1
|
Brenda CT, Norma RF, Marcela RL, Nelly LV, Teresa I F. Action mechanisms of metallic compounds on Plasmodium spp. J Trace Elem Med Biol 2022; 73:127028. [PMID: 35797926 DOI: 10.1016/j.jtemb.2022.127028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/10/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Malaria is a parasitic disease with the highest morbidity and mortality worldwide. Unfortunately, during the last decades, the causal agent, Plasmodium spp., has developed resistance to chloroquine and artemisinin. For this reason, metallic compounds have been proposed as an optional treatment since they have shown a potential antimalarial effect with diverse action mechanisms in the parasite and the host. OBJECTIVE To show the possible targets of metallic compounds in Plasmodium spp. CONCLUSION The metallic compounds are an option attractive to treatment for the malaria, for its low cost and its great activity to reduce parasitemia; however is necessary more studies principally in vivo in order to know the interactions that it can have in an experimental model.
Collapse
Affiliation(s)
- Casarrubias-Tabarez Brenda
- Departamento de Biología Celular y TIsular, Facultad de Medicina, UNAM, Av. Ciudad Universitaria 3000, Coyoacan, C.P. 04510 Mexico City, Mexico.
| | - Rivera-Fernández Norma
- Departamento de Microbiología y Parasitología, UNAM, Av. Ciudad Universitaria 3000, Coyoacan, C.P. 04510 Mexico City, Mexico.
| | - Rojas-Lemus Marcela
- Departamento de Biología Celular y TIsular, Facultad de Medicina, UNAM, Av. Ciudad Universitaria 3000, Coyoacan, C.P. 04510 Mexico City, Mexico.
| | - López-Valdez Nelly
- Departamento de Biología Celular y TIsular, Facultad de Medicina, UNAM, Av. Ciudad Universitaria 3000, Coyoacan, C.P. 04510 Mexico City, Mexico.
| | - Fortoul Teresa I
- Departamento de Biología Celular y TIsular, Facultad de Medicina, UNAM, Av. Ciudad Universitaria 3000, Coyoacan, C.P. 04510 Mexico City, Mexico.
| |
Collapse
|
2
|
Nedeljković NV, Nikolić MV, Mijajlović MŽ, Radić GP, Stanković AS. Interaction of bioessential metal ions with quinolone antibiotics: Structural features and biological evaluation. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
3
|
Ghandhi LHD, Bidula S, Pask CM, Lord RM, McGowan PC. Bis(N-picolinamido)cobalt(II) Complexes Display Antifungal Activity toward Candida albicans and Aspergillus fumigatus. ChemMedChem 2021; 16:3210-3221. [PMID: 34327861 PMCID: PMC8597028 DOI: 10.1002/cmdc.202100159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/14/2021] [Indexed: 11/06/2022]
Abstract
This report highlights the synthesis and characterization of ten new bis(N-picolinamido)cobalt(II) complexes of the type [(L)2 CoX2 ]0/2+ , whereby L=N-picolinamide ligand and X=diisothiocyanato (-NCS), dichlorido (-Cl) or diaqua (-OH2 ) ligands. Single crystal X-ray (SC-XRD) analysis for nine of the structures are reported and confirm the picolinamide ligand is bound to the Co(II) center through a neutral N,O binding mode. With the addition of powder X-ray diffraction (PXRD), we have confirmed the cis and trans ligand arrangements of each complex. All complexes were screened against several fungal species and show increased antifungal activity. Notably, these complexes had significant activity against strains of Candida albicans and Aspergillus fumigatus, with several compounds exhibiting growth inhibition of >80 %, and onecompound inhibiting Aspergillus fumigatus hyphal growth by >90 %. Conversely, no antifungal activity was exhibited toward Cryptococcus neoformans and no cytotoxicity towards mammalian cell lines.
