1
|
Meng L, Sun Z, Zhang Y, Dong Y, Du X, Wu Y, Yuan Y, Sun Y, Xu Y, Ding H, Liu J, Xu J. Structural Studies on Mycobacterial NudC Reveal a Class of Zinc Independent NADH Pyrophosphatase. J Mol Biol 2024; 436:168864. [PMID: 39521043 DOI: 10.1016/j.jmb.2024.168864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/03/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Non-tuberculous mycobacteria (NTM) have emerged as an increasing threat to public health, due to the extreme antibiotic resistance. NADH pyrophosphatase (NudC) was proposed involving in mycobacterial resistance to the first line anti-tubercular drug isoniazid (INH) or its analog ethionamide (ETH), by hydrolyzing their NAD modified active forms (NAD-INH and NAD-ETH). In this study, we performed enzymatic and structural studies on NudC from M. abscessus (NudCMab), which is highly resistant to isoniazid and emerging as the most worrisome NTM. We determined the crystal structures of NudCMab in apo form, substrate NAD-bound form and product AMP-bound form. We observed the mode for the Nudix motif of NudCMab capturing the pyrophosphate group of NAD mediated by three divalent cation ions, which provides details for understanding the mechanism on NudC hydrolyzing NAD(H) or NAD-capped substrate. Interestingly, our structures revealed a novel subclass NudC from mycobacteria characterized by a unique arginine residue on the conserved QPWPFPxS motif, as well as a unique tower domain that replaces a well-defined zinc-binding motif in E.coli NudC and catalytic domain of mammalian Nudt12. Thus, our structural studies on NudCMab not only present a class of zinc independent NADH pyrophosphatase in mycobacteria, but also may facilitate the design of NudC inhibitors for the treatment of mycobacteria infections in combination with INH or ETH.
Collapse
Affiliation(s)
- Lingyu Meng
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Zhaojian Sun
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangzhou Medical University, Guangzhou 511436, China; CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences (CAS), Guangzhou 510530, China
| | - Yulong Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yan Dong
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xiaoan Du
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujian Wu
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences (CAS), Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Yuan
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences (CAS), Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yirong Sun
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences (CAS), Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Xu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, 510530, China
| | - Huaiwei Ding
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Jinsong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, 510530, China.
| | - Jinxin Xu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Mancini F, Cahova H. The Mysterious World of Non-Canonical Caps - What We Know and Why We Need New Sequencing Techniques. Chembiochem 2024:e202400604. [PMID: 39248054 DOI: 10.1002/cbic.202400604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/10/2024]
Abstract
It was long believed that viral and eukaryotic mRNA molecules are capped at their 5' end solely by the N7-methylguanosine cap, which regulates various aspects of the RNA life cycle, from its biogenesis to its decay. However, the recent discovery of a variety of non-canonical RNA caps derived from metabolites and cofactors - such as NAD, FAD, CoA, UDP-glucose, UDP-N-acetylglucosamine, and dinucleoside polyphosphates - has expanded the known repertoire of RNA modifications. These non-canonical caps are found across all domains of life and can impact multiple aspects of RNA metabolism, including stability, translation initiation, and cellular stress responses. The study of these modifications has been facilitated by sophisticated methodologies such as liquid chromatography-mass spectrometry, which have unveiled their presence in both prokaryotic and eukaryotic organisms. The identification of these novel RNA caps highlights the need for advanced sequencing techniques to characterize the specific RNA types bearing these modifications and understand their roles in cellular processes. Unravelling the biological role of non-canonical RNA caps will provide insights into their contributions to gene expression, cellular adaptation, and evolutionary diversity. This review emphasizes the importance of these technological advancements in uncovering the complete spectrum of RNA modifications and their implications for living systems.
