1
|
Wei J, Wang X, Yu D, Tu Y, Yu Y. MicroRNA-mediated autophagy and drug resistance in cancer: mechanisms and therapeutic strategies. Discov Oncol 2024; 15:662. [PMID: 39549162 DOI: 10.1007/s12672-024-01525-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024] Open
Abstract
This paper provides an exhaustive overview of the intricate interplay between microRNAs (miRNAs) and autophagy in the context of human cancers, underscoring the pivotal role these non-coding RNAs play in modulating autophagic pathways and their implications for cancer development, progression, and resistance to therapy. MiRNAs, as critical regulators of gene expression post-transcription, influence various biological processes, including autophagy, a catabolic mechanism essential for cellular homeostasis, stress response, and survival. The review meticulously delineates the mechanisms through which miRNAs impact autophagy by targeting specific genes and signaling pathways, thereby affecting cancer cell proliferation, metastasis, and response to chemotherapy. It highlights several miRNAs with dual roles, acting either as oncogenes or tumor suppressors based on the cellular context and the specific autophagic pathways they regulate. The paper further explores the therapeutic potential of targeting miRNA-autophagy axis, offering insights into novel strategies for cancer treatment through modulation of this axis. Emphasizing the complexity of the miRNA-autophagy relationship, the review calls for more in-depth studies to unravel the nuanced regulatory networks between miRNAs and autophagy in cancer, which could pave the way for the development of innovative therapeutic interventions and diagnostic tools.
Collapse
Affiliation(s)
- Jinxing Wei
- Department of Neurosurgery, Brain Hospital Affiliated to Tongji University, No.2880, Qixin Road, Shanghai, China
| | - Xianghui Wang
- Department of Neurosurgery, Brain Hospital Affiliated to Tongji University, No.2880, Qixin Road, Shanghai, China
| | - Duo Yu
- Department of Biopharmaceutics School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yanyang Tu
- Research Center, The Huizhou Central People's Hospital, Guangdong Medical University, No. 41 Eling North Road, Huizhou, Guangdong, China.
| | - Yaoyu Yu
- Department of Neurosurgery, Brain Hospital Affiliated to Tongji University, No.2880, Qixin Road, Shanghai, China.
| |
Collapse
|
2
|
Beesabathuni NS, Kenaston MW, Gangaraju R, Adia NAB, Peddamallu V, Shah PS. Let's talk about flux: the rising potential of autophagy rate measurements in disease. Autophagy 2024; 20:2574-2580. [PMID: 38984617 DOI: 10.1080/15548627.2024.2371708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 06/10/2024] [Accepted: 06/19/2024] [Indexed: 07/11/2024] Open
Abstract
Macroautophagy/autophagy is increasingly implicated in a variety of diseases, making it an attractive therapeutic target. However, many aspects of autophagy are not fully understood and its impact on many diseases remains debatable and context-specific. The lack of systematic and dynamic measurements in these cases is a key reason for this ambiguity. In recent years, Loos et al. 2014 and Beesabathuni et al. 2022 developed methods to quantitatively measure autophagy holistically. In this commentary, we pose some of the unresolved biological questions regarding autophagy and consider how quantitative measurements may address them. While the applications are ever-expanding, we provide specific use cases in cancer, virus infection, and mechanistic screening. We address how the rate measurements themselves are central to developing cancer therapies and present ways in which these tools can be leveraged to dissect the complexities of virus-autophagy interactions. Screening methods can be combined with rate measurements to mechanistically decipher the labyrinth of autophagy regulation in cancer and virus infection. Taken together, these approaches have the potential to illuminate the underlying mechanisms of various diseases.Abbreviation MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; R1: rate of autophagosome formation; R2: rate of autophagosome-lysosome fusion; R3: rate of autolysosome turnover.
Collapse
Affiliation(s)
| | - Matthew W Kenaston
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, USA
| | - Ritika Gangaraju
- Department of Chemical Engineering, University of California, Davis, CA, USA
| | - Neil Alvin B Adia
- Department of Chemical Engineering, University of California, Davis, CA, USA
| | - Vardhan Peddamallu
- Department of Chemical Engineering, University of California, Davis, CA, USA
| | - Priya S Shah
- Department of Chemical Engineering, University of California, Davis, CA, USA
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, USA
| |
Collapse
|
3
|
Chiang YF, Huang KC, Huang TC, Chen HY, Ali M, Al-Hendy A, Huang PS, Hsia SM. Regulatory roles of NAMPT and NAD + metabolism in uterine leiomyoma progression: Implications for ECM accumulation, stemness, and microenvironment. Redox Biol 2024; 78:103411. [PMID: 39486360 PMCID: PMC11564007 DOI: 10.1016/j.redox.2024.103411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/04/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024] Open
Abstract
Uterine leiomyoma (UL), commonly referred to as benign tumors, is characterized by excessive cell proliferation, extracellular matrix (ECM) accumulation, and the presence of stem cell-like properties. Nicotinamide adenine dinucleotide (NAD+) metabolism, regulated in part by nicotinamide phosphoribosyltransferase (NAMPT), plays a crucial role in these pathological processes and has emerged as a potential therapeutic target. Additionally, redox signaling pathways are integral to the pathogenesis of UL, influencing the dynamics of NAD+ metabolism. This study sought to elucidate the regulatory functions of NAMPT and NAD+ metabolism, in conjunction with redox signaling, in the progression of UL, and to explore potential therapeutic strategies targeting these pathways. Evaluation of NAMPT expression in human UL tissues revealed a positive correlation between elevated NAMPT levels and increased ECM deposition, as well as the expression of stemness markers. The use of FK866 and nicotinamide (NAM), to inhibit NAMPT significantly suppressed UL cell viability and attenuated stem cell-like characteristics. Redox signaling pathways, including those associated with DNA damage, lysosomal function homeostasis, and redox-sensitive phagophore formation, were implicated in the regulation of ECM dynamics, particularly through ECM-targeted inhibition. This study highlights the pivotal roles of NAMPT, NAD+ metabolism, and redox signaling in the pathophysiology of UL. Targeting NAMPT, particularly through the use of inhibitors FK866 and NAM, represents a promising therapeutic approach for mitigating UL progression by modulating redox and ECM dynamics. These findings offer novel insights into UL pathogenesis and establish NAMPT as a compelling target for future clinical investigation.
