1
|
Calado CRC. Antigenic and conserved peptides from diverse Helicobacter pylori antigens. Biotechnol Lett 2022; 44:535-545. [PMID: 35277779 PMCID: PMC8916697 DOI: 10.1007/s10529-022-03238-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/14/2022] [Indexed: 12/20/2022]
Abstract
Since the revolutionary finding of Helicobacter pylori as a common bacterial infection, that a high research effort for its eradication has been conducted. Epitope based-vaccine presents advantages over protein-based, as they can be designed to contain epitopes from diverse proteins, therefore, more easily representing the immune-variability of the bacterial population, while minimizing the toxicity associated to some whole proteins. In the present work, an iterative method, to design antigenic and conserved B-epitopes from diverse virulent factors of H. pylori, was established. The method considered the trade-off between epitopes antigenicity and conservation among the bacterial population. For the method validation, five virulent factors from H. pylori were selected. From each virulent factor, two epitopes were predicted, each with twelve residues of aminoacids. The corresponding ten peptides were synthesised and evaluated by enzyme-linked immunosorbent assay using polyclonal antibodies raised against a specific H. pylori strain. All ten peptides were recognised by the antibodies and were consequently antigenic and conserved. This result could strongly contribute to the design of a multivalent epitope-based vaccine, representing the immunogenetic variability within the bacterial population, leading to a sustained and effective immunogenic protection.
Collapse
Affiliation(s)
- Cecília R C Calado
- CIMOSM - Centro de Investigação em Modelação e Otimização de Sistemas Multifuncionais, ISEL - Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro 1, 1959-007, Lisboa, Portugal.
| |
Collapse
|
2
|
Kimber I, Agius R, Basketter DA, Corsini E, Cullinan P, Dearman RJ, Gimenez-Arnau E, Greenwell L, Hartung T, Kuper F, Maestrelli P, Roggen E, Rovida C. Chemical Respiratory Allergy: Opportunities for Hazard Identification and Characterisation. Altern Lab Anim 2019; 35:243-65. [PMID: 17559314 DOI: 10.1177/026119290703500212] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Ian Kimber
- Syngenta Central Toxicology Laboratory, Macclesfield, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Rostami A, Karanis P, Fallahi S. Advances in serological, imaging techniques and molecular diagnosis of Toxoplasma gondii infection. Infection 2018; 46:303-315. [PMID: 29330674 DOI: 10.1007/s15010-017-1111-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 12/22/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Toxoplasmosis is worldwide distributed zoonotic infection disease with medical importance in immunocompromised patients, pregnant women and congenitally infected newborns. Having basic information on the traditional and new developed methods is essential for general physicians and infectious disease specialists for choosing a suitable diagnostic approach for rapid and accurate diagnosis of the disease and, consequently, timely and effective treatment. METHODS We conducted English literature searches in PubMed from 1989 to 2016 using relevant keywords and summarized the recent advances in diagnosis of toxoplasmosis. RESULTS Enzyme-linked immunosorbent assay (ELISA) was most used method in past century. Recently advanced ELISA-based methods including chemiluminescence assays (CLIA), enzyme-linked fluorescence assay (ELFA), immunochromatographic test (ICT), serum IgG avidity test and immunosorbent agglutination assays (ISAGA) have shown high sensitivity and specificity. Recent studies using recombinant or chimeric antigens and multiepitope peptides method demonstrated very promising results to development of new strategies capable of discriminating recently acquired infections from chronic infection. Real-time PCR and loop-mediated isothermal amplification (LAMP) are two recently developed PCR-based methods with high sensitivity and specificity and could be useful to early diagnosis of infection. Computed tomography, magnetic resonance imaging, nuclear imaging and ultrasonography could be useful, although their results might be not specific alone. CONCLUSION This review provides a summary of recent developed methods and also attempts to improve their sensitivity for diagnosis of toxoplasmosis. Serology, molecular and imaging technologies each has their own advantages and limitations which can certainly achieve definitive diagnosis of toxoplasmosis by combining these diagnostic techniques.
Collapse
Affiliation(s)
- Ali Rostami
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Panagiotis Karanis
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Shirzad Fallahi
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran. .,Department of Medical Parasitology and Mycology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
4
|
Luzar J, Štrukelj B, Lunder M. Phage display peptide libraries in molecular allergology: from epitope mapping to mimotope-based immunotherapy. Allergy 2016; 71:1526-1532. [PMID: 27341497 DOI: 10.1111/all.12965] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2016] [Indexed: 01/07/2023]
Abstract
Identification of allergen epitopes is a key component in proper understanding of the pathogenesis of type I allergies, for understanding cross-reactivity and for the development of mimotope immunotherapeutics. Phage particles have garnered recognition in the field of molecular allergology due to their value not only in competitive immunoscreening of peptide libraries but also as immunogenic carriers of allergen mimotopes. They integrate epitope discovery technology and immunization functions into a single platform. This article provides an overview of allergen mimotopes identified through the phage display technique. We discuss the contribution of phage display peptide libraries in determining dominant B-cell epitopes of allergens, in developing mimotope immunotherapy, in understanding cross-reactivity, and in determining IgE epitope profiles of individual patients to improve diagnostics and individualize immunotherapy. We also discuss the advantages and pitfalls of the methodology used to identify and validate the mimotopes.
