1
|
Chi L, Liu C, Gribonika I, Gschwend J, Corral D, Han SJ, Lim AI, Rivera CA, Link VM, Wells AC, Bouladoux N, Collins N, Lima-Junior DS, Enamorado M, Rehermann B, Laffont S, Guéry JC, Tussiwand R, Schneider C, Belkaid Y. Sexual dimorphism in skin immunity is mediated by an androgen-ILC2-dendritic cell axis. Science 2024; 384:eadk6200. [PMID: 38574174 DOI: 10.1126/science.adk6200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/26/2024] [Indexed: 04/06/2024]
Abstract
Males and females exhibit profound differences in immune responses and disease susceptibility. However, the factors responsible for sex differences in tissue immunity remain poorly understood. Here, we uncovered a dominant role for type 2 innate lymphoid cells (ILC2s) in shaping sexual immune dimorphism within the skin. Mechanistically, negative regulation of ILC2s by androgens leads to a reduction in dendritic cell accumulation and activation in males, along with reduced tissue immunity. Collectively, our results reveal a role for the androgen-ILC2-dendritic cell axis in controlling sexual immune dimorphism. Moreover, this work proposes that tissue immune set points are defined by the dual action of sex hormones and the microbiota, with sex hormones controlling the strength of local immunity and microbiota calibrating its tone.
Collapse
Affiliation(s)
- Liang Chi
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Can Liu
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Inta Gribonika
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Julia Gschwend
- Institute of Physiology, University of Zurich, CH-8057 Zürich, Switzerland
| | - Dan Corral
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Seong-Ji Han
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ai Ing Lim
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Claudia A Rivera
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Verena M Link
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexandria C Wells
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicolas Bouladoux
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicholas Collins
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Djalma S Lima-Junior
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michel Enamorado
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Barbara Rehermann
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sophie Laffont
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, Toulouse, France
| | - Jean-Charles Guéry
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, Toulouse, France
| | - Roxane Tussiwand
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Huang B, Luo YL, Huang JL, Li GZ, Qiu SY, Huang CC. FAM3D inhibits gluconeogenesis in high glucose environment via DUSP1/ZFP36/SIK1 axis. Kaohsiung J Med Sci 2023; 39:254-265. [PMID: 36524461 DOI: 10.1002/kjm2.12633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 12/23/2022] Open
Abstract
Hyperglycemia is the most important factor leading to the complications of type 2 diabetes mellitus (T2DM). The primary condition for the treatment of T2DM is to change the glucose and lipid metabolism disorders in the liver and other insulin-sensitive tissues. The current study aims to unearth the potential molecular mechanism of inhibiting liver gluconeogenesis to provide a new theoretical basis for the treatment of T2DM. High glucose (HG) induction of HepG2 cells followed by treatment with sequence-similar family 3 member D (FAM3D). Dual specificity phosphatases 1 (DUSP1), zinc finger protein 36 (ZFP36), salt-induced kinase 1 (SIK1), p-SIK1, posphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) gene and protein expression level were detected by quantitative real-time polymerase chain reaction and western blot. The PEPCK and G6Pase activities were detected by enzyme linked immunosorbent assay. Glucose production assay to determine glucose content. The RNA binding protein immunoprecipitation assay was used to detect the binding of ZFP36 to SIK1. FAM3D facilitated the expression of DUSP1 but suppressed the expression of gluconeogenesis-related factors in an HG environment. The expression of ZFP36 was up-regulated in an HG environment. ZFP36 could reverse the inhibition of gluconeogenesis caused by FAM3D. HG-induced upregulation of ZFP36 was downregulated by overexpression of DUSP1. ZFP36 bound to SIK1, and downregulation of ZFP36 promoted SIK1 expression and inhibits gluconeogenesis. Our study demonstrated FAM3D inhibited gluconeogenesis through the DUSP1/ZFP36/SIK1 axis in an HG environment, which provided a new theoretical basis for exploring the pathogenesis and treatment strategy of T2DM.
Collapse
Affiliation(s)
- Bin Huang
- Department of General Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, People's Republic of China
| | - Yue-Ling Luo
- Department of General Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, People's Republic of China
| | - Jun-Ling Huang
- Department of General Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, People's Republic of China
| | - Guang-Zhi Li
- Department of General Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, People's Republic of China
| | - Shi-Yuan Qiu
- Department of General Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, People's Republic of China
| | - Chun-Chun Huang
- Department of General Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, People's Republic of China
| |
Collapse
|
3
|
Hormone Regulation of CCCH Zinc Finger Proteins in Plants. Int J Mol Sci 2022; 23:ijms232214288. [PMID: 36430765 PMCID: PMC9698766 DOI: 10.3390/ijms232214288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
CCCH zinc finger proteins contain one to six tandem CCCH motifs composed of three cysteine and one histidine residues and have been widely found in eukaryotes. Plant CCCH proteins control a wide range of developmental and adaptive processes through DNA-protein, RNA-protein and/or protein-protein interactions. The complex networks underlying these processes regulated by plant CCCH proteins are often involved in phytohormones as signal molecules. In this review, we described the evolution of CCCH proteins from green algae to vascular plants and summarized the functions of plant CCCH proteins that are influenced by six major hormones, including abscisic acid, gibberellic acid, brassinosteroid, jasmonate, ethylene and auxin. We further compared the regulatory mechanisms of plant and animal CCCH proteins via hormone signaling. Among them, Arabidopsis AtC3H14, 15 and human hTTP, three typical CCCH proteins, are able to integrate multiple hormones to participate in various biological processes.
Collapse
|