Collapse
Affiliation(s)
- Yi-Fen Chiang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, 11031, Taiwan
| | - Ko-Chieh Huang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, 11031, Taiwan
| | - Tsui-Chin Huang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Hsin-Yuan Chen
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Mohamed Ali
- Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt; Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, 60637, USA
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, 60637, USA
| | - Pei-Shen Huang
- Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, 11031, Taiwan
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, 11031, Taiwan; Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei, 11031, Taiwan; School of Food Safety, College of Nutrition, Taipei Medical University, Taipei, 11031, Taiwan; Nutrition Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan; TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
4
|
Yuan Z, He J, Li Z, Fan B, Zhang L, Man X. Targeting autophagy in urological system cancers: From underlying mechanisms to therapeutic implications. Biochim Biophys Acta Rev Cancer 2024; 1879:189196. [PMID: 39426690 DOI: 10.1016/j.bbcan.2024.189196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/27/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
The urological system, including kidneys, ureters, bladder, urethra and prostate is known to be vital for blood filtration, waste elimination and electrolyte balance. Notably, urological system cancers represent a significant portion of global cancer diagnoses and mortalities. The current therapeutic strategies for early-stage cancer primarily involve resection surgery, which significantly affects the quality of life of patients, whereas advanced-stage cancer often relies on less effective chemo- or radiotherapy. Recently, accumulating evidence has revealed that autophagy, a crucial process in which excess organelles or inclusions within cells are removed to maintain cell homeostasis, has numerous links to urological system cancers. In this review, we focus on summarizing the underlying two-sided mechanisms of autophagy in urological system cancers. We also review the current clinical drugs targeting autophagy, which demonstrate significant potential in improving treatment outcomes for urological system cancers. In addition, we provide an overview of the research status of novel small molecule compounds targeting autophagy that are in the preclinical stages of investigation. Furthermore, drug combinations based on autophagy modulation strategies in urological system cancers are systematically summarized and discussed. These findings provide comprehensive new insight for the future discovery of more autophagy-related drug candidates.
Collapse
Affiliation(s)
- Ziyue Yuan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jiani He
- Department of Urology, Department of Surgical Oncology and Breast Surgery, Institute of Urology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Zhijia Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Bo Fan
- Department of Urology, Institute of Precision Drug Innovation and Cancer Center, Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China.
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; Department of Urology, Institute of Precision Drug Innovation and Cancer Center, Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China.
| | - Xiaojun Man
- Department of Urology, Department of Surgical Oncology and Breast Surgery, Institute of Urology, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
5
|
Yang B, Li G, Wang S, Zheng Y, Zhang J, Pan B, Wang N, Wang Z. Tumor-associated macrophages/C-X-C motif chemokine ligand 1 promotes breast cancer autophagy-mediated chemoresistance via IGF1R/STAT3/HMGB1 signaling. Cell Death Dis 2024; 15:743. [PMID: 39394189 PMCID: PMC11470078 DOI: 10.1038/s41419-024-07123-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024]
Abstract
Autophagy-mediated chemoresistance is the core mechanism for therapeutic failure and poor prognosis in breast cancer. Breast cancer chemotherapy resistance is believed to be influenced by tumor-associated macrophages (TAMs), by which C-X-C motif chemokine ligand 1 (CXCL1) is the most abundant cytokine secreted. Yet, its role in mediating autophagy-related chemoresistance is still unknown. This study aimed to explore the molecular mechanisms by which TAMs/CXCL1 induced autophagy-mediated chemoresistance in breast cancer. It was found that TAMs/CXCL1 promoted chemoresistance of breast cancer cells through autophagy activation in vitro, and CXCL1 silence could enhance the chemosensitivity of paclitaxel-resistant breast cancer cells via autophagy inhibition. A high-throughput quantitative PCR chip and subsequent target validation showed that CXCL1 induced autophagy-mediated chemoresistance by inhibiting VHL-mediated IGF1R ubiquitination. The elevated IGF1R then promoted STAT3/HMGB1 signaling to facilitate autophagy. Additionally, TAMs/CXCL1 silence improved paclitaxel chemosensitivity by suppressing autophagy in breast cancer mice xenografts, and clinical studies further linked CXCL1 to IGF1R/HMGB1 signaling, as well as shorter free survival of recurrence. Taken together, these results not only uncover the crucial role of TAMs/CXCL1 signaling in mediating breast cancer chemoresistance through enhancing autophagy, but also shed novel light on the molecular mechanism of IGF1R/STAT3/HMGB1 pathway in regulating autophagy and its impact on cancer prognosis.
Collapse
Affiliation(s)
- Bowen Yang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Chinese Medicine Guangdong Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Breast Disease Specialist Hospital of Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Guanzhi Li
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shengqi Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Chinese Medicine Guangdong Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Breast Disease Specialist Hospital of Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yifeng Zheng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Chinese Medicine Guangdong Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Breast Disease Specialist Hospital of Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Juping Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Chinese Medicine Guangdong Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Breast Disease Specialist Hospital of Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Bo Pan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Chinese Medicine Guangdong Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Breast Disease Specialist Hospital of Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Neng Wang
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.
| | - Zhiyu Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Chinese Medicine Guangdong Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
- Breast Disease Specialist Hospital of Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
6
|
Khan DA, Adhikary T, Sultana MT, Toukir IA. A comprehensive identification of potential molecular targets and small drugs candidate for melanoma cancer using bioinformatics and network-based screening approach. J Biomol Struct Dyn 2024; 42:7349-7369. [PMID: 37534476 DOI: 10.1080/07391102.2023.2240409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/17/2023] [Indexed: 08/04/2023]
Abstract
Melanoma is the third most common malignant skin tumor and has increased in morbidity and mortality over the previous decade due to its rapid spread into the bloodstream or lymphatic system. This study used integrated bioinformatics and network-based methodologies to reliably identify molecular targets and small molecular medicines that may be more successful for Melanoma diagnosis, prognosis and treatment. The statistical LIMMA approach utilized for bioinformatics analysis in this study found 246 common differentially expressed genes (cDEGs) between case and control samples from two microarray gene-expression datasets (GSE130244 and GSE15605). Protein-protein interaction network study revealed 15 cDEGs (PTK2, STAT1, PNO1, CXCR4, WASL, FN1, RUNX2, SOCS3, ITGA4, GNG2, CDK6, BRAF, AGO2, GTF2H1 and AR) to be critical in the development of melanoma (KGs). According to regulatory network analysis, the most important transcriptional and post-transcriptional regulators of DEGs and hub-DEGs are ten transcription factors and three miRNAs. We discovered the pathogenetic mechanisms of MC by studying DEGs' biological processes, molecular function, cellular components and KEGG pathways. We used molecular docking and dynamics modeling to select the four most expressed genes responsible for melanoma malignancy to identify therapeutic candidates. Then, utilizing the Connectivity Map (CMap) database, we analyzed the top 4-hub-DEGs-guided repurposable drugs. We validated four melanoma cancer drugs (Fisetin, Epicatechin Gallate, 1237586-97-8 and PF 431396) using molecular dynamics simulation with their target proteins. As a result, the results of this study may provide resources to researchers and medical professionals for the wet-lab validation of MC diagnosis, prognosis and treatments.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Dhrubo Ahmed Khan
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Tonmoy Adhikary
- Department of Mathematics, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Mst Tania Sultana
- Department of Mathematics, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Imran Ahamed Toukir
- Department of Chemical Engineering, Jashore University of Science and Technology, Jashore, Bangladesh
| |
Collapse
|
7
|
Choi J, Park G, Lee SSY, Dominici E, Becker L, Macleod KF, Kron SJ, Hwang S. Context-dependent roles for autophagy in myeloid cells in tumor progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.12.603292. [PMID: 39071306 PMCID: PMC11275940 DOI: 10.1101/2024.07.12.603292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Autophagy is known to suppress tumor initiation by removing genotoxic stresses in normal cells. Conversely, autophagy is also known to support tumor progression by alleviating metabolic stresses in neoplastic cells. Centered on this pro-tumor role of autophagy, there have been many clinical trials to treat cancers through systemic blocking of autophagy. Such systemic inhibition affects both tumor cells and non-tumor cells, and the consequence of blocked autophagy in non-tumor cells in the context of tumor microenvironment is relatively understudied. Here, we examined the effect of autophagy-deficient myeloid cells on the progression of autophagy-competent tumors. We found that blocking autophagy only in myeloid cells modulated tumor progression markedly but such effects were context dependent. In a tumor implantation model, the growth of implanted tumor cells was substantially reduced in mice with autophagy-deficient myeloid cells; T cells infiltrated deeper into the tumors and were responsible for the reduced growth of the implanted tumor cells. In an oncogene-driven tumor induction model, however, tumors grew faster and metastasized more in mice with autophagy-deficient myeloid cells. These data demonstrate that the autophagy status of myeloid cells plays a critical role in tumor progression, promoting or suppressing tumor growth depending on the context of tumor-myeloid cell interactions. This study indicates that systemic use of autophagy inhibitors in cancer therapy may have differential effects on rates of tumor progression in patients due to effects on myeloid cells and that this warrants more targeted use of selective autophagy inhibitors in a cancer therapy in a clinical setting.