Collapse
Affiliation(s)
- J. Luzar
- Chair of Pharmaceutical Biology; Faculty of Pharmacy; University of Ljubljana; Ljubljana Slovenia
| | - B. Štrukelj
- Chair of Pharmaceutical Biology; Faculty of Pharmacy; University of Ljubljana; Ljubljana Slovenia
| | - M. Lunder
- Chair of Pharmaceutical Biology; Faculty of Pharmacy; University of Ljubljana; Ljubljana Slovenia
| |
Collapse
|
5
|
Ahmad TA, Eweida AE, Sheweita SA. B-cell epitope mapping for the design of vaccines and effective diagnostics. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.trivac.2016.04.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Bardet G, Mignon V, Momas I, Achard S, Seta N. Human Reconstituted Nasal Epithelium, a promising in vitro model to assess impacts of environmental complex mixtures. Toxicol In Vitro 2015; 32:55-62. [PMID: 26631767 DOI: 10.1016/j.tiv.2015.11.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/26/2015] [Accepted: 11/24/2015] [Indexed: 11/28/2022]
Abstract
Considering the impact of respiratory diseases around the world, appropriate experimental tools to help understand the mechanisms involved in such diseases are becoming essential. Our aim was to investigate the cellular and morphological reactivity of a human Reconstituted Nasal Epithelium (hRNE) to evaluate the impact of environmental complex mixture (ECM), with tobacco smoke as a model, after three weeks of repeated exposures. Staining of hRNE showed a multilayered ciliated epithelium, with a regular cilia beats, and a mucus production. When hRNE was exposed to ECM for 5 min once or twice a week, during 3 weeks, significant changes occurred: IL-8 production significantly increased 24h after the first exposure compared with Air-exposure and only during the first week, without any loss of tissue integrity. Immunostaining of F-actin cytoskeleton showed a modification in cellular morphology (number and diameter). Taken together our results indicate that hRNE is well suited to study the cellular and morphological effects of repeated exposures to an environmental complex mixture. Human reconstituted epithelium models are currently the best in vitro representation of human respiratory tract physiology, and also the most robust for performing repeated exposures to atmospheric pollutants.
Collapse
Affiliation(s)
- Gaëlle Bardet
- Université Paris Descartes, Faculté de Pharmacie de Paris, EA 4064, Laboratoire de Santé Publique et Environnement, Paris, France; Agence de l'environnement et de la Maîtrise de l'Energie (ADEME), Angers, France.
| | - Virginie Mignon
- Université Paris Descartes, Faculté de Pharmacie de Paris, Cellular and Molecular Imaging Platform, UMS 3612 CNRS, US25 INSERM, Paris, France.
| | - Isabelle Momas
- Université Paris Descartes, Faculté de Pharmacie de Paris, EA 4064, Laboratoire de Santé Publique et Environnement, Paris, France.
| | - Sophie Achard
- Université Paris Descartes, Faculté de Pharmacie de Paris, EA 4064, Laboratoire de Santé Publique et Environnement, Paris, France.
| | - Nathalie Seta
- Université Paris Descartes, Faculté de Pharmacie de Paris, EA 4064, Laboratoire de Santé Publique et Environnement, Paris, France; AP-HP, Hôpital Bichat, Biochimie, Paris, France.
| |
Collapse
|
7
|
Guan X, Noble KA, Tao Y, Roux KH, Sathe SK, Young NL, Marshall AG. Epitope mapping of 7S cashew antigen in complex with antibody by solution-phase H/D exchange monitored by FT-ICR mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2015; 50:812-819. [PMID: 26169135 DOI: 10.1002/jms.3589] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 02/12/2015] [Accepted: 02/13/2015] [Indexed: 06/04/2023]
Abstract
The potential epitope of a recombinant food allergen protein, cashew Ana o 1, reactive to monoclonal antibody, mAb 2G4, has been mapped by solution-phase amide backbone H/D exchange (HDX) monitored by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Purified mAb 2G4 was incubated with recombinant Ana o 1 (rAna o 1) to form antigen:monoclonal antibody (Ag:mAb) complexes. Complexed and uncomplexed (free) rAna o 1 were then subjected to HDX-MS analysis. Five regions protected from H/D exchange upon mAb binding are identified as potential conformational epitope-contributing segments.
Collapse
Affiliation(s)
- Xiaoyan Guan
- National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, FL, 32310, USA
| | - Kyle A Noble
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Yeqing Tao
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL, 32306, USA
| | - Kenneth H Roux
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Shridhar K Sathe
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Nicolas L Young
- National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, FL, 32310, USA
| | - Alan G Marshall
- National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, FL, 32310, USA
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL, 32306, USA
| |
Collapse
|
8
|
Madsen JL, Kroghsbo S, Madsen CB, Pozdnyakova I, Barkholt V, Bøgh KL. The impact of structural integrity and route of administration on the antibody specificity against three cow's milk allergens - a study in Brown Norway rats. Clin Transl Allergy 2014; 4:25. [PMID: 25206972 PMCID: PMC4158394 DOI: 10.1186/2045-7022-4-25] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 07/28/2014] [Indexed: 01/14/2023] Open
Abstract
Background Characterisation of the specific antibody response, including the epitope binding pattern, is an essential task for understanding the molecular mechanisms of food allergy. Examination of antibody formation in a controlled environment requires animal models. The purpose of this study was to examine the amount and types of antibodies raised against three cow’s milk allergens; β-lactoglobulin (BLG), α-lactalbumin (ALA) and β-casein upon oral or intraperitoneal (i.p.) administration. A special focus was given to the relative amount of antibodies raised against linear versus conformational epitopes. Methods Specific antibodies were raised in Brown Norway (BN) rats. BN rats were dosed either (1) i.p. with the purified native cow’s milk allergens or (2) orally with skimmed milk powder (SMP) alone or together with gluten, without the use of adjuvants. The allergens were denatured by reduction and alkylation, resulting in unfolding of the primary structure and a consequential loss of conformational epitopes. The specific IgG1 and IgE responses were analysed against both the native and denatured form of the three cow’s milk allergens, thus allowing examination of the relative amount of linear versus conformational epitopes. Results The inherent capacity to induce specific IgG1 and IgE antibodies were rather similar upon i.p. administration for the three cow’s milk allergens, with BLG = ALA > β-casein. Larger differences were found between the allergens upon oral administration, with BLG > ALA > β-casein. Co-administration of SMP and gluten had a great impact on the specific antibody response, resulting in a significant reduced amount of antibodies. Together results indicated that most antibodies were raised against conformational epitopes irrespectively of the administration route, though the relative proportions between linear and conformational epitopes differed remarkably between the allergens. Conclusions This study showed that the three-dimensional (3D) structure has a significant impact on the antibodies raised for both systemic and orally administered allergens. A remarkable difference in the antibody binding patterns against linear and conformational epitope was seen between the allergens, indicating that the structural characteristics of proteins may heavily affect the induced antibody response.
