Xing Y, Zhang S, Qu G, Dai J, Yao J, Feng B. Discovery and Validation of a Novel Target of Molluscicides against Oncomelania hupensis, the Intermediate Host of Schistosoma japonicum.
Acta Trop 2021;
221:106003. [PMID:
34118205 DOI:
10.1016/j.actatropica.2021.106003]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 11/25/2022]
Abstract
In this study, 196 strains of actinomycetes isolated from marshland soil samples were tested for molluscicidal activity against Oncomelania hupensis. Five strains demonstrated molluscicidal activity, of which the molluscicidal efficiency of Actinomycetes strain A183 was the maximum. After the fermentation supernatant of actinomycetes A183 was extracted with ethyl acetate (EWEA), the LC50 of the EWEA after leaching for 48 h and 72 h were 0.2688 and 0.2195 mg/L, respectively. The effect of EWEA on the key points of energy metabolism was determined. We noted that 1 mg/L of EWEA (A813) significantly reduced the activity of mitochondrial respiratory chain complex I (P < 0.05), while no significant changes were observed in the activities of complexes II, III, and IV. In addition, EWEA (A813) could decrease the membrane potential of O. hupensis purified mitochondria in vitro. The LC50 of the 3 uncoupler (FCCP, DNP, and Tyrphostin A9) after immersion for 24 h were 0.065, 0.135, and 0.110 mg/L, respectively; LC50 after 48 h treatment was 0.064, 0.124, and 0.082 mg/L, respectively; LC50 after 72 h treatment was 0.063, 0.129, and 0.061 mg/L, respectively, and all uncoupler showed strong molluscicidal activities, demonstrating that the mitochondrial membrane potential uncoupling is a potential target for molluscicides against O. hupensis. Moreover, the molluscicidal active substance of strain A183 needs to be further isolated, purified, and structurally characterized considering its promising potential applications.
Collapse