Collapse
Affiliation(s)
- Jayoung Choi
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Gayoung Park
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Steve Seung-Young Lee
- Ludwig Center for Metastasis Research, Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Erin Dominici
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Lev Becker
- The Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Kay F Macleod
- The Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Stephen J Kron
- Ludwig Center for Metastasis Research, Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Seungmin Hwang
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
8
|
Kamal MV, Damerla RR, Parida P, Chakrabarty S, Rao M, Kumar NAN. Antiapoptotic PON2 expression and its clinical implications in locally advanced oral squamous cell carcinoma. Cancer Sci 2024; 115:2012-2022. [PMID: 38602182 PMCID: PMC11145147 DOI: 10.1111/cas.16170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/07/2024] [Accepted: 03/20/2024] [Indexed: 04/12/2024] Open
Abstract
Locally advanced oral squamous cell carcinoma poses a significant challenge in oncology due to its rising incidence and mortality rates. Despite therapeutic progress, understanding molecular intricacies is essential. This study explored the role of PON2, a multifunctional enzyme implicated in antiapoptotic mechanisms. Aberrant PON2 expression in oral cancers raises questions regarding its involvement in evading programmed cell death and treatment resistance. Patients with locally advanced disease were enrolled, and molecular analyses were undertaken on the collected tumor and normal tissues. Utilizing computational datasets, this study used in silico gene expression analysis, differential gene expression analysis in our patient cohort, survival analysis, and gene set enrichment analysis to unravel role of PON2 in disease prognosis. The results showed elevated PON2 levels in advanced tumor stages, correlating with factors such as tobacco exposure, higher tumor grade, and nodal metastasis. Survival analysis revealed prognostic relevance of PON2, with lower expression linked to extended survival rates. Gene set enrichment analysis identified pathways aiding in cancer metastasis influenced by PON2. This study underscores the significance of PON2 expression as a prognostic marker for oral malignancies, with increased expression associated with advanced disease stages. Understanding the molecular profile of the PON2 gene suggests its potential as a valuable biomarker for the management of cancer.
Collapse
Affiliation(s)
- Mehta Vedant Kamal
- Department of Surgical OncologyManipal Comprehensive Cancer Care Centre, Kasturba Medical College, Manipal, Manipal Academy of Higher EducationManipalKarnatakaIndia
| | - Rama Rao Damerla
- Department of Medical GeneticsKasturba Medical College, Manipal, Manipal Academy of Higher EducationManipalKarnatakaIndia
| | - Preetiparna Parida
- Department of Medical GeneticsKasturba Medical College, Manipal, Manipal Academy of Higher EducationManipalKarnatakaIndia
| | - Sanjiban Chakrabarty
- Department of Public Health and GenomicsManipal School of Life Sciences, Manipal Academy of Higher EducationManipalKarnatakaIndia
| | - Mahadev Rao
- Department of Pharmacy Practice, Centre for Translational ResearchManipal College of Pharmaceutical Sciences, Manipal Academy of Higher EducationManipalKarnatakaIndia
| | - Naveena AN Kumar
- Department of Surgical OncologyManipal Comprehensive Cancer Care Centre, Kasturba Medical College, Manipal, Manipal Academy of Higher EducationManipalKarnatakaIndia
| |
Collapse
|
9
|
Tedesco G, Santarosa M, Maestro R. Beyond self‑eating: Emerging autophagy‑independent functions for the autophagy molecules in cancer (Review). Int J Oncol 2024; 64:57. [PMID: 38606507 PMCID: PMC11087037 DOI: 10.3892/ijo.2024.5645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/21/2024] [Indexed: 04/13/2024] Open
Abstract
Autophagy is a conserved catabolic process that controls organelle quality, removes misfolded or abnormally aggregated proteins and is part of the defense mechanisms against intracellular pathogens. Autophagy contributes to the suppression of tumor initiation by promoting genome stability, cellular integrity, redox balance and proteostasis. On the other hand, once a tumor is established, autophagy can support cancer cell survival and promote epithelial‑to‑mesenchymal transition. A growing number of molecules involved in autophagy have been identified. In addition to their key canonical activity, several of these molecules, such as ATG5, ATG12 and Beclin‑1, also exert autophagy‑independent functions in a variety of biological processes. The present review aimed to summarize autophagy‑independent functions of molecules of the autophagy machinery and how the activity of these molecules can influence signaling pathways that are deregulated in cancer progression.
Collapse
Affiliation(s)
- Giulia Tedesco
- Unit of Oncogenetics and Functional Oncogenomics, CRO Aviano, National Cancer Institute, IRCCS, I-33081 Aviano, Italy
| | - Manuela Santarosa
- Unit of Oncogenetics and Functional Oncogenomics, CRO Aviano, National Cancer Institute, IRCCS, I-33081 Aviano, Italy
| | - Roberta Maestro
- Unit of Oncogenetics and Functional Oncogenomics, CRO Aviano, National Cancer Institute, IRCCS, I-33081 Aviano, Italy
| |
Collapse
|
10
|
Guo J, Zhao L, Duan M, Yang Z, Zhao H, Liu B, Wang Y, Deng L, Wang C, Jiang X, Jiang X. Demethylases in tumors and the tumor microenvironment: Key modifiers of N 6-methyladenosine methylation. Biomed Pharmacother 2024; 174:116479. [PMID: 38537580 DOI: 10.1016/j.biopha.2024.116479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/09/2024] [Accepted: 03/19/2024] [Indexed: 05/01/2024] Open
Abstract
RNA methylation modifications are widespread in eukaryotes and prokaryotes, with N6-methyladenosine (m6A) the most common among them. Demethylases, including Fat mass and obesity associated gene (FTO) and AlkB homolog 5 (ALKBH5), are important in maintaining the balance between RNA methylation and demethylation. Recent studies have clearly shown that demethylases affect the biological functions of tumors by regulating their m6A levels. However, their effects are complicated, and even opposite results have appeared in different articles. Here, we summarize the complex regulatory networks of demethylases, including the most important and common pathways, to clarify the role of demethylases in tumors. In addition, we describe the relationships between demethylases and the tumor microenvironment, and introduce their regulatory mechanisms. Finally, we discuss evaluation of demethylases for tumor diagnosis and prognosis, as well as the clinical application of demethylase inhibitors, providing a strong basis for their large-scale clinical application in the future.