Collapse
Affiliation(s)
- Jeanette Lund Madsen
- Division of Toxicology and Risk Assessment, National Food Institute, Technical University of Denmark, Mørkhøj Bygade 19, DK-2860 Søborg, Denmark
| | - Stine Kroghsbo
- Division of Toxicology and Risk Assessment, National Food Institute, Technical University of Denmark, Mørkhøj Bygade 19, DK-2860 Søborg, Denmark
| | - Charlotte Bernhard Madsen
- Division of Toxicology and Risk Assessment, National Food Institute, Technical University of Denmark, Mørkhøj Bygade 19, DK-2860 Søborg, Denmark
| | - Irina Pozdnyakova
- NNF Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Vibeke Barkholt
- Department of Systems Biology, Enzyme and Protein Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Katrine Lindholm Bøgh
- Division of Toxicology and Risk Assessment, National Food Institute, Technical University of Denmark, Mørkhøj Bygade 19, DK-2860 Søborg, Denmark
| |
Collapse
|
9
|
B-cell epitope engineering: A matter of recognizing protein features and motives. DRUG DISCOVERY TODAY. TECHNOLOGIES 2014; 5:e49-55. [PMID: 24981091 DOI: 10.1016/j.ddtec.2009.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Using in vivo and in vitro studies B-cell epitopes have been identified on a number of proteins. These epitopes were used to develop predictive methods. After comparison of existing and emerging technologies, this review concludes that antigenicity is not described by physicochemical and structural characteristics of a protein alone. Molecular characteristics of the antigenic amino acids are required. How the structural context affects the selection of these amino acids by the antibody is unknown.:
Collapse
|
10
|
Ladics GS, Fry J, Goodman R, Herouet-Guicheney C, Hoffmann-Sommergruber K, Madsen CB, Penninks A, Pomés A, Roggen EL, Smit J, Wal JM. Allergic sensitization: screening methods. Clin Transl Allergy 2014; 4:13. [PMID: 24739743 PMCID: PMC3990213 DOI: 10.1186/2045-7022-4-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 03/09/2014] [Indexed: 11/10/2022] Open
Abstract
Experimental in silico, in vitro, and rodent models for screening and predicting protein sensitizing potential are discussed, including whether there is evidence of new sensitizations and allergies since the introduction of genetically modified crops in 1996, the importance of linear versus conformational epitopes, and protein families that become allergens. Some common challenges for predicting protein sensitization are addressed: (a) exposure routes; (b) frequency and dose of exposure; (c) dose-response relationships; (d) role of digestion, food processing, and the food matrix; (e) role of infection; (f) role of the gut microbiota; (g) influence of the structure and physicochemical properties of the protein; and (h) the genetic background and physiology of consumers. The consensus view is that sensitization screening models are not yet validated to definitively predict the de novo sensitizing potential of a novel protein. However, they would be extremely useful in the discovery and research phases of understanding the mechanisms of food allergy development, and may prove fruitful to provide information regarding potential allergenicity risk assessment of future products on a case by case basis. These data and findings were presented at a 2012 international symposium in Prague organized by the Protein Allergenicity Technical Committee of the International Life Sciences Institute's Health and Environmental Sciences Institute.
