1
|
Shi XY, He YX, Ge MY, Liu P, Zheng P, Li ZH. Gastrodin promotes CNS myelinogenesis and alleviates demyelinating injury by activating the PI3K/AKT/mTOR signaling. Acta Pharmacol Sin 2025:10.1038/s41401-025-01492-z. [PMID: 40011630 DOI: 10.1038/s41401-025-01492-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/20/2025] [Indexed: 02/28/2025] Open
Abstract
Demyelination is a common feature of numerous neurological disorders including multiple sclerosis and leukodystrophies. Although myelin can be regenerated spontaneously following injury, this process is often inadequate, potentially resulting in neurodegeneration and exacerbating neurological dysfunction. Several drugs aimed at promoting the differentiation of oligodendrocyte precursor cells (OPCs) have yielded unsatisfactory clinical effects. A recent study has shifted the strategy of pro-OPC differentiation towards enhancing myelinogenesis. In this study we identified the pro-myelinating drug using a zebrafish model. Five traditional Chinese medicine monomers including gastrodin, paeoniflorin, puerarin, salidroside and scutellarin were assessed by bath-application in Tg (MBP:eGFP-CAAX) transgenic line at 1-5 dpf. Among the 5 monomers, only gastrodin exhibited significant pro-myelination activity. We showed that gastrodin (10 µM) enhanced myelin sheath formation and oligodendrocyte (OL) maturation without affecting the number of OLs. Gastrodin markedly increased the phosphorylation levels of PI3K, AKT, and mTOR in primary cultured OLs via direct interaction with PI3K. Co-treatment with the PI3K inhibitor LY294002 (5 µM) mitigated gastrodin-induced OL maturation. Furthermore, injection of gastrodin (100 mg·kg-1·d-1, i.p.) effectively facilitated remyelination in a lysophosphatidylcholine-induced demyelinating mouse model and alleviated demyelination in the experimental autoimmune encephalomyelitis mice. These results identify gastrodin as a promising therapeutic agent for demyelinating diseases and highlight the potential of the zebrafish model for screening pro-myelinogenic pharmacotherapy.
Collapse
Affiliation(s)
- Xiao-Yu Shi
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200030, China
| | - Yi-Xi He
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200030, China
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200030, China
| | - Man-Yue Ge
- Institute of Neuroscience, MOE Key Laboratory of Molecular Neurobiology, Naval Medical University, Shanghai, 200433, China
| | - Peng Liu
- Institute of Neuroscience, MOE Key Laboratory of Molecular Neurobiology, Naval Medical University, Shanghai, 200433, China.
| | - Ping Zheng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200030, China.
| | - Zheng-Hao Li
- Institute of Neuroscience, MOE Key Laboratory of Molecular Neurobiology, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
2
|
He X, Chen X, Yang Y, Gu J, Xie Y, Liu Y, Hao M, Heinrich M. The role of gastrodin in the management of CNS-related diseases: Underlying mechanisms to therapeutic perspectives. Phytother Res 2024; 38:5107-5133. [PMID: 39148368 DOI: 10.1002/ptr.8314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024]
Abstract
Central nervous system (CNS)-related diseases have a high mortality rate, are a serious threat to physical and mental health, and have always been an important area of research. Gastrodin, the main active metabolite of Gastrodia elata Blume, used in Chinese medicine and food, has a wide range of pharmacological effects, mostly related to CNS disorders. This review aims to systematically summarize and discuss the effects and underlying mechanisms of gastrodin in the treatment of CNS diseases, and to assess its potential for further development as a lead drug in both biomedicine and traditional Chinese medicine. Studies on the pharmacological effects of gastrodin on the CNS indicate that it may exert anti-neurodegenerative, cerebrovascular protective, and ameliorative effects on diabetic encephalopathy, perioperative neurocognitive dysfunction, epilepsy, Tourette's syndrome, depression and anxiety, and sleep disorders through various mechanisms. To date, 110 gastrodin products have been approved for clinical use, but further multicenter clinical case-control studies are relatively scarce. Preclinical studies have confirmed that gastrodin can be used to treat CNS-related disorders. However, important concerns need to be addressed in the context of likely non-specific, assay interfering effects when gastrodin is studied using in vitro and in silico approaches, calling for a systematic assessment of the evidence to date. High-quality clinical trials should have priority to evaluate the therapeutic safety and clinical efficacy of gastrodin. Further experimental research using appropriate in vivo models is also needed, focusing on neurodegenerative diseases, cerebral ischemic and hypoxic diseases, brain damage caused by methamphetamine or heavy metals, and epilepsy.