Collapse
Affiliation(s)
- Junchen Guo
- Departmentof Radiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Liang Zhao
- Department of Anorectal Surgery, Shenyang Anorectal Hospital, Shenyang, Liaoning 110002, China
| | - Meiqi Duan
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Zhi Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - He Zhao
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Baiming Liu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Yihan Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Liping Deng
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Chen Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Xiaodi Jiang
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110002, China.
| | - Xiaofeng Jiang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China.
| |
Collapse
|
11
|
Manupati K, Hao M, Haas M, Yeo SK, Guan JL. Role of NuMA1 in breast cancer stem cells with implications for combination therapy of PIM1 and autophagy inhibition in triple negative breast cancer. RESEARCH SQUARE 2024:rs.3.rs-3953289. [PMID: 38645153 PMCID: PMC11030541 DOI: 10.21203/rs.3.rs-3953289/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Background Nuclear mitotic apparatus protein 1 (NuMA1) is a cell cycle protein and upregulated in breast cancer. However, the role of NuMA1 in TNBC and its regulation in heterogenous populations remains elusive. Methods We performed CRISPR mediated deletion of NuMA1 in mouse TNBC cells, BF3M. FACS was utilized to isolate BCSCs, and bulk cells based on CD29 and CD61 markers. Cell viability, migration, and invasion ability of BCSCs and bulk cells was evaluated using MTT, wound healing and transwell invasion assays, respectively. In vivo mouse breast cancer and lung metastatic models were generated to evaluate the combination treatment of SMI-4a and Lys-o5 inhibitors. Results We identified that high expression of NuMA1 associated with poor survival of breast cancer patients. Further, human tissue microarray results depicted high expression of NuMA1 in TNBC relative to non-adjacent normal tissues. Therefore, we performed CRISPR mediated deletion of NuMA1 in a mouse mammary tumor cell line, BF3M and revealed that NuMA1 deletion reduced mammary tumorigenesis. We also showed that NuMA1 deletion reduced ALDH+ and CD29hiCD61+ breast cancer stem cells (BCSCs), indicating a role of NuMA1 in BCSCs. Further, sorted and characterized BCSCs from BF3M depicted reduced metastasis with NuMA1 KO cells. Moreover, we found that PIM1, an upstream kinase of NuMA1 plays a preferential role in maintenance of BCSCs associated phenotypes, but not in bulk cells. In contrast, PIM1 kinase inhibition in bulk cells depicted increased autophagy (FIP200). Therefore, we applied a combination treatment strategy of PIM1 and autophagy inhibition using SMI-4a and Lys05 respectively, showed higher efficacy against cell viability of both these populations and further reduced breast tumor formation and metastasis. Together, our study demonstrated NuMA1 as a potential therapeutic target and combination treatment using inhibitors for an upstream kinase PIM1 and autophagy inhibitors could be a potentially new therapeutic approach for TNBC. Conclusions Our study demonstrated that combination treatment of PIM1 inhibitor and autophagy inhibitor depicted reduced mammary tumorigenesis and metastasis by targeting NuMA1 in BCSCs and bulk cells of TNBC, demonstrating this combination treatment approach could be a potentially effective therapy for TNBC patients.
Collapse
Affiliation(s)
- Kanakaraju Manupati
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Mingang Hao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Michael Haas
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Syn Kok Yeo
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| |
Collapse
|
12
|
Zheng L, Yang Z, Xue Z, Chen M, Zhang Y, Cai S, Zheng K, Dai B, Liu S, Zhuang S, Sui G, Zhang D. Air-Liquid Interface Microfluidic Monitoring Sensor Platform for Studying Autophagy Regulation after PM2.5 Exposure. ACS Sens 2024; 9:1178-1187. [PMID: 38437216 DOI: 10.1021/acssensors.3c01744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Undoubtedly, a deep understanding of PM2.5-induced tumor metastasis at the molecular level can contribute to improving the therapeutic effects of related diseases. However, the underlying molecular mechanism of fine particle exposure through long noncoding RNA (lncRNA) regulation in autophagy and, ultimately, lung cancer (LC) metastasis remains elusive; on the other hand, the related monitoring sensor platform used to investigate autophagy and cell migration is lacking. Herein, this study performed an air-liquid interface microfluidic monitoring sensor (AIMMS) platform to analyze human bronchial epithelial cells after PM2.5 stimulation. The multiomics analysis [RNA sequencing (RNA-seq) on lncRNA and mRNA expressions separately] showed that MALAT1 was highly expressed in the PM2.5 treatment group. Furthermore, RNA-seq analysis demonstrated that autophagy-related pathways were activated. Notably, the main mRNAs associated with autophagy regulation, including ATG4D, ATG12, ATG7, and ATG3, were upregulated. Inhibition or downregulation of MALAT1 inhibited autophagy via the ATG4D/ATG12/ATG7/ATG3 pathway after PM2.5 exposure and ultimately suppressed LC metastasis. Thus, based on the AIMMS platform, we found that MALAT1 might become a promising therapeutic target. Furthermore, this low-cost AIMMS system as a fluorescence sensor integrated with the cell-monitor module could be employed to study LC migration after PM2.5 exposure. With the fluorescence cell-monitoring module, the platform could be used to observe the migration of LC cells and construct the tumor metastasis model. In the future, several fluorescence probes, including nanoprobes, could be used in the AIMMS platform to investigate many other biological processes, especially cell interaction and migration, in the fields of toxicology and pharmacology.
Collapse
Affiliation(s)
- Lulu Zheng
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Zhijin Yang
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Zhiwei Xue
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Mengya Chen
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Yule Zhang
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Shuqi Cai
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Kejie Zheng
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Bo Dai
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Sixiu Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China
| | - Songlin Zhuang
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
- Shanghai Environmental Biosafety Instruments and Equipment Engineering Technology Research Center, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Guodong Sui
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China
| | - Dawei Zhang
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
- Shanghai Environmental Biosafety Instruments and Equipment Engineering Technology Research Center, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, P. R. China
| |
Collapse
|
13
|
Behrooz AB, Cordani M, Donadelli M, Ghavami S. Metastatic outgrowth via the two-way interplay of autophagy and metabolism. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166824. [PMID: 37949196 DOI: 10.1016/j.bbadis.2023.166824] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 11/12/2023]
Abstract
Metastasis represents one of the most dangerous issue of cancer progression, characterized by intricate interactions between invading tumor cells, various proteins, and other cells on the way towards target sites. Tumor cells, while undergoing metastasis, engage in dynamic dialogues with stromal cells and undertake epithelial-mesenchymal transition (EMT) phenoconversion. To ensure survival, tumor cells employ several strategies such as restructuring their metabolic needs to adapt to the alterations of the microenvironmental resources via different mechanisms including macroautophagy (autophagy) and to circumvent anoikis-a form of cell death induced upon detachment from the extracellular matrix (ECM). This review focuses on the puzzling connections of autophagy and energetic metabolism within the context of cancer metastasis.