Collapse
Affiliation(s)
- Gregory S Ladics
- DuPont Pioneer Agricultural Biotechnology, DuPont Experimental Station, 200 Powder Mill Road, Wilmington, DE 19880-0400, USA
| | - Jeremy Fry
- ProImmune Limited, The Magdalen Centre, The Oxford Science Park, Robert Robinson Avenue, Oxford OX4 4GA, United Kingdom
| | - Richard Goodman
- Department of Food Science & Technology, Food Allergy Research and Resource Program, University of Nebraska–Lincoln, 143 Food Industry Complex, Lincoln, Nebraska, USA
| | | | - Karin Hoffmann-Sommergruber
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Charlotte B Madsen
- Department of Toxicology and Risk Assessment, National Food Institute, Technical University of Denmark, 19, Mørkhøj Bygade, DK-2860 Søborg, Denmark
| | - André Penninks
- TNO Triskelion BV, Utrechtseweg 48, 3700 AV Zeist, Netherlands
| | - Anna Pomés
- Indoor Biotechnologies, Inc, 1216 Harris Street, Charlottesville, Virginia, USA
| | - Erwin L Roggen
- Novozymes AS and 3Rs Management and Consultancy, Krogshoejvej 36, 2880 Bagsvaerd, Denmark
| | - Joost Smit
- Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 104, 3508 TD Utrecht, Netherlands
| | - Jean-Michel Wal
- AgroParisTech, Department SVS, 16 rue Claude Bernard, F-75231, Paris Cedex 05, France
| |
Collapse
|
11
|
Huang JH, Wen M, Tang LJ, Xie HL, Fu L, Liang YZ, Lu HM. Using random forest to classify linear B-cell epitopes based on amino acid properties and molecular features. Biochimie 2014; 103:1-6. [PMID: 24721579 DOI: 10.1016/j.biochi.2014.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 03/27/2014] [Indexed: 11/18/2022]
Abstract
Identification and characterization of B-cell epitopes in target antigens was one of the key steps in epitopes-driven vaccine design, immunodiagnostic tests, and antibody production. Experimental determination of epitopes was labor-intensive and expensive. Therefore, there was an urgent need of computational methods for reliable identification of B-cell epitopes. In current study, we proposed a novel peptide feature description method which combined peptide amino acid properties with chemical molecular features. Based on these combined features, a random forest (RF) classifier was adopted to classify B-cell epitopes and non-epitopes. RF is an ensemble method that uses recursive partitioning to generate many trees for aggregating the results; and it always produces highly competitive models. The classification accuracy, sensitivity, specificity, Matthews correlation coefficient (MCC), and area under the curve (AUC) values for current method were 78.31%, 80.05%, 72.23%, 0.5836, and 0.8800, respectively. These results showed that an appropriate combination of peptide amino acid features and chemical molecular features with a RF model could enhance the prediction performance of linear B-cell epitopes. Finally, a freely online service was available at http://sysbio.yznu.cn/Research/Epitopesprediction.aspx.
Collapse
Affiliation(s)
- Jian-Hua Huang
- Research Center of Modernization of Traditional Chinese Medicines, Central South University, Changsha 410083, PR China
| | - Ming Wen
- Research Center of Modernization of Traditional Chinese Medicines, Central South University, Changsha 410083, PR China
| | - Li-Juan Tang
- Criminal Investigation Detachment, Guilin Public Security Bureau, Guilin 541213, PR China
| | - Hua-Lin Xie
- School of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling 408100, PR China
| | - Liang Fu
- School of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling 408100, PR China
| | - Yi-Zeng Liang
- Research Center of Modernization of Traditional Chinese Medicines, Central South University, Changsha 410083, PR China.
| | - Hong-Mei Lu
- Research Center of Modernization of Traditional Chinese Medicines, Central South University, Changsha 410083, PR China.
| |
Collapse
|
12
|
Bøgh K, Nielsen H, Eiwegger T, Madsen C, Mills E, Rigby N, Szépfalusi Z, Roggen E. IgE versus IgG4 epitopes of the peanut allergen Ara h 1 in patients with severe allergy. Mol Immunol 2014; 58:169-76. [DOI: 10.1016/j.molimm.2013.11.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 11/21/2013] [Indexed: 10/25/2022]
|
13
|
Dhanda SK, Vir P, Raghava GPS. Designing of interferon-gamma inducing MHC class-II binders. Biol Direct 2013; 8:30. [PMID: 24304645 PMCID: PMC4235049 DOI: 10.1186/1745-6150-8-30] [Citation(s) in RCA: 468] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 11/25/2013] [Indexed: 02/03/2023] Open
Abstract
Background The generation of interferon-gamma (IFN-γ) by MHC class II activated CD4+ T helper cells play a substantial contribution in the control of infections such as caused by Mycobacterium tuberculosis. In the past, numerous methods have been developed for predicting MHC class II binders that can activate T-helper cells. Best of author’s knowledge, no method has been developed so far that can predict the type of cytokine will be secreted by these MHC Class II binders or T-helper epitopes. In this study, an attempt has been made to predict the IFN-γ inducing peptides. The main dataset used in this study contains 3705 IFN-γ inducing and 6728 non-IFN-γ inducing MHC class II binders. Another dataset called IFNgOnly contains 4483 IFN-γ inducing epitopes and 2160 epitopes that induce other cytokine except IFN-γ. In addition we have alternate dataset that contains IFN-γ inducing and equal number of random peptides. Results It was observed that the peptide length, positional conservation of residues and amino acid composition affects IFN-γ inducing capabilities of these peptides. We identified the motifs in IFN-γ inducing binders/peptides using MERCI software. Our analysis indicates that IFN-γ inducing and non-inducing peptides can be discriminated using above features. We developed models for predicting IFN-γ inducing peptides using various approaches like machine learning technique, motifs-based search, and hybrid approach. Our best model based on the hybrid approach achieved maximum prediction accuracy of 82.10% with MCC of 0.62 on main dataset. We also developed hybrid model on IFNgOnly dataset and achieved maximum accuracy of 81.39% with 0.57 MCC. Conclusion Based on this study, we have developed a webserver for predicting i) IFN-γ inducing peptides, ii) virtual screening of peptide libraries and iii) identification of IFN-γ inducing regions in antigen (http://crdd.osdd.net/raghava/ifnepitope/). Reviewers This article was reviewed by Prof Kurt Blaser, Prof Laurence Eisenlohr and Dr Manabu Sugai.
