology network was constructed, then mRNA enrichment analysis, ceRNA topological and stability analysis, univariate and multivariate Cox regression analysis were performed. Overall survival (OS) was evaluated and the key prognostic RNAs were identified. The expression difference between normal and tumor, as well as the correlation of high expression in tumor with pathological parameters (Ki-67, Grade, tumor diameter) were validated by human breast cancer specimens. Results A ceRNA topology network was constructed and six lncRNAs were finally identified (The higher expression of PART1, IGF2.AS, WT1.AS, OIP5.AS1, and SLC25A5.AS1 was associated with poor prognosis while AL035706.1 was adverse) and the poor prognostic ones were higher expressed in tumor tissue and correlated with a higher Ki-67 (>10%), tumor grades (II, III) and tumor diameters (>1.5 cm). Using six lncRNAs, we constructed a prognostic model, which performed well for the classification of prognosis in the module. Conclusion We identified and verified six biomarkers (OS-predicting) in luminal breast cancer, which significantly enriched the prediction and potential targets of this subtype.
Collapse
Affiliation(s)
- Zhou Jiang
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Pu Cheng
- Department of Gynecology, Second Affiliated Hospital, Zhejiang University School of Medicine; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Biyuan Luo
- Cancer Center, Xiangya 2nd Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Jian Huang
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|