Collapse
Affiliation(s)
- Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, Manitoba, Canada; Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, Madrid, Spain; Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, Manitoba, Canada; Academy of Silesia, Faculty of Medicine, Rolna 43 Street, 40-555 Katowice, Poland; Department of Biomedical Engineering, University of Manitoba, Winnipeg, MB, Canada; Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
14
|
Hao M, Lu P, Sotropa S, Manupati K, Yeo SK, Guan JL. In vivo CRISPR knockout screen identifies p47 as a suppressor of HER2+ breast cancer metastasis by regulating NEMO trafficking and autophagy flux. Cell Rep 2024; 43:113780. [PMID: 38363674 DOI: 10.1016/j.celrep.2024.113780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/14/2023] [Accepted: 01/26/2024] [Indexed: 02/18/2024] Open
Abstract
Autophagy is a conserved cellular process, and its dysfunction is implicated in cancer and other diseases. Here, we employ an in vivo CRISPR screen targeting genes implicated in the regulation of autophagy to identify the Nsfl1c gene encoding p47 as a suppressor of human epidermal growth factor receptor 2 (HER2)+ breast cancer metastasis. p47 ablation specifically increases metastasis without promoting primary mammary tumor growth. Analysis of human breast cancer patient databases and tissue samples indicates a correlation of lower p47 expression levels with metastasis and decreased survival. Mechanistic studies show that p47 functions in the repair of lysosomal damage for autophagy flux and in the endosomal trafficking of nuclear factor κB essential modulator for lysosomal degradation to promote metastasis. Our results demonstrate a role and mechanisms of p47 in the regulation of breast cancer metastasis. They highlight the potential to exploit p47 as a suppressor of metastasis through multiple pathways in HER2+ breast cancer cells.
Collapse
Affiliation(s)
- Mingang Hao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Peixin Lu
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Sarah Sotropa
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Kanakaraju Manupati
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Syn Kok Yeo
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
15
|
Wang Y, Shi L, He Y, Gong W, Cui Y, Zuo R, Wang Y, Luo Y, Chen L, Liu Z, Chen P, Guo H. OVOL2 induces autophagy-mediated epithelial-mesenchymal transition by the ERK1/2 MAPK signaling in lung adenocarcinoma. iScience 2024; 27:108873. [PMID: 38318371 PMCID: PMC10838806 DOI: 10.1016/j.isci.2024.108873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/28/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Lung adenocarcinoma (LUAD) is one of the leading causes of cancer-related death worldwide. Epithelial-mesenchymal transition (EMT) plays an important role in malignant tumor progression. Recently, accumulating evidence has shown that autophagy is involved in the regulation of EMT-induced migration. Therefore, the exploration of targets to inhibit EMT by targeting autophagy is important. In this study, we found that OVO-like zinc finger 2 (OVOL2) may be a key target for regulating autophagy-induced EMT. Firstly, we found that OVOL2 expression was dramatically downregulated in LUAD. Low expression of OVOL2 is an indicator of poor prognosis in LUAD. In vitro experiments have shown that downregulation of OVOL2 expression induces EMT, thereby promoting malignant biological behavior, such as proliferation, migration, and invasion of LUAD cells. Interestingly, autophagy is a key step in regulating OVOL2 and inducing EMT. Furthermore, OVOL2 regulates autophagy through the MAPK signaling pathway, ultimately inhibiting the malignant progression of LUAD.
Collapse
Affiliation(s)
- Yali Wang
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- Department of Thoracic Oncology, Lung Cancer Diagnosis and Treatment Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China
- Department of Oncology, Affiliated Hospital of Chifeng University, Chifeng, Inner Mongolia 024000, China
| | - Lin Shi
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- Department of Thoracic Oncology, Lung Cancer Diagnosis and Treatment Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China
- Department of Oncology, Inner Mongolia Autonomous Region People’s Hospital, Hohhot, Inner Mongolia 010000, China
| | - Yuchao He
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China
| | - Wenchen Gong
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Yanyan Cui
- Department of Oncology, Affiliated Hospital of Chifeng University, Chifeng, Inner Mongolia 024000, China
| | - Ran Zuo
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- Department of Thoracic Oncology, Lung Cancer Diagnosis and Treatment Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China
| | - Yu Wang
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- Department of Thoracic Oncology, Lung Cancer Diagnosis and Treatment Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China
| | - Yi Luo
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China
| | - Liwei Chen
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China
| | - Zhiyong Liu
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China
| | - Peng Chen
- Department of Thoracic Oncology, Lung Cancer Diagnosis and Treatment Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China
| | - Hua Guo
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China
| |
Collapse
|
16
|
Khan SU, Fatima K, Aisha S, Malik F. Unveiling the mechanisms and challenges of cancer drug resistance. Cell Commun Signal 2024; 22:109. [PMID: 38347575 PMCID: PMC10860306 DOI: 10.1186/s12964-023-01302-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/30/2023] [Indexed: 02/15/2024] Open
Abstract
Cancer treatment faces many hurdles and resistance is one among them. Anti-cancer treatment strategies are evolving due to innate and acquired resistance capacity, governed by genetic, epigenetic, proteomic, metabolic, or microenvironmental cues that ultimately enable selected cancer cells to survive and progress under unfavorable conditions. Although the mechanism of drug resistance is being widely studied to generate new target-based drugs with better potency than existing ones. However, due to the broader flexibility in acquired drug resistance, advanced therapeutic options with better efficacy need to be explored. Combination therapy is an alternative with a better success rate though the risk of amplified side effects is commonplace. Moreover, recent groundbreaking precision immune therapy is one of the ways to overcome drug resistance and has revolutionized anticancer therapy to a greater extent with the only limitation of being individual-specific and needs further attention. This review will focus on the challenges and strategies opted by cancer cells to withstand the current therapies at the molecular level and also highlights the emerging therapeutic options -like immunological, and stem cell-based options that may prove to have better potential to challenge the existing problem of therapy resistance. Video Abstract.
Collapse
Affiliation(s)
- Sameer Ullah Khan
- Division of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Holcombe Blvd, Houston, TX, 77030, USA.
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar-190005, Jammu and Kashmir, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| | - Kaneez Fatima
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar-190005, Jammu and Kashmir, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Shariqa Aisha
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar-190005, Jammu and Kashmir, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Fayaz Malik
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar-190005, Jammu and Kashmir, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| |
Collapse
|
17
|
Taskaeva I, Shatruk A, Bgatova N, Yeremina A, Trunov A, Kononova N, Chernykh V. Autophagy and vesicular trafficking in human uveal melanoma: A histopathological study. Microsc Res Tech 2024; 87:122-132. [PMID: 37698482 DOI: 10.1002/jemt.24417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/04/2023] [Accepted: 09/03/2023] [Indexed: 09/13/2023]
Abstract
Uveal melanoma is an ocular tumor with a high risk of developing metastases. The endo-lysosomal system can affect the melanoma progression by accelerating and facilitating invasion or metastasis. This study aims to conduct comparative analysis of normal choroidal melanocytes and uveal melanoma cells ultrastructure with a focus on intracellular transport system, and to examine the patterns of autophagy- and vesicular trafficking-related proteins expression in a case series of uveal melanomas. Transmission electron microscopy was used to assess the ultrastructure of normal choroidal melanocytes and uveal melanoma cells. The expression levels of autophagy- and vesicular trafficking-related proteins in three histological types of uveal melanoma were analyzed by immunofluorescence staining. Electron microscopy results showed that the autophagic vacuoles were more abundant in normal choroidal melanocytes, than in uveal melanoma cells. The normal choroidal melanocytes were characterized by active intracellular vesicular trafficking; however, the proportion of caveolae was higher in uveal melanoma cells. The spindle type of tumor was characterized by a high expression levels of LC3 beta, while Rab7 and Rab11 proteins expression was significantly up-regulated in the mixed-type tumor cells. The results indicate that uveal melanoma cells probably have lower basal levels of autophagy and higher receptor-mediated endocytic trafficking-associated with caveolae than normal choroidal melanocytes. RESEARCH HIGHLIGHTS: The autophagic vacuoles are abundant in normal choroidal melanocytes. Uveal melanoma cells are characterized by a high proportion of caveolae. The high expression levels of LC3 beta were revealed in a spindle type of tumor, while Rab7 and Rab11 proteins expression was up-regulated in the mixed-type tumor cells.