Collapse
Affiliation(s)
- Sandeep Kumar Dhanda
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India.
| | | | | |
Collapse
|
14
|
Zhang Q, Noble KA, Mao Y, Young NL, Sathe SK, Roux KH, Marshall AG. Rapid screening for potential epitopes reactive with a polycolonal antibody by solution-phase H/D exchange monitored by FT-ICR mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:1016-1025. [PMID: 23681851 DOI: 10.1007/s13361-013-0644-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 04/03/2013] [Accepted: 04/03/2013] [Indexed: 06/02/2023]
Abstract
The potential epitopes of a recombinant food allergen protein, cashew Ana o 2, reactive to polyclonal antibodies, were mapped by solution-phase amide backbone H/D exchange (HDX) coupled with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Ana o 2 polyclonal antibodies were purified in the serum from a goat immunized with cashew nut extract. Antibodies were incubated with recombinant Ana o 2 (rAna o 2) to form antigen:polyclonal antibody (Ag:pAb) complexes. Complexed and uncomplexed (free) rAna o 2 were then subjected to HDX-MS analysis. Four regions protected from H/D exchange upon pAb binding are identified as potential epitopes and mapped onto a homologous model.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Toxoplasma gondii recombinant antigens as tools for serodiagnosis of human toxoplasmosis: current status of studies. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:1343-51. [PMID: 23784855 DOI: 10.1128/cvi.00117-13] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Toxoplasma gondii is a parasitic protozoan which is the cause of toxoplasmosis. Although human toxoplasmosis in healthy adults is usually asymptomatic, serious disease can occur in the case of congenital infections and immunocompromised individuals. Furthermore, despite the exact recognition of its etiology, it still presents a diagnostic problem. Diagnosis of toxoplasmosis is mainly based on the results of serological tests detecting anti-T. gondii-specific antibodies in the patient's serum sample. The specificities and sensitivities of serology tests depend mostly on the diagnostic antigen(s) used. Most of the commercial serological kits currently available are based on Toxoplasma lysate antigens (TLAs). In recent years, many studies showed that recombinant antigenic proteins of T. gondii may be an alternative source of antigens which are very useful for the serodiagnosis of toxoplasmosis. This article presents a review of current studies on the application and usefulness of different T. gondii recombinant antigens in serological tests for the diagnosis of human toxoplasmosis.
Collapse
|
16
|
Bøgh KL, Nielsen H, Madsen CB, Mills ENC, Rigby N, Eiwegger T, Szépfalusi Z, Roggen EL. IgE epitopes of intact and digested Ara h 1: a comparative study in humans and rats. Mol Immunol 2012; 51:337-46. [PMID: 22555070 DOI: 10.1016/j.molimm.2012.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 04/02/2012] [Accepted: 04/08/2012] [Indexed: 11/26/2022]
Abstract
BACKGROUND Allergen epitope characterization provides valuable information useful for the understanding of proteins as food allergens. It is believed that IgE epitopes in general are conformational, nevertheless, for food allergens known to sensitize through the gastrointestinal tract linear epitopes have been suggested to be of great importance. OBJECTIVE The aim of this study was to identify IgE specific epitopes of intact and digested Ara h 1, and to compare epitope patterns between humans and rats. METHODS Sera from five peanut allergic patients and five Brown Norway rats were used to identify intact and digested Ara h 1-specific IgE epitopes by competitive immunoscreening of a phage-displayed random hepta-mer peptide library using polyclonal IgE from the individual sera. The resulting peptide sequences were mapped on the surface of a three-dimensional structure of the Ara h 1 molecule to mimic epitopes using a computer-based algorithm. RESULTS Patients as well as rats were shown to have individual IgE epitope patterns. All epitope mimics were conformational and found to cluster into three different areas of the Ara h 1 molecule. Five epitope motifs were identified by patient IgE, which by far accounted for most of the eluted peptide sequences. Epitope patterns were rather similar for both intact and digested Ara h 1 as well as for humans and rats. CONCLUSIONS Individual patient specific epitope patterns have been identified for the major allergen Ara h 1. IgE binding epitopes have been suggested as biomarkers for persistency and severity of food allergy, wherefore recognition of particular epitope patterns or motifs could be a valuable tool for prevention, diagnosis, and treatment of food allergy.
Collapse
Affiliation(s)
- K L Bøgh
- National Food Institute, Division of Toxicology and Risk Assessment, Technical University of Denmark, Mørkhøj Bygade 19, Søborg, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Peptide microarray analysis of in silico-predicted epitopes for serological diagnosis of Toxoplasma gondii infection in humans. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:865-74. [PMID: 22496494 DOI: 10.1128/cvi.00119-12] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Toxoplasma gondii infections occur worldwide in humans and animals. In immunocompromised or prenatally infected humans, T. gondii can cause severe clinical symptoms. The identification of specific epitopes on T. gondii antigens is essential for the improvement and standardization of the serological diagnosis of toxoplasmosis. We selected 20 peptides mimicking linear epitopes on GRA1, GRA2, GRA4, and MIC3 antigenic T. gondii proteins in silico using the software ABCpred. A further 18 peptides representing previously published epitopes derived from GRA1, SAG1, NTPase1, and NTPase2 antigens were added to the panel. A peptide microarray assay was established to prove the diagnostic performance of the selected peptides with human serum samples. Seropositive human serum samples (n = 184) were collected from patients presenting with acute toxoplasmosis (n = 21), latent T. gondii infection (n = 53), and inactive ocular toxoplasmosis (n = 10) and from seropositive forest workers (n = 100). To adjust the cutoff values for each peptide, sera from seronegative forest workers (n = 75) and patients (n = 65) were used. Univariate logistic regression suggested the significant diagnostic potential of eight novel and two previously published peptides. A test based on these peptides had an overall diagnostic sensitivity of 69% (100% in ocular toxoplasmosis patients, 86% in acutely infected patients, 81% in latently infected patients, and 57% in seropositive forest workers). The analysis of seronegative sera performed with these peptides revealed a diagnostic specificity of 84%. The results of our study suggest that the use of a bioinformatic approach for epitope prediction in combination with peptide microarray testing is a powerful method for the selection of T. gondii epitopes as candidate antigens for serological diagnosis.