Collapse
Affiliation(s)
- Xirui He
- School of Bioengineering, Zhuhai Campus, Zunyi Medical University, Zhuhai, China
| | - Xufei Chen
- Key laboratory of Western Resource Biology and Modern Biotechnology, Northwest University, Xi'an, China
| | - Yan Yang
- School of Bioengineering, Zhuhai Campus, Zunyi Medical University, Zhuhai, China
| | - Jingyi Gu
- UCL School of Pharmacy, Pharmacognosy & Phytotherapy, University College London, London, UK
| | - Yulu Xie
- School of Bioengineering, Zhuhai Campus, Zunyi Medical University, Zhuhai, China
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Yujie Liu
- School of Bioengineering, Zhuhai Campus, Zunyi Medical University, Zhuhai, China
| | - Man Hao
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Ortho- and MSK-Science, University College London, London, UK
| | - Michael Heinrich
- UCL School of Pharmacy, Pharmacognosy & Phytotherapy, University College London, London, UK
| |
Collapse
|
3
|
El Menyiy N, Elouafy Y, Moubachir R, Abdnim R, Benali T, Taha D, Khalid A, Abdalla AN, Hamza SMA, Elhadi Ibrahim S, El-Shazly M, Zengin G, Bouyahya A. Chemistry, Biological Activities, and Pharmacological Properties of Gastrodin: Mechanism Insights. Chem Biodivers 2024; 21:e202400402. [PMID: 38573028 DOI: 10.1002/cbdv.202400402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/30/2024] [Accepted: 04/04/2024] [Indexed: 04/05/2024]
Abstract
Gastrodin, a bioactive compound derived from the rhizome of the orchid Gastrodia elata, exhibits a diverse range of biological activities. With documented neuroprotective, anti-inflammatory, antioxidant, anti-apoptotic, and anti-tumor effects, gastrodin stands out as a multifaceted therapeutic agent. Notably, it has demonstrated efficacy in protecting against neuronal damage and enhancing cognitive function in animal models of Alzheimer's disease, Parkinson's disease, and cerebral ischemia. Additionally, gastrodin showcases immunomodulatory effects by mitigating inflammation and suppressing the expression of inflammatory cytokines. Its cytotoxic activity involves the inhibition of angiogenesis, suppression of tumor growth, and induction of apoptosis. This comprehensive review seeks to elucidate the myriad potential effects of Gastrodin, delving into the intricate molecular mechanisms underpinning its pharmacological properties. The findings underscore the therapeutic potential of gastrodin in addressing various conditions linked to neuroinflammation and cancer.