Collapse
Affiliation(s)
- Flaminia Mancini
- Chemical Biology of Nucleic Acids, Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí 2, Prague 6, Czech Republic
- Charles University, Faculty of Science, Department of Cell Biology, Vinicna 7, Prague 2, Czech Republic
| | - Hana Cahova
- Chemical Biology of Nucleic Acids, Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí 2, Prague 6, Czech Republic
| |
Collapse
|
3
|
Weber F, Motzkus NA, Brandl L, Möhler M, Alempijevic A, Jäschke A. Identification and in vitro characterization of UDP-GlcNAc-RNA cap-modifying and decapping enzymes. Nucleic Acids Res 2024; 52:5438-5450. [PMID: 38716860 PMCID: PMC11162767 DOI: 10.1093/nar/gkae353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 04/09/2024] [Accepted: 04/22/2024] [Indexed: 06/11/2024] Open
Abstract
In recent years, several noncanonical RNA caps derived from cofactors and metabolites have been identified. Purine-containing RNA caps have been extensively studied, with multiple decapping enzymes identified and efficient capture and sequencing protocols developed for nicotinamide adenine dinucleotide (NAD)-RNA, which allowed for a stepwise elucidation of capping functions. Despite being identified as an abundant noncanonical RNA-cap, UDP-sugar-capped RNA remains poorly understood, which is partly due to its complex in vitro preparation. Here, we describe a scalable synthesis of sugar-capped uridine-guanosine dinucleotides from readily available protected building blocks and their enzymatic conversion into several cell wall precursor-capped dinucleotides. We employed these capped dinucleotides in T7 RNA polymerase-catalyzed in vitro transcription reactions to efficiently generate RNAs capped with uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), its N-azidoacetyl derivative UDP-GlcNAz, and various cell wall precursors. We furthermore identified four enzymes capable of processing UDP-GlcNAc-capped RNA in vitro: MurA, MurB and MurC from Escherichia coli can sequentially modify the sugar-cap structure and were used to introduce a bioorthogonal, clickable moiety, and the human Nudix hydrolase Nudt5 was shown to efficiently decap UDP-GlcNAc-RNA. Our findings underscore the importance of efficient synthetic methods for capped model RNAs. Additionally, we provide useful enzymatic tools that could be utilized in the development and application of UDP-GlcNAc capture and sequencing protocols. Such protocols are essential for deepening our understanding of the widespread yet enigmatic GlcNAc modification of RNA and its physiological significance.
Collapse
Affiliation(s)
- Frederik Weber
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, Heidelberg 69120, Germany
| | - Nikolas Alexander Motzkus
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, Heidelberg 69120, Germany
| | - Leona Brandl
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, Heidelberg 69120, Germany
| | - Marvin Möhler
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, Heidelberg 69120, Germany
| | - Andrijana Alempijevic
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, Heidelberg 69120, Germany
| | - Andres Jäschke
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, Heidelberg 69120, Germany
| |
Collapse
|
4
|
Wang X, Yu D, Yu J, Hu H, Hang R, Amador Z, Chen Q, Chai J, Chen X. Toll/interleukin-1 receptor (TIR) domain-containing proteins have NAD-RNA decapping activity. Nat Commun 2024; 15:2261. [PMID: 38480720 PMCID: PMC10937652 DOI: 10.1038/s41467-024-46499-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/29/2024] [Indexed: 03/17/2024] Open
Abstract
The occurrence of NAD+ as a non-canonical RNA cap has been demonstrated in diverse organisms. TIR domain-containing proteins present in all kingdoms of life act in defense responses and can have NADase activity that hydrolyzes NAD+. Here, we show that TIR domain-containing proteins from several bacterial and one archaeal species can remove the NAM moiety from NAD-capped RNAs (NAD-RNAs). We demonstrate that the deNAMing activity of AbTir (from Acinetobacter baumannii) on NAD-RNA specifically produces a cyclic ADPR-RNA, which can be further decapped in vitro by known decapping enzymes. Heterologous expression of the wild-type but not a catalytic mutant AbTir in E. coli suppressed cell propagation and reduced the levels of NAD-RNAs from a subset of genes before cellular NAD+ levels are impacted. Collectively, the in vitro and in vivo analyses demonstrate that TIR domain-containing proteins can function as a deNAMing enzyme of NAD-RNAs, raising the possibility of TIR domain proteins acting in gene expression regulation.
Collapse
Affiliation(s)
- Xufeng Wang
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing, 100871, China
- Beijing Advanced Center of RNA Biology (BEACON), Peking University, Beijing, 100871, China
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Dongli Yu
- Institute of Biochemistry, University of Cologne, Cologne, 50674, Germany
- Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Jiancheng Yu
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Hao Hu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing, 100871, China
- Beijing Advanced Center of RNA Biology (BEACON), Peking University, Beijing, 100871, China
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Runlai Hang
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing, 100871, China
- Beijing Advanced Center of RNA Biology (BEACON), Peking University, Beijing, 100871, China
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Zachary Amador
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Qi Chen
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
- Molecular Medicine Program, Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Jijie Chai
- Institute of Biochemistry, University of Cologne, Cologne, 50674, Germany
- Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Xuemei Chen
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing, 100871, China.