Collapse
|
18
|
Zhang Q, Willison LN, Tripathi P, Sathe SK, Roux KH, Emmett MR, Blakney GT, Zhang HM, Marshall AG. Epitope mapping of a 95 kDa antigen in complex with antibody by solution-phase amide backbone hydrogen/deuterium exchange monitored by Fourier transform ion cyclotron resonance mass spectrometry. Anal Chem 2011; 83:7129-36. [PMID: 21861454 PMCID: PMC3173601 DOI: 10.1021/ac201501z] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The epitopes of a homohexameric food allergen protein, cashew Ana o 2, identified by two monoclonal antibodies, 2B5 and 1F5, were mapped by solution-phase amide backbone H/D exchange (HDX) coupled with Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) and the results were compared to previous mapping by immunological and mutational analyses. Antibody 2B5 defines a conformational epitope, and 1F5 defines a linear epitope. Intact murine IgG antibodies were incubated with recombinant Ana o 2 (rAna o 2) to form antigen-monoclonal antibody (Ag-mAb) complexes. mAb-complexed and uncomplexed (free) rAna o 2 were then subjected to HDX. HDX instrumentation and automation were optimized to achieve high sequence coverage by protease XIII digestion. The regions protected from H/D exchange upon antibody binding overlap and thus confirm the previously identified epitope-bearing segments: the first extension of HDX monitored by mass spectrometry to a full-length antigen-antibody complex in solution.
Collapse
Affiliation(s)
- Qian Zhang
- Department Chemistry & Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL 32306
| | - LeAnna N. Willison
- Department of Biological Science and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306
| | - Pallavi Tripathi
- Department of Biological Science and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306
| | - Shridhar K. Sathe
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL 32306
| | - Kenneth H. Roux
- Department of Biological Science and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306
| | - Mark R. Emmett
- Department Chemistry & Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL 32306
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, Florida State Universitiy, 1800 E. Paul Dirac Drive, Tallahassee, FL 323010-4005
| | - Greg T. Blakney
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, Florida State Universitiy, 1800 E. Paul Dirac Drive, Tallahassee, FL 323010-4005
| | - Hui-Min Zhang
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, Florida State Universitiy, 1800 E. Paul Dirac Drive, Tallahassee, FL 323010-4005
| | - Alan G. Marshall
- Department Chemistry & Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL 32306
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, Florida State Universitiy, 1800 E. Paul Dirac Drive, Tallahassee, FL 323010-4005
| |
Collapse
|
19
|
Moisa AA, Kolesanova EF. Synthetic peptide vaccines. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2010. [DOI: 10.1134/s1990750810040025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Denisova GF, Denisov DA, Bramson JL. Applying bioinformatics for antibody epitope prediction using affinity-selected mimotopes - relevance for vaccine design. Immunome Res 2010; 6 Suppl 2:S6. [PMID: 21067548 PMCID: PMC2981875 DOI: 10.1186/1745-7580-6-s2-s6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To properly characterize protective polyclonal antibody responses, it is necessary to examine epitope specificity. Most antibody epitopes are conformational in nature and, thus, cannot be identified using synthetic linear peptides. Cyclic peptides can function as mimetics of conformational epitopes (termed mimotopes), thereby providing targets, which can be selected by immunoaffinity purification. However, the management of large collections of random cyclic peptides is cumbersome. Filamentous bacteriophage provides a useful scaffold for the expression of random peptides (termed phage display) facilitating both the production and manipulation of complex peptide libraries. Immunoaffinity selection of phage displaying random cyclic peptides is an effective strategy for isolating mimotopes with specificity for a given antiserum. Further epitope prediction based on mimotope sequence is not trivial since mimotopes generally display only small homologies with the target protein. Large numbers of unique mimotopes are required to provide sufficient sequence coverage to elucidate the target epitope. We have developed a method based on pattern recognition theory to deal with the complexity of large collections of conformational mimotopes. The analysis consists of two phases: 1) The learning phase where a large collection of epitope-specific mimotopes is analyzed to identify epitope specific “signs” and 2) The identification phase where immunoaffinity-selected mimotopes are interrogated for the presence of the epitope specific “signs” and assigned to specific epitopes. We are currently using computational methods to define epitope “signs” without the need for prior knowledge of specific mimotopes. This technology provides an important tool for characterizing the breadth of antibody specificities within polyclonal antisera.