Collapse
Affiliation(s)
- Iuliia Taskaeva
- Laboratory of Ultrastructural Research, Research Institute of Clinical and Experimental Lymphology - Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Anastasia Shatruk
- Laboratory of Ultrastructural Research, Research Institute of Clinical and Experimental Lymphology - Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Nataliya Bgatova
- Laboratory of Ultrastructural Research, Research Institute of Clinical and Experimental Lymphology - Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Alena Yeremina
- S. N. Fyodorov Federal State Institution National Medical Research Center Intersectoral Research and Technology Complex "Eye Microsurgery" Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - Aleksander Trunov
- S. N. Fyodorov Federal State Institution National Medical Research Center Intersectoral Research and Technology Complex "Eye Microsurgery" Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - Natalya Kononova
- S. N. Fyodorov Federal State Institution National Medical Research Center Intersectoral Research and Technology Complex "Eye Microsurgery" Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - Valeriy Chernykh
- S. N. Fyodorov Federal State Institution National Medical Research Center Intersectoral Research and Technology Complex "Eye Microsurgery" Ministry of Health of the Russian Federation, Novosibirsk, Russia
| |
Collapse
|
18
|
Gulia S, Chandra P, Das A. The Prognosis of Cancer Depends on the Interplay of Autophagy, Apoptosis, and Anoikis within the Tumor Microenvironment. Cell Biochem Biophys 2023; 81:621-658. [PMID: 37787970 DOI: 10.1007/s12013-023-01179-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 10/04/2023]
Abstract
Within the tumor microenvironment, the fight between the immune system and cancer influences tumor transformation. Metastasis formation is an important stage in the progression of cancer. This process is aided by cellular detachment and resistance to anoikis, which are achieved by altering intercellular signaling. Autophagy, specifically pro-survival autophagy, aids cancer cells in developing treatment resistance. Numerous studies have shown that autophagy promotes tumor growth and resistance to anoikis. To regulate protective autophagy, cancer-related genes phosphorylate both pro- and anti-apoptotic proteins. Apoptosis, a type of controlled cell death, eliminates damaged or unwanted cells. Anoikis is a type of programmed cell death in which cells lose contact with the extracellular matrix. The dysregulation of these cellular pathways promotes tumor growth and spread. Apoptosis, anoikis, and autophagy interact meticulously and differently depending on the cellular circumstances. For instance, autophagy can protect cancer cells from apoptosis by removing cellular components that are damaged and might otherwise trigger apoptotic pathways. Similarly, anoikis dysregulation can trigger autophagy by causing cellular harm and metabolic stress. In order to prevent or treat metastatic disease, specifically, targeting these cellular mechanisms may present a promising prospect for cancer therapy. This review discourses the state of our understanding of the molecular and cellular mechanisms underlying tumor transformation and the establishment of metastatic tumors. To enhance the prognosis for cancer, we highlight and discuss potential therapeutic approaches that target these processes and genes involved in them.
Collapse
Affiliation(s)
- Shweta Gulia
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042, India
| | - Prakash Chandra
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042, India
| | - Asmita Das
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042, India.
| |
Collapse
|
19
|
Jiang W, Tie Z, Yu C, Chen Y, Liu D, Li B. An engineered nanoplatform inhibiting energy metabolism and lysosomal activity of tumor cells to multiply cisplatin-based chemotherapy. Biomaterials 2023; 302:122354. [PMID: 37879187 DOI: 10.1016/j.biomaterials.2023.122354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/21/2023] [Accepted: 10/14/2023] [Indexed: 10/27/2023]
Abstract
Although inhibiting the energy metabolism of tumor cells has become an effective measure to enhance chemotherapy, tumor cells can still escape the lethal effect of chemotherapy by entering a dormancy state with low-energy expenditure. Herein, the glutathione (GSH)-responsive nanoplatform (C-A-D NPs) were constructed to inhibit energy metabolism and lysosomal activity of tumor cells, thereby forcing tumor cells to remain vulnerable to cisplatin. In this system, cisplatin prodrug was reduced to cisplatin by GSH, and D-peptide and apoptozole (Az) were released to inhibit the energy metabolism and autophagy-lysosome pathway of tumor cells. The suppressed autophagy-lysosome pathway prevents tumor cells from entering a low-energy dormancy state, resulting in the loss of resistance to the lethal effect of cisplatin with high-energy expenditure and insufficient energy supply. Such engineered nanoplatform effectively enhances the chemotherapeutic effect of cisplatin by inhibiting intracellular energy metabolism and lysosomal activity, showing great clinical prospects.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Biochemistry and Molecular Biology, Medical College, Guangxi University of Science and Technology, Liuzhou, 545005, China; College of Engineering and Applied Sciences, MOE Key Laboratory of High Performance Polymer Materials & Technology, Nanjing University, Nanjing, 210033, China
| | - Zuoxiu Tie
- College of Engineering and Applied Sciences, MOE Key Laboratory of High Performance Polymer Materials & Technology, Nanjing University, Nanjing, 210033, China
| | - Chi Yu
- College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Yu Chen
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Clayton, Victoria, 3168, Australia
| | - Dan Liu
- College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, 110142, China.
| | - Bin Li
- Department of Biochemistry and Molecular Biology, Medical College, Guangxi University of Science and Technology, Liuzhou, 545005, China.
| |
Collapse
|
20
|
Soni N, Nandi G, Chaudhary M, Bissa B. The role of ncRNA in the co-regulation of autophagy and exosome pathways during cancer progression. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119523. [PMID: 37348764 DOI: 10.1016/j.bbamcr.2023.119523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023]
Abstract
Since its discovery a few decades ago, autophagy has been recognized as a crucial signaling pathway, linked to the recycling of cellular components in nutrient stress. Autophagy is a two-way sword, playing a dual role in tumorigenesis. In this catabolic process, dysfunctional organelles, biomolecules, and misfolded proteins are sequestered in the autophagosome and sent to the lysosome for degradation. Alongside, there are cellular messengers called exosomes, which are released from cells and are known to communicate and regulate metabolism in recipient cells. Multivesicular bodies (MVB) act as the intricate link between autophagy and exosome pathways. The continuous crosstalk between the two pathways is coordinated and regulated by multiple players among which ncRNA is the emerging candidates. The exosomes carry varied cargo of which non-coding RNA exerts an immediate regulatory effect on recipient cells. ncRNA is known to exhibit dual behavior in both promoting and inhibiting tumor growth. There is increasing evidence for the involvement of ncRNAs' in the regulation of different hallmarks of cancer. Different ncRNAs are involved in the co-regulation of autophagy and exosome pathways and therefore represent a superior therapeutic approach to target cancer chemoresistance. Here, we will discuss the ncRNA involved in regulating autophagy, and exosomes pathways and its relevance in cancer therapeutics.