- Beijing Advanced Center of RNA Biology (BEACON), Peking University, Beijing, 100871, China.
| |
Collapse
|
5
|
Pozhydaieva N, Wolfram-Schauerte M, Keuthen H, Höfer K. The enigmatic epitranscriptome of bacteriophages: putative RNA modifications in viral infections. Curr Opin Microbiol 2024; 77:102417. [PMID: 38217927 DOI: 10.1016/j.mib.2023.102417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 01/15/2024]
Abstract
RNA modifications play essential roles in modulating RNA function, stability, and fate across all kingdoms of life. The entirety of the RNA modifications within a cell is defined as the epitranscriptome. While eukaryotic RNA modifications are intensively studied, understanding bacterial RNA modifications remains limited, and knowledge about bacteriophage RNA modifications is almost nonexistent. In this review, we shed light on known mechanisms of bacterial RNA modifications and propose how this knowledge might be extended to bacteriophages. We build hypotheses on enzymes potentially responsible for regulating the epitranscriptome of bacteriophages and their host. This review highlights the exciting prospects of uncovering the unexplored field of bacteriophage epitranscriptomics and its potential role to shape bacteriophage-host interactions.
Collapse
Affiliation(s)
| | | | - Helene Keuthen
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Katharina Höfer
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany; Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
6
|
Potužník JF, Cahova H. If the 5' cap fits (wear it) - Non-canonical RNA capping. RNA Biol 2024; 21:1-13. [PMID: 39007883 PMCID: PMC11253889 DOI: 10.1080/15476286.2024.2372138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024] Open
Abstract
RNA capping is a prominent RNA modification that influences RNA stability, metabolism, and function. While it was long limited to the study of the most abundant eukaryotic canonical m7G cap, the field recently went through a large paradigm shift with the discovery of non-canonical RNA capping in bacteria and ultimately all domains of life. The repertoire of non-canonical caps has expanded to encompass metabolite caps, including NAD, FAD, CoA, UDP-Glucose, and ADP-ribose, alongside alarmone dinucleoside polyphosphate caps, and methylated phosphate cap-like structures. This review offers an introduction into the field, presenting a summary of the current knowledge about non-canonical RNA caps. We highlight the often still enigmatic biological roles of the caps together with their processing enzymes, focusing on the most recent discoveries. Furthermore, we present the methods used for the detection and analysis of these non-canonical RNA caps and thus provide an introduction into this dynamic new field.
Collapse
Affiliation(s)
- Jiří František Potužník
- Institute of Organic Chemistry and Biochemistry of the CAS, Prague 6, Czechia
- Department of Cell Biology, Charles University, Faculty of Science, Prague 2, Czechia
| | - Hana Cahova
- Institute of Organic Chemistry and Biochemistry of the CAS, Prague 6, Czechia
| |
Collapse
|
7
|
Sapkota K, Lucas JK, Faulkner JW, Lichte MF, Guo YL, Burke DH, Huang F. Post-transcriptional capping generates coenzyme A-linked RNA. RNA Biol 2024; 21:1-12. [PMID: 38032240 PMCID: PMC10761072 DOI: 10.1080/15476286.2023.2288740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2023] [Indexed: 12/01/2023] Open
Abstract
NAD can be inserted co-transcriptionally via non-canonical initiation to form NAD-RNA. However, that mechanism is unlikely for CoA-linked RNAs due to low intracellular concentration of the required initiator nucleotide, 3'-dephospho-CoA (dpCoA). We report here that phosphopantetheine adenylyltransferase (PPAT), an enzyme of CoA biosynthetic pathway, accepts RNA transcripts as its acceptor substrate and transfers 4'-phosphopantetheine to yield CoA-RNA post-transcriptionally. Synthetic natural (RNAI) and small artificial RNAs were used to identify the features of RNA that are needed for it to serve as PPAT substrate. RNAs with 4-10 unpaired nucleotides at the 5' terminus served as PPAT substrates, but RNAs having <4 unpaired nucleotides did not undergo capping. No capping was observed when the +1A was changed to G or when 5' triphosphate was removed by RNA pyrophosphohydrolase (RppH), suggesting the enzyme recognizes pppA-RNA as an ATP analog. PPAT binding affinities were equivalent for transcripts with +1A, +1 G, or 5'OH (+1A), indicating that productive enzymatic recognition is driven more by local positioning effects than by overall binding affinity. Capping rates were independent of the number of unpaired nucleotides in the range of 4-10 nucleotides. Capping was strongly inhibited by ATP, reducing CoA-RNA production ~70% when equimolar ATP and substrate RNA were present. Dual bacterial expression of candidate RNAs with different 5' structures followed by CoA-RNA CaptureSeq revealed 12-fold enrichment of the better PPAT substrate, consistent with in vivo CoA-capping of RNA transcripts by PPAT. These results suggest post-transcriptional RNA capping as a possible mechanism for the biogenesis of CoA-RNAs in bacteria.