Collapse
Affiliation(s)
- Galina F Denisova
- Department of Pathology and Molecular Medicine, Centre for Gene Therapeutics, McMaster University, 1200 Main Street West, Hamilton, Ontario, Canada, L8N 3Z5.
| | | | | |
Collapse
|
21
|
Robotham JM, Xia L, Willison LN, Teuber SS, Sathe SK, Roux KH. Characterization of a cashew allergen, 11S globulin (Ana o 2), conformational epitope. Mol Immunol 2010; 47:1830-8. [PMID: 20362336 DOI: 10.1016/j.molimm.2009.12.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 12/11/2009] [Accepted: 12/17/2009] [Indexed: 10/19/2022]
Abstract
Both linear and conformational epitopes likely contribute to the allergenicity of tree nut allergens, yet, due largely to technical issues, few conformational epitopes have been characterized. Using the well studied recombinant cashew allergen, Ana o 2, an 11S globulin or legumin, we identified a murine monoclonal antibody which recognizes a conformational epitope and competes with patient IgE Ana o 2-reactive antibodies. This epitope is expressed on the large subunit of Ana o 2, but only when associated with an 11S globulin small subunit. Both Ana o 2 and the homologous soybean Gly m 6 small subunits can foster epitope expression, even when the natural N-terminal to C-terminal subunit order is reversed in chimeric molecules. The epitope, which is also expressed on native Ana o 2, is readily susceptible to destruction by physical and chemical denaturants.
Collapse
Affiliation(s)
- Jason M Robotham
- Department of Biological Science and Institute of Molecular Biophysics, Florida State University, 319 Stadium Dr., Tallahassee, FL 32306-4295, USA
| | | | | | | | | | | |
Collapse
|
22
|
Xia L, Willison LN, Porter L, Robotham JM, Teuber SS, Sathe SK, Roux KH. Mapping of a conformational epitope on the cashew allergen Ana o 2: a discontinuous large subunit epitope dependent upon homologous or heterologous small subunit association. Mol Immunol 2010; 47:1808-16. [PMID: 20362338 DOI: 10.1016/j.molimm.2010.01.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 01/19/2010] [Accepted: 01/22/2010] [Indexed: 01/05/2023]
Abstract
The 11S globulins are members of the cupin protein superfamily and represent an important class of tree nut allergens for which a number of linear epitopes have been mapped. However, specific conformational epitopes for these allergens have yet to be described. We have recently reported a cashew Ana o 2 conformational epitope defined by murine mAb 2B5 and competitively inhibited by a subset of patient IgE antibodies. The 2B5 epitope appears to reside on the large (acidic) subunit, is dependent upon small (basic) subunit association for expression, and is highly susceptible to denaturation. Here we fine map the epitope using a combination of recombinant chimeric cashew Ana o 2-soybean Gly m 6 chimeras, deletion and point mutations, molecular modeling, and electron microscopy of 2B5-Ana o 2 immune complexes. Key residues appear confined to a 24 amino acid segment near the N-terminus of the large subunit peptide, a portion of which makes direct contact with the small subunit. These data provide an explanation for both the small subunit dependence and the structurally labile nature of the epitope.
Collapse
Affiliation(s)
- Lixin Xia
- Department of Biological Science and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4295, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Identification of a novel linear B-cell epitope in the M protein of avian infectious bronchitis coronaviruses. J Microbiol 2009; 47:589-99. [PMID: 19851732 PMCID: PMC7090873 DOI: 10.1007/s12275-009-0104-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 06/05/2009] [Indexed: 12/29/2022]
Abstract
This report describes the identification of a novel linear B-cell epitope at the C-terminus of the membrane (M) protein of avian infectious bronchitis virus (IBV). A monoclonal antibody (MAb) (designated as 15E2) against the IBV M protein was prepared and a series of 14 partially-overlapping fragments of the IBV M gene were expressed with a GST tag. These peptides were subjected to enzyme-linked immunosorbent assay (ELISA) and western blotting analysis using MAb 15E2 to identify the epitope. A linear motif, 199FATFVYAK206, which was located at the C-terminus of the M protein, was identified by MAb 15E2. ELISA and western blotting also showed that this epitope could be recognized by IBV-positive serum from chicken. Given that 15E2 showed reactivity with the 199FATFVYAK206 motif, expressed as a GST fusion protein, in both western blotting and in an ELISA, we proposed that this motif represented a linear B-cell epitope of the M protein. The 199FATFVYAK206 motif was the minimal requirement for reactivity as demonstrated by analysis of the reactivity of 15E2 with several truncated peptides that were derived from the motif. Alignment and comparison of the 15E2-defined epitope sequence with the sequences of other corona-viruses indicated that the epitope is well conserved among chicken and turkey coronaviruses. The identified epitope should be useful in clinical applications and as a tool for the further study of the structure and function of the M protein of IBV.
Collapse
|
24
|
Robotham JM, Hoffman GG, Teuber SS, Beyer K, Sampson HA, Sathe SK, Roux KH. Linear IgE-epitope mapping and comparative structural homology modeling of hazelnut and English walnut 11S globulins. Mol Immunol 2009; 46:2975-84. [PMID: 19631385 DOI: 10.1016/j.molimm.2009.06.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 06/16/2009] [Indexed: 11/30/2022]
Abstract
Allergic reactions to walnuts and hazelnuts can be serious. The 11S globulins (legumins) have been identified as important allergens in these and other nuts and seeds. Here we identify the linear IgE-binding epitopes of walnut and hazelnut 11S globulins, and generate 3D 11S globulin models to map the locations of the epitopes for comparison to other allergenic homologues. Linear IgE-epitope mapping was performed by solid-phase overlapping 15-amino acid peptides probed with IgE from pooled allergic human sera. Several walnut (Jug r 4) and hazelnut (Cor a 9) 11S globulin peptides with reactivity to patient IgE were identified. Comparative alignment with cashew (Ana o 2), peanut (Ara h 3), and soybean G1 (Gly m 6.0101) and G2 (Gly m 6.0201) allergenic homologues revealed several shared allergenic 'hot spots'. Homology modeling was performed based on the atomic structure of the soybean glycinin. Surface map comparisons between the tree nut and peanut homologues revealed structural motifs that could be important for IgE elicitation and binding and show that, contrary to predictions, the reactive epitopes are widely distributed throughout the monomeric subunits, both internally and externally, including regions occluded by quaternary subunit association. These findings reveal structural features that may be important to allergenicity and cross-reactivity of this protein class.