Collapse
Affiliation(s)
| | - Stefan Bidula
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7JTUK
| | | | - Rianne M. Lord
- School of ChemistryUniversity of East AngliaNorwich Research ParkNorwichNR4 7JTUK
| | | |
Collapse
|
4
|
Kanchanadevi S, Fronczek FR, Immanuel David C, Nandhakumar R, Mahalingam V. Investigation of DNA/BSA binding and cytotoxic properties of new Co(II), Ni(II) and Cu(II) hydrazone complexes. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
5
|
Scarim CB, de Farias RL, Chiba DE, Chin CM. Insight into Recent Drug Discoveries against Trypanosomatids and Plasmodium spp Parasites: New Metal-based Compounds. Curr Med Chem 2021; 29:2334-2381. [PMID: 34533436 DOI: 10.2174/0929867328666210917114912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 11/22/2022]
Abstract
Scaffolds of metal-based compounds can act as pharmacophore groups in several ligands to treat various diseases, including tropical infectious diseases (TID). In this review article, we investigate the contribution of these moieties to medicinal inorganic chemistry in the last seven years against TID, including American trypanosomiasis (Chagas disease), human African trypanosomiasis (HAT, sleeping sickness), leishmania, and malaria. The most potent metal-based complexes are displayed and highlighted in figures, tables and graphics; according to their pharmacological activities (IC50 > 10µM) against Trypanosomatids and Plasmodium spp parasites. We highlight the current progresses and viewpoints of these metal-based complexes, with a specific focus on drug discovery.
Collapse
Affiliation(s)
- Cauê Benito Scarim
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, 14800-903, Brazil
| | - Renan Lira de Farias
- Sao Paulo State University (UNESP), Institute of Chemistry, 14800-060, Araraquara-SP, Brazil
| | - Diego Eidy Chiba
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, 14800-903, Brazil
| | - Chung Man Chin
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, 14800-903, Brazil
| |
Collapse
|
6
|
In situ methanolic solvent synthesis, spectroscopic and thermogravimetric characterizations of three new transition metal complexes of trimethoprim drug. POLISH JOURNAL OF CHEMICAL TECHNOLOGY 2021. [DOI: 10.2478/pjct-2021-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
Trimethoprim drug (TMP) complexes of copper (II), cobalt (II), and nickel (II) were prepared and discussed by using elemental analysis (C, H, N analysis), magnetic, molar conductance, FTIR, Raman spectroscopy, electron spin resonance (ESR) and UV-vis spectroscopy analyses. TMP drug coordinated as a tridentate ligand towards the respected three metal ions through two nitrogen atoms of amino groups and nitrogen atom of pyrimidine ring which flanked between –NH2 groups, these assignments confirmed by spectroscopic, magnetic, ESR and thermogravimetric analyses with formulas [Cu(TMP)(H2O)3]Cl2, [Co(TMP)(H2O)3]Cl2 and [Ni(TMP) (H2O)]Cl2. Copper (II) and cobalt (II) complexes have an octahedral geometrical structure included one TMP molecule, three coordinated water molecules and two uncoordinated chlorine atoms while, nickel(II)–TMP complex has a tetrahedral geometric configuration that involved one TMP molecule, one coordinated water molecule and two uncoordinated chlorine atoms. The activation energies and other kinetic thermodynamic parameters were estimated based on the employed of the Coats-Redfern and Horowitz-Metzger equations. The nano–structured form of the synthesized TMP complexes was confirmed dependent on the transmission electron microscopy (TEM).
Collapse
|
7
|
Synthesis, characterization and in vitro screening for anticancer potential of Mn(II), Co(II), Cu(II), Zn(II), and Pt(II) methoxyphenyl dithiocarbamato complexes. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.129894] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Munteanu CR, Suntharalingam K. Advances in cobalt complexes as anticancer agents. Dalton Trans 2016; 44:13796-808. [PMID: 26148776 DOI: 10.1039/c5dt02101d] [Citation(s) in RCA: 199] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The evolution of resistance to traditional platinum-based anticancer drugs has compelled researchers to investigate the cytostatic properties of alternative transition metal-based compounds. The anticancer potential of cobalt complexes has been extensively studied over the last three decades, and much time has been devoted to understanding their mechanisms of action. This perspective catalogues the development of antiproliferative cobalt complexes, and provides an in depth analysis of their mode of action. Early studies on simple cobalt coordination complexes, Schiff base complexes, and cobalt-carbonyl clusters will be documented. The physiologically relevant redox properties of cobalt will be highlighted and the role this plays in the preparation of hypoxia selective prodrugs and imaging agents will be discussed. The use of cobalt-containing cobalamin as a cancer specific delivery agent for cytotoxins will also be described. The work summarised in this perspective shows that the biochemical and biophysical properties of cobalt-containing compounds can be fine-tuned to produce new generations of anticancer agents with clinically relevant efficacies.