Collapse
Affiliation(s)
- Krishna Sapkota
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, MS, USA
| | - Jordyn K. Lucas
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Jarrett W. Faulkner
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, MS, USA
| | - Matt F. Lichte
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Yan-Lin Guo
- Department of Cell and Molecular Biology, University of Southern Mississippi, Hattiesburg, MS, USA
| | - Donald H. Burke
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Department of Molecular Microbiology & Immunology, University of Missouri, Columbia, MO, USA
| | - Faqing Huang
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, MS, USA
| |
Collapse
|
8
|
Mickutė M, Krasauskas R, Kvederavičiūtė K, Tupikaitė G, Osipenko A, Kaupinis A, Jazdauskaitė M, Mineikaitė R, Valius M, Masevičius V, Vilkaitis G. Interplay between bacterial 5'-NAD-RNA decapping hydrolase NudC and DEAD-box RNA helicase CsdA in stress responses. mSystems 2023; 8:e0071823. [PMID: 37706681 PMCID: PMC10654059 DOI: 10.1128/msystems.00718-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 09/15/2023] Open
Abstract
IMPORTANCE Non-canonical 5'-caps removing RNA hydrolase NudC, along with stress-responsive RNA helicase CsdA, is crucial for 5'-NAD-RNA decapping and bacterial movement.
Collapse
Affiliation(s)
- Milda Mickutė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Renatas Krasauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Kotryna Kvederavičiūtė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Gytė Tupikaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Aleksandr Osipenko
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Algirdas Kaupinis
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Monika Jazdauskaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- Thermo Fisher Scientific Baltics, Vilnius, Lithuania
| | - Raminta Mineikaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Mindaugas Valius
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Viktoras Masevičius
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Vilnius, Lithuania
| | - Giedrius Vilkaitis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
9
|
Shao X, Zhang H, Zhu Z, Ji F, He Z, Yang Z, Xia Y, Cai Z. DpCoA tagSeq: Barcoding dpCoA-Capped RNA for Direct Nanopore Sequencing via Maleimide-Thiol Reaction. Anal Chem 2023; 95:11124-11131. [PMID: 37439785 PMCID: PMC10372868 DOI: 10.1021/acs.analchem.3c02063] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/27/2023] [Indexed: 07/14/2023]
Abstract
Recent discoveries of noncanonical RNA caps, such as nicotinamide adenine dinucleotide (NAD+) and 3'-dephospho-coenzyme A (dpCoA), have expanded our knowledge of RNA caps. Although dpCoA has been known to cap RNAs in various species, the identities of its capped RNAs (dpCoA-RNAs) remained unknown. To fill this gap, we developed a method called dpCoA tagSeq, which utilized a thiol-reactive maleimide group to label dpCoA cap with a tag RNA serving as the 5' barcode. The barcoded RNAs were isolated using a complementary DNA strand of the tag RNA prior to direct sequencing by nanopore technology. Our validation experiments with model RNAs showed that dpCoA-RNA was efficiently tagged and captured using this protocol. To confirm that the tagged RNAs are capped by dpCoA and no other thiol-containing molecules, we used a pyrophosphatase NudC to degrade the dpCoA cap to adenosine monophosphate (AMP) moiety before performing the tagSeq protocol. We identified 44 genes that transcribe dpCoA-RNAs in mouse liver, demonstrating the method's effectiveness in identifying and characterizing the capped RNAs. This strategy provides a viable approach to identifying dpCoA-RNAs that allows for further functional investigations of the cap.