Collapse
Affiliation(s)
- Jason M Robotham
- Department of Biological Science and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4295 , USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Moreau V, Fleury C, Piquer D, Nguyen C, Novali N, Villard S, Laune D, Granier C, Molina F. PEPOP: computational design of immunogenic peptides. BMC Bioinformatics 2008; 9:71. [PMID: 18234071 PMCID: PMC2262870 DOI: 10.1186/1471-2105-9-71] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Accepted: 01/30/2008] [Indexed: 11/10/2022] Open
Abstract
Background Most methods available to predict protein epitopes are sequence based. There is a need for methods using 3D information for prediction of discontinuous epitopes and derived immunogenic peptides. Results PEPOP uses the 3D coordinates of a protein both to predict clusters of surface accessible segments that might correspond to epitopes and to design peptides to be used to raise antibodies that target the cognate antigen at specific sites. To verify the ability of PEPOP to identify epitopes, 13 crystallographically defined epitopes were compared with PEPOP clusters: specificity ranged from 0.75 to 1.00, sensitivity from 0.33 to 1.00, and the positive predictive value from 0.19 to 0.89. Comparison of these results with those obtained with two other prediction algorithms showed comparable specificity and slightly better sensitivity and PPV. To prove the capacity of PEPOP to predict immunogenic peptides that induce protein cross-reactive antibodies, several peptides were designed from the 3D structure of model antigens (IA-2, TPO, and IL8) and chemically synthesized. The reactivity of the resulting anti-peptides antibodies with the cognate antigens was measured. In 80% of the cases (four out of five peptides), the flanking protein sequence process (sequence-based) of PEPOP successfully proposed peptides that elicited antibodies cross-reacting with the parent proteins. Polyclonal antibodies raised against peptides designed from amino acids which are spatially close in the protein, but separated in the sequence, could also be obtained, although they were much less reactive. The capacity of PEPOP to design immunogenic peptides that induce antibodies suitable for a sandwich capture assay was also demonstrated. Conclusion PEPOP has the potential to guide experimentalists that want to localize an epitope or design immunogenic peptides for raising antibodies which target proteins at specific sites. More successful predictions of immunogenic peptides were obtained when a peptide was continuous as compared with peptides corresponding to discontinuous epitopes. PEPOP is available for use at .
Collapse
Affiliation(s)
- Violaine Moreau
- CNRS FRE 3009, SysDiag, CAP DELTA, 1682 Rue de la Valsière, CS 61003, 34184 Montpellier Cedex 4, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Zenteno-Cuevas R, Huerta-Yepez S, Reyes-Leyva J, Hernández-Jáuregui P, González-Bonilla C, Ramírez-Mendoza H, Agundis C, Zenteno E. Identification of potential B cell epitope determinants by computer techniques, in hemagglutinin-neuraminidase from the porcine rubulavirus La Piedad Michoacan. Viral Immunol 2007; 20:250-60. [PMID: 17603842 DOI: 10.1089/vim.2006.0066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Hemagglutinin-neuraminidase (HN) from porcine rubulavirus La Piedad Michoacan (RvpLPM) is one of the most antigenic proteins known, and is responsible for virus-host cell interaction. We analyzed the amino acid sequence of HN, using computer-assisted techniques to identify B cell epitopes. From a pool of 18 possible antigenic peptides, we evaluated the antigenicity of the 2 peptides with the highest scores and the 1 with lowest score. Antibodies from RvpLPM-infected pigs recognized the synthesized HN-A, HN-B, and HN-R peptides (optical density [OD]: 0.33 +/- 0.02 for HN-A, 0.20 +/- 0.02 for HN-B, and 0.07 +/- 0.01 for HN-R); bovine serum albumin-coupled HN-A and HN-B induced rabbit anti-RvpLPM antibodies (OD: 0.39 +/- 0.01 for HN-A and 0.35 +/- 0.02 for HN-B). Loop 5 from the outer membrane protein, OmpC, from Salmonella typhi was replaced with HN-B; this protein was then expressed in Escherichia coli UH302. BALB/c mice were challenged intraperitoneally or orogastrically with the fusion protein expressed in E. coli and murine antibodies obtained from both types of administration inhibited virus-hemagglutinating activity, as did the antibodies from RvpLPM-infected swine. These results suggest that HN-A and HN-B are peptides involved in RvpLPM cell carbohydrate recognition, and could therefore be considered potential targets for vaccine and diagnostic procedures development.
Collapse
|
27
|
Mumey B, Ohler N, Angel T, Jesaitis A, Dratz E. Filtering Epitope Alignments to Improve Protein Surface Prediction. FRONTIERS OF HIGH PERFORMANCE COMPUTING AND NETWORKING – ISPA 2006 WORKSHOPS 2006. [DOI: 10.1007/11942634_67] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|