Collapse
Affiliation(s)
- Naoual El Menyiy
- Laboratory of Pharmacology, National Agency of Medicinal and Aromatic Plants, Taounate, 34025, Morocco
| | - Youssef Elouafy
- Laboratory of Materials, Nanotechnology and Environment LMNE, Faculty of Sciences, Mohammed V University in Rabat, Rabat, BP 1014, Morocco
| | - Rania Moubachir
- Bioactives and Environmental Health Laboratory, Faculty of Sciences, Moulay Ismail University, 11201, Meknes, Marocco
| | - Rhizlan Abdnim
- Laboratoire de bioressources, biotechnologie, ethnopharmacologie et santé, Département de biologie, Faculté des sciences, Université Mohamed premier, Boulevard Mohamed VI; BP:717, 60000, Oujda, Marocco
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Marrakesh-Safi, 46030, Morocco
| | - Douae Taha
- Molecular Modeling, Materials, Nanomaterials, Water and Environment Laboratory, CERNE2D, Department of Chemistry, Faculty of Sciences, Mohammed V University, Rabat, Rabat, 10106, Morocco
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Unit, Health Research Cener, Jazan University, P.O. Box: 114, Jazan, 11111, Saudi Arabia
- Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, P. O. Box 2404, 11111, Khartoum, Sudan
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Siddiqa M A Hamza
- Department of Pathology, College of Medicine, Umm Alqura University, 24832, Alqunfudah, Saudi Arabia
| | - Salma Elhadi Ibrahim
- Department of Physiology, College of Medicine, Umm Alqura University, 24832, Alqunfudah, Saudi Arabia
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, 42130, Konya, Turkey
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, 10106, Morocco
| |
Collapse
|
4
|
Wang Y, Bai M, Wang X, Peng Z, Cai C, Xi J, Yan C, Luo J, Li X. Gastrodin: a comprehensive pharmacological review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3781-3802. [PMID: 38165423 DOI: 10.1007/s00210-023-02920-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Tianma is the dried tuber of Gastrodia elata Blume (G. elata), which is frequently utilized in clinical practice as a traditional Chinese medicine. Gastrodin (GAS) is the main active ingredient of Tianma, which has good pharmacological activity. Therefore, for the first time, this review focused on the extraction, synthesis, pharmacological effects, and derivatives of GAS and to investigate additional development options for GAS. The use of microorganisms to create GAS is a promising method. GAS has good efficacy in the treatment of neurological diseases, cardiovascular diseases, endocrine diseases, and liver diseases. GAS has significant anti-inflammatory, antioxidant, neuroprotective, vascular protective, blood sugar lowering, lipid-regulating, analgesic, anticancer, and antiviral effects. The mechanism involves various signaling pathways such as Nrf2, NF-κB, PI3K/AKT, and AMPK. In addition, the derivatives of GAS and biomaterials synthesized by GAS and PU suggested a broader application of GAS. The research on GAS is thoroughly summarized in this paper, which has useful applications for tackling a variety of disorders and exhibits good development value.
Collapse
Affiliation(s)
- Yulin Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Mengting Bai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xian Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhaolei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chunyan Cai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jingjing Xi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chunmei Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jia Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
5
|
Qiu S, Dai H, Wang Y, Lv Y, Yu B, Yao C. The therapeutic potential of microRNAs to ameliorate spinal cord injury by regulating oligodendrocyte progenitor cells and remyelination. Front Cell Neurosci 2024; 18:1404463. [PMID: 38812792 PMCID: PMC11135050 DOI: 10.3389/fncel.2024.1404463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/26/2024] [Indexed: 05/31/2024] Open
Abstract
Spinal cord injury (SCI) can cause loss of sensory and motor function below the level of injury, posing a serious threat to human health and quality of life. One significant characteristic feature of pathological changes following injury in the nervous system is demyelination, which partially contributes to the long-term deficits in neural function after injury. The remyelination in the central nervous system (CNS) is mainly mediated by oligodendrocyte progenitor cells (OPCs). Numerous complex intracellular signaling and transcriptional factors regulate the differentiation process from OPCs to mature oligodendrocytes (OLs) and myelination. Studies have shown the importance of microRNA (miRNA) in regulating OPC functions. In this review, we focus on the demyelination and remyelination after SCI, and summarize the progress of miRNAs on OPC functions and remyelination, which might provide a potential therapeutic target for SCI treatments.