Collapse
Affiliation(s)
- Xiaojian Shao
- State
Key Laboratory of Environmental and Biological Analysis, Department
of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Hailei Zhang
- Department
of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Zhou Zhu
- School
of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Fenfen Ji
- State
Key Laboratory of Environmental and Biological Analysis, Department
of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Zhao He
- State
Key Laboratory of Environmental and Biological Analysis, Department
of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Zhu Yang
- State
Key Laboratory of Environmental and Biological Analysis, Department
of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Yiji Xia
- Department
of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Zongwei Cai
- State
Key Laboratory of Environmental and Biological Analysis, Department
of Chemistry, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
10
|
Mattay J. Noncanonical metabolite RNA caps: Classification, quantification, (de)capping, and function. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1730. [PMID: 35675554 DOI: 10.1002/wrna.1730] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 06/15/2023]
Abstract
The 5' cap of eukaryotic mRNA is a hallmark for cellular functions from mRNA stability to translation. However, the discovery of novel 5'-terminal RNA caps derived from cellular metabolites has challenged this long-standing singularity in both eukaryotes and prokaryotes. Reminiscent of the 7-methylguanosine (m7G) cap structure, these noncanonical caps originate from abundant coenzymes such as NAD, FAD, or CoA and from metabolites like dinucleoside polyphosphates (NpnN). As of now, the significance of noncanonical RNA caps is elusive: they differ for individual transcripts, occur in distinct types of RNA, and change in response to environmental stimuli. A thorough comparison of their prevalence, quantity, and characteristics is indispensable to define the distinct classes of metabolite-capped RNAs. This is achieved by a structured analysis of all present studies covering functional, quantitative, and sequencing data which help to uncover their biological impact. The biosynthetic strategies of noncanonical RNA capping and the elaborate decapping machinery reveal the regulation and turnover of metabolite-capped RNAs. With noncanonical capping being a universal and ancient phenomenon, organisms have developed diverging strategies to adapt metabolite-derived caps to their metabolic needs, but ultimately to establish noncanonical RNA caps as another intriguing layer of RNA regulation. This article is categorized under: RNA Processing > Capping and 5' End Modifications RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Turnover and Surveillance > Regulation of RNA Stability.
Collapse
Affiliation(s)
- Johanna Mattay
- Institute of Biochemistry, University of Münster, Münster, Germany
| |
Collapse
|
11
|
Staphylococcus aureus Small RNAs Possess Dephospho-CoA 5′-Caps, but No CoAlation Marks. Noncoding RNA 2022; 8:ncrna8040046. [PMID: 35893229 PMCID: PMC9326634 DOI: 10.3390/ncrna8040046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Novel features of coenzyme A (CoA) and its precursor, 3′-dephospho-CoA (dpCoA), recently became evident. dpCoA was found to attach to 5′-ends of small ribonucleic acids (dpCoA-RNAs) in two bacterial species (Escherichia coli and Streptomyces venezuelae). Furthermore, CoA serves, in addition to its well-established coenzymatic roles, as a ubiquitous posttranslational protein modification (‘CoAlation’), thought to prevent the irreversible oxidation of cysteines. Here, we first identified and quantified dpCoA-RNAs in the small RNA fraction of the human pathogen Staphylococcus aureus, using a newly developed enzymatic assay. We found that the amount of dpCoA caps was similar to that of the other two bacteria. We furthermore tested the hypothesis that, in the environment of a cell, the free thiol of the dpCoA-RNAs, as well as other sulfur-containing RNA modifications, may be oxidized by disulfide bond formation, e.g., with CoA. While we could not find evidence for such an ‘RNA CoAlation’, we observed that CoA disulfide reductase, the enzyme responsible for reducing CoA homodisulfides in S. aureus, did efficiently reduce several synthetic dpCoA-RNA disulfides to dpCoA-RNAs in vitro. This activity may imply a role in reversing RNA CoAlation.
Collapse
|
12
|
Doamekpor SK, Sharma S, Kiledjian M, Tong L. Recent insights into noncanonical 5' capping and decapping of RNA. J Biol Chem 2022; 298:102171. [PMID: 35750211 PMCID: PMC9283932 DOI: 10.1016/j.jbc.2022.102171] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/30/2022] Open
Abstract
The 5' N7-methylguanosine cap is a critical modification for mRNAs and many other RNAs in eukaryotic cells. Recent studies have uncovered an RNA 5' capping quality surveillance mechanism, with DXO/Rai1 decapping enzymes removing incomplete caps and enabling the degradation of the RNAs, in a process we also refer to as "no-cap decay." It has also been discovered recently that RNAs in eukaryotes, bacteria, and archaea can have noncanonical caps (NCCs), which are mostly derived from metabolites and cofactors such as NAD, FAD, dephospho-CoA, UDP-glucose, UDP-N-acetylglucosamine, and dinucleotide polyphosphates. These NCCs can affect RNA stability, mitochondrial functions, and possibly mRNA translation. The DXO/Rai1 enzymes and selected Nudix (nucleotide diphosphate linked to X) hydrolases have been shown to remove NCCs from RNAs through their deNADding, deFADding, deCoAping, and related activities, permitting the degradation of the RNAs. In this review, we summarize the recent discoveries made in this exciting new area of RNA biology.
Collapse
Affiliation(s)
- Selom K. Doamekpor
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Sunny Sharma
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, USA
| | - Megerditch Kiledjian
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, USA.
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, New York, USA.
| |
Collapse
|
13
|
Singh Y, Bird JG. A gel electrophoresis-based assay for measuring enzymatic RNA decapping activity. Methods Enzymol 2022; 675:323-350. [DOI: 10.1016/bs.mie.2022.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|