Collapse
|
9
|
Jana SK, Mandal AK, Kumar A, Puschmann H, Hossain M, Dalai S. Sensing of tryptophan by a non-toxic cobalt(ii) complex. RSC Adv 2016. [DOI: 10.1039/c6ra16086g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The first report of a cobalt(ii) based non-toxic, hemocompatible, fluorescent probe that sense Trp and BSA by reducing internal fluorescence quenching of Trp in aqueous solution.
Collapse
Affiliation(s)
- Swapan Kumar Jana
- Department of Chemistry & Chemical Technology
- Vidyasagar University
- India
| | | | - Anoop Kumar
- Department of Biotechnology
- University of North Bengal
- India
| | | | - Maidul Hossain
- Department of Chemistry & Chemical Technology
- Vidyasagar University
- India
| | - Sudipta Dalai
- Department of Chemistry & Chemical Technology
- Vidyasagar University
- India
| |
Collapse
|
10
|
Teixeira C, Vale N, Pérez B, Gomes A, Gomes JRB, Gomes P. "Recycling" classical drugs for malaria. Chem Rev 2014; 114:11164-220. [PMID: 25329927 DOI: 10.1021/cr500123g] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Cátia Teixeira
- Centro de Investigação em Química da Universidade do Porto, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , P-4169-007 Porto, Portugal.,CICECO, Departamento de Química, Universidade de Aveiro , P-3810-193 Aveiro, Portugal
| | - Nuno Vale
- Centro de Investigação em Química da Universidade do Porto, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , P-4169-007 Porto, Portugal
| | - Bianca Pérez
- Centro de Investigação em Química da Universidade do Porto, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , P-4169-007 Porto, Portugal
| | - Ana Gomes
- Centro de Investigação em Química da Universidade do Porto, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , P-4169-007 Porto, Portugal
| | - José R B Gomes
- CICECO, Departamento de Química, Universidade de Aveiro , P-3810-193 Aveiro, Portugal
| | - Paula Gomes
- Centro de Investigação em Química da Universidade do Porto, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , P-4169-007 Porto, Portugal
| |
Collapse
|
11
|
Synthesis, Characterization, and Antibacterial Studies of Pd(II) and Pt(II) Complexes of Some Diaminopyrimidine Derivatives. Bioinorg Chem Appl 2013; 2013:549549. [PMID: 23573071 PMCID: PMC3610396 DOI: 10.1155/2013/549549] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 01/21/2013] [Accepted: 02/04/2013] [Indexed: 11/17/2022] Open
Abstract
Pd(II) and Pt(II) complexes of trimethoprim and pyrimethamine were synthesized and characterized by elemental analysis, UV-Vis, FTIR, and NMR spectroscopy. The complexes are formulated as four coordinate square planar species containing two molecules of the drugs and two chloride or thiocyanate ions. The coordination of the metal ions to the pyrimidine nitrogen atom of the drugs was confirmed by spectroscopic analyses. The complexes were screened for their antibacterial activities against eight bacterial isolates. They showed varied activities with the active metal complexes showing more enhanced inhibition than either trimethoprim or pyrimethamine. The Pd(II) complexes of pyrimethamine showed unique inhibitory activities against P. aeruginosa and B. pumilus, and none of the other complexes or the drugs showed any activity against these bacteria isolates. The MIC and MBC determinations revealed that these Pd(II) complexes are the most active. Structure activity relationship showed that Pt(II) complexes containing chloride ions are more active, while for Pd(II) complexes containing thiocyanate ions showed more enhanced activity than those containing chloride ions.