Collapse
Affiliation(s)
| | | | | | | | | | - Chun Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
6
|
Song JJ, Li H, Wang N, Zhou XY, Liu Y, Zhang Z, Feng Q, Chen YL, Liu D, Liang J, Ma XY, Wen XR, Fu YY. Gastrodin ameliorates the lipopolysaccharide-induced neuroinflammation in mice by downregulating miR-107-3p. Front Pharmacol 2022; 13:1044375. [PMID: 36569291 PMCID: PMC9773390 DOI: 10.3389/fphar.2022.1044375] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Background: Neuroinflammation plays a pivotal role in the pathogenesis of Central Nervous System (CNS) diseases. The phenolic glucoside gastrodin (GAS), has been known to treat CNS disorders by exerting anti-inflammatory activities. Our aim was to investigate the potential neuroprotective mechanisms of GAS on lipopolysaccharide (LPS)-induced mice. Methods: Male C57BL/6J mice were treated by LPS, before which GAS was adminisrated. The behavior tests such as forced swim test, tail suspension test, and elevated plus maze were performed to evaluate depressive-anxiety-like behaviors. A high-throughput sequencing (HTS) analysis was performed to screen out distinctive miRNAs which were validated using quantitative real-time PCR. Then, miRNA agomir or NC was injected stereotaxically into hippocampus of mice to explore the role of miRNA on GAS in response to LPS. Furthermore, Immunofluorescence and the hematoxylin and eosin (H&E) staining were employed to observe the cellular morphology. The protein levels of pro-inflammatory factors were evaluated by western blot. Finally, the target mRNA of miRNA was predicted using bioinformatics analysis. GO and KEGG enrichment analyses were conducted to clarify the potential function of target protein, which were visualized by bubble charts. Results: The behavioral data showed that mice in the LPS group had obvious depressive-anxiety-like behaviors, and 100 mg/kg GAS could improve these behavioral changes and alleviate the levels of pro-inflammatory cytokines in the hippocampus when mice were exposed to LPS for 6 h. Meanwhile, LPS-induced microglia and astrocyte activation in the CA1, CA2, CA3, and DG regions of the hippocampus were also reversed by GAS. Furthermore, miR-107-3p were screened out and verified for GAS in response to LPS. Importantly, miR-107-3p overexpression negatively abrogated the neuroprotective effects of GAS. Moreover, KPNA1 might be the target molecular of miR-107-3p. KPNA1 might regulate 12 neuroinflammation-related genes, which were mainly involved in cytokine-mediated signaling pathway. Conclusion: These results suggested that GAS might alleviate the LPS-induced neuroinflammation and depressive-anxiety-like behaviors in mice by downregulating miR-107-3p and upregulating the downstream target KPNA1. The indicates miR-107-3p may provide a new strategy for the treatment of CNS diseases.
Collapse
Affiliation(s)
- Jin-Jin Song
- Department of Genetics, Key Laboratory of Genetic Foundation and Clinical Application, Xuzhou Engineering Research Center of Medical Genetics and Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, China,Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Hui Li
- Department of Genetics, Key Laboratory of Genetic Foundation and Clinical Application, Xuzhou Engineering Research Center of Medical Genetics and Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Nan Wang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Xiao-Yan Zhou
- Department of Genetics, Key Laboratory of Genetic Foundation and Clinical Application, Xuzhou Engineering Research Center of Medical Genetics and Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, China,Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Yan Liu
- Department of Genetics, Key Laboratory of Genetic Foundation and Clinical Application, Xuzhou Engineering Research Center of Medical Genetics and Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, China,Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Zhen Zhang
- Department of Genetics, Key Laboratory of Genetic Foundation and Clinical Application, Xuzhou Engineering Research Center of Medical Genetics and Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qian Feng
- Department of Genetics, Key Laboratory of Genetic Foundation and Clinical Application, Xuzhou Engineering Research Center of Medical Genetics and Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, China,Clinical Laboratory, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yu-Ling Chen
