1
|
Lu Y, Ruan X, Xiao G, Dai Y, Li G, Cai G, Zheng L, Guan Z, Sun W, Wang H. Lockd Enhances Mandibular Mesenchymal Stem Cell Proliferation While Inhibiting Osteogenic Capability via Binding With SUZ12 in the Inflammatory Microenvironment. J Clin Periodontol 2025; 52:171-185. [PMID: 39401094 DOI: 10.1111/jcpe.14076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/21/2024] [Accepted: 09/13/2024] [Indexed: 12/28/2024]
Abstract
AIM To investigate the role of lncRNA Lockd in mandibular mesenchymal stem cell (M-MSC) proliferation and osteogenic capability in the inflammatory microenvironment, focusing on its interaction with SUZ12. MATERIALS AND METHODS Using lncR Lockd knockdown/overexpression cell models and a murine periodontitis model, we explored Lockd's effects on M-MSC proliferation and osteogenic capability in the inflammatory microenvironment. Predictions from multiple databases and a series of rescue experiments revealed the regulatory role of the Lockd/SUZ12 signalling axis of M-MSC in the inflammatory microenvironment. RESULTS Lockd was found to stimulate M-MSC proliferation but impair osteogenic differentiation. The in vitro studies suggested that the activation of Lockd negatively inhibited the osteogenic differentiation process and may ultimately impact bone formation in periodontitis. Mechanistically, it was elucidated that Lockd interacts with SUZ12, a core component of the polycomb repressive complex 2 (PRC2), and may affect the PRC2 complex's role in osteogenic gene expression. CONCLUSIONS Lockd boosts the proliferation of M-MSCs but inhibits their osteogenic differentiation by interacting with SUZ12, potentially inhibiting osteogenic capability in the inflammatory microenvironment.
Collapse
Affiliation(s)
- Yahui Lu
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, China
| | - Xiaolei Ruan
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, China
| | - Gang Xiao
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, China
| | - Yueming Dai
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, China
| | - Gen Li
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, China
| | - Guanhui Cai
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, China
| | - Lihe Zheng
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, China
| | - Zhaolan Guan
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Wen Sun
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Hua Wang
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| |
Collapse
|
2
|
Caserta S, Stagno F, Gangemi S, Allegra A. Highlights on the Effects of Non-Coding RNAs in the Osteonecrosis of the Jaw. Int J Mol Sci 2024; 25:1598. [PMID: 38338876 PMCID: PMC10855359 DOI: 10.3390/ijms25031598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Osteonecrosis of the jaw is the progressive loss and destruction of bone affecting the maxilla or mandible in patients treated with antiresorptive and antiangiogenic agents without receiving prior radiation therapy. The pathogenesis involves the inflammatory pathway of receptor activator of nuclear factor NF-kB ligand and the macrophage colony-stimulating factor, essential for osteoclast precursors survival and proliferation and acting through its receptor c-Fms. Evidence has shown the role of non-coding RNAs in the pathogenesis of osteonecrosis of the jaw and this finding might be useful in diagnosis since these small RNAs could be considered as biomarkers of apoptotic activity in bone. Interestingly, it has been proved that miR-29 and miR-31-5p, acting on specific targets such as CALCR and RhoA, promote programmed-cell death and consequently the necrosis of bone tissue. Specific long non-coding RNAs, instead, have been detected both at reduced levels in patients with multiple myeloma and osteonecrosis, and associated with suppression of osteoblast differentiation, with consequences in the progression of mandible lesions. Among non-coding genic material, circular RNAs have the capability to modify the expression of specific mRNAs responsible for the inhibition of bisphosphonates activity on osteoclastogenesis.
Collapse
Affiliation(s)
- Santino Caserta
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (S.C.); (A.A.)
| | - Fabio Stagno
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (S.C.); (A.A.)
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Alessandro Allegra
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (S.C.); (A.A.)
| |
Collapse
|