Collapse
|
12
|
Ajibade PA, Zulu NH, Oyedeji AO. Synthesis, Characterization, and Antibacterial Studies of Some Metal Complexes of Dialkyl Thiourea: The X-Ray Single Crystal Structure of [CoCl2(detu)2]. ACTA ACUST UNITED AC 2013. [DOI: 10.1080/15533174.2012.741179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Peter A. Ajibade
- a Department of Chemistry , University of Fort Hare , Alice , South Africa
| | | | - Adebola O. Oyedeji
- b Department of Chemistry and Chemical Technology , Walter Sisulu University , Mthatha , South Africa
| |
Collapse
|
13
|
Heffern MC, Yamamoto N, Holbrook RJ, Eckermann AL, Meade TJ. Cobalt derivatives as promising therapeutic agents. Curr Opin Chem Biol 2012; 17:189-96. [PMID: 23270779 DOI: 10.1016/j.cbpa.2012.11.019] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 11/20/2012] [Accepted: 11/21/2012] [Indexed: 01/08/2023]
Abstract
Inorganic complexes are versatile platforms for the development of potent and selective pharmaceutical agents. Cobalt possesses a diverse array of properties that can be manipulated to yield promising drug candidates. Investigations into the mechanism of cobalt therapeutic agents can provide valuable insight into the physicochemical properties that can be harnessed for drug development. This review presents examples of bioactive cobalt complexes with special attention to their mechanisms of action. Specifically, cobalt complexes that elicit biological effects through protein inhibition, modification of drug activity, and bioreductive activation are discussed. Insights gained from these examples reveal features of cobalt that can be rationally tuned to produce therapeutics with high specificity and improved efficacy for the biomolecule or pathway of interest.
Collapse
Affiliation(s)
- Marie C Heffern
- Department of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Northwestern University, Evanston, IL 60208-3113, United States
| | | | | | | | | |
Collapse
|
14
|
Demirezen N, Tarınç D, Polat D, Ceşme M, Gölcü A, Tümer M. Synthesis of trimethoprim metal complexes: Spectral, electrochemical, thermal, DNA-binding and surface morphology studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2012; 94:243-255. [PMID: 22525034 DOI: 10.1016/j.saa.2012.03.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 03/05/2012] [Accepted: 03/22/2012] [Indexed: 05/31/2023]
Abstract
Complexes of trimethoprim (TMP), with Cu(II), Zn(II), Pt(II), Ru(III) and Fe(III) have been synthesized. Then, these complexes have been characterized by spectroscopic techniques involving UV-vis, IR, mass and (1)H NMR. CHN elemental analysis, electrochemical and thermal behavior of complexes have also been investigated. The electrochemical properties of all complexes have been investigated by cyclic voltammetry (CV) using glassy carbon electrode. The biological activity of the complexes has been evaluated by examining their ability to bind to calf-thymus DNA (CT DNA) with UV spectroscopy and cyclic voltammetry. UV studies of the interaction of the complexes with DNA have shown that these compounds can bind to CT DNA. The binding constants of the complexes with CT DNA have also been calculated. The cyclic voltammograms of the complexes in the presence of CT DNA have shown that the complexes can bind to CT DNA by both the intercalative and the electrostatic binding mode. The antimicrobial activity of these complexes has been evaluated against three Gram-positive and four Gram-negative bacteria. Antifungal activity against two different fungi has been evaluated and compared with the reference drug TMP. Almost all types of complexes show excellent activity against all type of bacteria and fungi. The morphology of the CT DNA, TMP, metal ions and metal complexes has been investigated by scanning electron microscopy (SEM). To get the SEM images, the interaction of compounds with CT DNA has been studied by means of differential pulse voltammetry (DPV) at CT DNA modified pencil graphite electrode (PGE). The decrease in intensity of the guanine oxidation signals has been used as an indicator for the interaction mechanism.
Collapse
Affiliation(s)
- Nihat Demirezen
- Department of Chemistry, Faculty of Science and Letters, University of Kahramanmaras Sutcu Imam, Campuse of Avsar, 46100 Kahramanmaras, Turkey
| | | | | | | | | | | |
Collapse
|