Collapse
Affiliation(s)
- Naveen Soni
- Dept. of Biochemistry, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Gargi Nandi
- Dept. of Biochemistry, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Megha Chaudhary
- Dept. of Biochemistry, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Bhawana Bissa
- Dept. of Biochemistry, Central University of Rajasthan, Ajmer, Rajasthan, India.
| |
Collapse
|
21
|
Song H, Zhao Z, Ma L, Zhang B, Song Y. MiR-3653 blocks autophagy to inhibit epithelial-mesenchymal transition in breast cancer cells by targeting the autophagy-regulatory genes ATG12 and AMBRA1. Chin Med J (Engl) 2023; 136:2086-2100. [PMID: 37464439 PMCID: PMC10476840 DOI: 10.1097/cm9.0000000000002569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Metastasis is the main cause of tumor-associated death and mainly responsible for treatment failure of breast cancer. Autophagy accelerates tumor metastasis. In our work, we aimed to investigate the possibility of microRNAs (miRNAs) which participate in the regulation of autophagy to inhibit tumor metastasis. METHODS MiRNA array and comprehensive analysis were performed to identify miRNAs which participated in the regulation of autophagy to inhibit tumor metastasis. The expression levels of miR-3653 in breast cancer tissues and cells were detected by quantitative real-time polymerase chain reaction. In vivo and in vitro assays were conducted to determine the function of miR-3653. The target genes of miR-3653 were detected by a dual luciferase reporter activity assay and Western blot. The relationship between miR-3653 and epithelial-mesenchymal transition (EMT) was assessed by Western blot. Student's t -test was used to analyze the difference between any two groups, and the difference among multiple groups was analyzed with one-way analysis of variance and a Bonferroni post hoc test. RESULTS miR-3653 was downregulated in breast cancer cells with high metastatic ability, and high expression of miR-3653 blocked autophagic flux in breast cancer cells. Clinically, low expression of miR-3653 in breast cancer tissues (0.054 ± 0.013 vs . 0.131 ± 0.028, t = 2.475, P = 0.014) was positively correlated with lymph node metastasis (0.015 ± 0.004 vs . 0.078 ± 0.020, t = 2.319, P = 0.023) and poor prognosis ( P < 0.001). miR-3653 ameliorated the malignant phenotypes of breast cancer cells, including proliferation, migration (MDA-MB-231: 0.353 ± 0.013 vs . 1.000 ± 0.038, t = 16.290, P < 0.001; MDA-MB-468: 0.200 ± 0.014 vs . 1.000 ± 0.043, t = 17.530, P < 0.001), invasion (MDA-MB-231: 0.723 ± 0.056 vs . 1.000 ± 0.035, t = 4.223, P = 0.013; MDA-MB-468: 0.222 ± 0.016 vs . 1.000 ± 0.019, t = 31.050, P < 0.001), and colony formation (MDA-MB-231: 0.472 ± 0.022 vs . 1.000 ± 0.022, t = 16.620, P < 0.001; MDA-MB-468: 0.650 ± 0.040 vs . 1.000 ± 0.098, t = 3.297, P = 0.030). The autophagy-associated genes autophagy-related gene 12 ( ATG12 ) and activating molecule in beclin 1-regulated autophagy protein 1 ( AMBRA1 ) are target genes of miR-3653. Further studies showed that miR-3653 inhibited EMT by targeting ATG12 and AMBRA1 . CONCLUSIONS Our findings suggested that miR-3653 inhibits the autophagy process by targeting ATG12 and AMBRA1 , thereby inhibiting EMT, and provided a new idea and target for the metastasis of breast cancer.
Collapse
Affiliation(s)
- Huachen Song
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zitong Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Liying Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Bailin Zhang
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yongmei Song
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
22
|
Shi YB, Chen SY, Liu RB. The new insights into autophagy in thyroid cancer progression. J Transl Med 2023; 21:413. [PMID: 37355631 PMCID: PMC10290383 DOI: 10.1186/s12967-023-04265-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/09/2023] [Indexed: 06/26/2023] Open
Abstract
In recent decades, the incidence of thyroid cancer keeps growing at a shocking rate, which has aroused increasing concerns worldwide. Autophagy is a fundamental and ubiquitous biological event conserved in mammals including humans. Basically, autophagy is a catabolic process that cellular components including small molecules and damaged organelles are degraded for recycle to meet the energy needs, especially under the extreme conditions. The dysregulated autophagy has indicated to be involved in thyroid cancer progression. The enhancement of autophagy can lead to autophagic cell death during the degradation while the produced energies can be utilized by the rest of the cancerous tissue, thus this influence could be bidirectional, which plays either a tumor-suppressive or oncogenic role. Accordingly, autophagy can be suppressed by therapeutic agents and is thus regarded as a drug target for thyroid cancer treatments. In the present review, a brief description of autophagy and roles of autophagy in tumor context are given. We have addressed summary of the mechanisms and functions of autophagy in thyroid cancer. Some potential autophagy-targeted treatments are also summarized. The aim of the review is linking autophagy to thyroid cancer, so as to develop novel approaches to better control cancer progression.
Collapse
Affiliation(s)
- Yu-Bo Shi
- Department of Thyroid and Breast Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Shu-Yuan Chen
- Department of Thyroid and Breast Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ren-Bin Liu
- Department of Thyroid and Breast Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
23
|
Phua TJ. Understanding human aging and the fundamental cell signaling link in age-related diseases: the middle-aging hypovascularity hypoxia hypothesis. FRONTIERS IN AGING 2023; 4:1196648. [PMID: 37384143 PMCID: PMC10293850 DOI: 10.3389/fragi.2023.1196648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/23/2023] [Indexed: 06/30/2023]
Abstract
Aging-related hypoxia, oxidative stress, and inflammation pathophysiology are closely associated with human age-related carcinogenesis and chronic diseases. However, the connection between hypoxia and hormonal cell signaling pathways is unclear, but such human age-related comorbid diseases do coincide with the middle-aging period of declining sex hormonal signaling. This scoping review evaluates the relevant interdisciplinary evidence to assess the systems biology of function, regulation, and homeostasis in order to discern and decipher the etiology of the connection between hypoxia and hormonal signaling in human age-related comorbid diseases. The hypothesis charts the accumulating evidence to support the development of a hypoxic milieu and oxidative stress-inflammation pathophysiology in middle-aged individuals, as well as the induction of amyloidosis, autophagy, and epithelial-to-mesenchymal transition in aging-related degeneration. Taken together, this new approach and strategy can provide the clarity of concepts and patterns to determine the causes of declining vascularity hemodynamics (blood flow) and physiological oxygenation perfusion (oxygen bioavailability) in relation to oxygen homeostasis and vascularity that cause hypoxia (hypovascularity hypoxia). The middle-aging hypovascularity hypoxia hypothesis could provide the mechanistic interface connecting the endocrine, nitric oxide, and oxygen homeostasis signaling that is closely linked to the progressive conditions of degenerative hypertrophy, atrophy, fibrosis, and neoplasm. An in-depth understanding of these intrinsic biological processes of the developing middle-aged hypoxia could provide potential new strategies for time-dependent therapies in maintaining healthspan for healthy lifestyle aging, medical cost savings, and health system sustainability.