- Department of Genetics, Key Laboratory of Genetic Foundation and Clinical Application, Xuzhou Engineering Research Center of Medical Genetics and Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dan Liu
- Department of Genetics, Key Laboratory of Genetic Foundation and Clinical Application, Xuzhou Engineering Research Center of Medical Genetics and Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jia Liang
- Department of Genetics, Key Laboratory of Genetic Foundation and Clinical Application, Xuzhou Engineering Research Center of Medical Genetics and Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiang-Yu Ma
- Department of Genetics, Key Laboratory of Genetic Foundation and Clinical Application, Xuzhou Engineering Research Center of Medical Genetics and Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiang-Ru Wen
- College of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China,*Correspondence: Xiang-Ru Wen, ; Yan-Yan Fu,
| | - Yan-Yan Fu
- Department of Genetics, Key Laboratory of Genetic Foundation and Clinical Application, Xuzhou Engineering Research Center of Medical Genetics and Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, China,Department of Cell Biology and Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, China,*Correspondence: Xiang-Ru Wen, ; Yan-Yan Fu,
| |
Collapse
|
7
|
Berezutsky M, Durnova N, Romanteeva Y. Neurobiological effects of gastrodin and its possible use in neurology and psychiatry. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:27-34. [DOI: 10.17116/jnevro202212208127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Kung Y, Hsiao MY, Yang SM, Wen TY, Chen M, Liao WH, Wu CH, Ao L, Chen WS. A single low-energy shockwave pulse opens blood-cerebrospinal fluid barriers and facilitates gastrodin delivery to alleviate epilepsy. ULTRASONICS SONOCHEMISTRY 2021; 78:105730. [PMID: 34464899 PMCID: PMC8408522 DOI: 10.1016/j.ultsonch.2021.105730] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/19/2021] [Accepted: 08/14/2021] [Indexed: 05/04/2023]
Abstract
The blood-cerebrospinal fluid barrier (BCSFB) is another gatekeeper between systemic circulation and the central nervous system (CNS), mainly present at the boundary between choroid plexuses and the ventricular system. This study demonstrates BCSFB opening in rats by single pulse of low-energy focused shockwave (FSW, energy flux density 0.03 mJ/mm2, 2 × 106 microbubbles/kg) treatment at lateral ventricle, resulting in significantly elevated cerebrospinal fluid (CSF) concentrations of systemically-administered gastrodin (GTD) (4 times vs. control within 3 hrs) that remained detectable for 24 hrs. The FSW-GTD group had significantly lower Racine's scale (<4) and zero mortality (n = 30) after lithium-pilocarpine-induced epilepsy. Electrophysiological recordings showed decreased epileptiform discharges, and brain section histology revealed reduced inflammation, oxidative stress and apoptosis, when compared with groups without FSW (Racine's scale: 4 ∼ 5; mortality: 26.67 ∼ 36.67%). FSW-mediated BCSFB opening provides a promising alternative for controlled-delivery of therapeutics into the CNS, offering rapid and widespread medication distribution. The technique could by applied in the development of novel therapies for various CNS diseases.
Collapse
Affiliation(s)
- Yi Kung
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital & National Taiwan University College of Medicine, Taipei City, Taiwan
| | - Ming-Yen Hsiao
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital & National Taiwan University College of Medicine, Taipei City, Taiwan
| | - Shu-Mei Yang
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital & National Taiwan University College of Medicine, Taipei City, Taiwan
| | - Tz-Yi Wen
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA, USA
| | - Moxian Chen
- School of Rehabilitation, Kunming Medical University, Kunming, People's Republic of China
| | - Wei-Hao Liao
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital & National Taiwan University College of Medicine, Taipei City, Taiwan
| | - Chueh-Hung Wu
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital & National Taiwan University College of Medicine, Taipei City, Taiwan
| | - Lijuan Ao
- School of Rehabilitation, Kunming Medical University, Kunming, People's Republic of China
| | - Wen-Shiang Chen
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital & National Taiwan University College of Medicine, Taipei City, Taiwan; Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan.
| |
Collapse
|