Collapse
Affiliation(s)
- Teow J. Phua
- Molecular Medicine, NSW Health Pathology, John Hunter Hospital, Newcastle, NSW, Australia
| |
Collapse
|
24
|
Hosseinzadeh A, Poursoleiman F, Biregani AN, Esmailzadeh A. Flavonoids target different molecules of autophagic and metastatic pathways in cancer cells. Cancer Cell Int 2023; 23:114. [PMID: 37308913 DOI: 10.1186/s12935-023-02960-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/30/2023] [Indexed: 06/14/2023] Open
Abstract
Despite the success of cancer therapy, it has encountered a major obstacle due to the complicated nature of cancer, namely resistance. The recurrence and metastasis of cancer occur when anti-cancer therapeutic agents fail to eradicate all cancer cells. Cancer therapy aims to find the best agent that targets all cancer cells, including those sensitive or resistant to treatment. Flavonoids, natural products from our diet, show anti-cancer effects in different studies. They can inhibit metastasis and the recurrence of cancers. This review discusses metastasis, autophagy, anoikis in cancer cells, and their dynamic relationship. We present evidence that flavonoids can block metastasis and induce cell death in cancer cells. Our research suggests that flavonoids can serve as potential therapeutic agents in cancer therapy.
Collapse
Affiliation(s)
- Aysooda Hosseinzadeh
- Department of Immunology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Faezeh Poursoleiman
- Department of Cellular and Molecular Nutrition, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Akram Naghdipour Biregani
- Department of Nutrition, School of Health, Shahid Sadoughi University of Medical Scinences, Yazd, Iran
| | - Ahmad Esmailzadeh
- Students' Scientific Center, Tehran University of Medical Sciences, Tehran, Iran.
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.
- Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
25
|
Wu HW, Chen HD, Chen YH, Mao XL, Feng YY, Li SW, Zhou XB. The Effects of Programmed Cell Death of Mesenchymal Stem Cells on the Development of Liver Fibrosis. Stem Cells Int 2023; 2023:4586398. [PMID: 37214784 PMCID: PMC10195177 DOI: 10.1155/2023/4586398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/06/2023] [Accepted: 04/02/2023] [Indexed: 05/24/2023] Open
Abstract
Mesenchymal stem cells have shown noticeable potential for unlimited self-renewal. They can differentiate into specific somatic cells, integrate into target tissues via cell-cell contact, paracrine effects, exosomes, and other processes and then regulate the target cells and tissues. Studies have demonstrated that transplantation of MSCs could decrease the expression and concentration of collagen in the liver, thereby reducing liver fibrosis. A growing body of evidence indicates that apoptotic MSCs could inhibit harmful immune responses and reduce inflammatory responses more effectively than viable MSCs. Accumulating evidence suggests that mitochondrial transfer from MSCs is a novel strategy for the regeneration of various damaged cells via the rescue of their respiratory activities. This study is aimed at reviewing the functions of MSCs and the related roles of the programmed cell death of MSCs, including autophagy, apoptosis, pyroptosis, and ferroptosis, as well as the regulatory pathogenic mechanisms of MSCs in liver fibrosis. Research has demonstrated that the miR-200B-3p gene is differentially expressed gene between LF and normal liver samples, and that the miR-200B-3p gene expression is positively correlated with the degree of liver fibrosis, suggesting that MSCs could inhibit liver fibrosis through pyroptosis. It was confirmed that circulating monocytes could deliver MSC-derived immunomodulatory molecules to different sites by phagocytosis of apoptotic MSCs, thereby achieving systemic immunosuppression. Accordingly, it was suggested that characterization of the programmed cell death-mediated immunomodulatory signaling pathways in MSCs should be a focus of research.
Collapse
Affiliation(s)
- Hong-wei Wu
- Department of Infectious Diseases, Taizhou Enze Medical Center (Group) Enze Hospital, Taizhou, Zhejiang, China
| | - He-dan Chen
- Department of Infectious Diseases, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Ya-hong Chen
- Health Management Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Xin-li Mao
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Yu-yi Feng
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Shao-wei Li
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Xian-bin Zhou
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| |
Collapse
|
26
|
Alizadeh J, Kavoosi M, Singh N, Lorzadeh S, Ravandi A, Kidane B, Ahmed N, Mraiche F, Mowat MR, Ghavami S. Regulation of Autophagy via Carbohydrate and Lipid Metabolism in Cancer. Cancers (Basel) 2023; 15:2195. [PMID: 37190124 PMCID: PMC10136996 DOI: 10.3390/cancers15082195] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023] Open
Abstract
Metabolic changes are an important component of tumor cell progression. Tumor cells adapt to environmental stresses via changes to carbohydrate and lipid metabolism. Autophagy, a physiological process in mammalian cells that digests damaged organelles and misfolded proteins via lysosomal degradation, is closely associated with metabolism in mammalian cells, acting as a meter of cellular ATP levels. In this review, we discuss the changes in glycolytic and lipid biosynthetic pathways in mammalian cells and their impact on carcinogenesis via the autophagy pathway. In addition, we discuss the impact of these metabolic pathways on autophagy in lung cancer.
Collapse
Affiliation(s)
- Javad Alizadeh
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
| | - Mahboubeh Kavoosi
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
| | - Navjit Singh
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
| | - Amir Ravandi
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Institute of Cardiovascular Sciences, Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, MB R2H 2A6, Canada;
| | - Biniam Kidane
- Section of Thoracic Surgery, Department of Surgery, Health Sciences Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 6C5, Canada;
- CancerCare Manitoba Research Institute, Winnipeg, MB R3E 0V9, Canada; (N.A.)
| | - Naseer Ahmed
- CancerCare Manitoba Research Institute, Winnipeg, MB R3E 0V9, Canada; (N.A.)
- Department of Radiology, Section of Radiation Oncology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Fatima Mraiche
- College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar;
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Michael R. Mowat
- CancerCare Manitoba Research Institute, Winnipeg, MB R3E 0V9, Canada; (N.A.)
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
- Research Institute of Oncology and Hematology, Winnipeg, MB R3E 0V9, Canada
- Faculty of Medicine in Zabrze, Academia of Silesia, 41-800 Zabrze, Poland
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
| |
Collapse
|
27
|
Dong Y, Jin Q, Sun M, Qi D, Qu H, Wang X, Quan C. CLDN6 inhibits breast cancer metastasis through WIP-dependent actin cytoskeleton-mediated autophagy. J Exp Clin Cancer Res 2023; 42:68. [PMID: 36935496 PMCID: PMC10026481 DOI: 10.1186/s13046-023-02644-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/11/2023] [Indexed: 03/21/2023] Open
Abstract
BACKGROUND As a breast cancer suppressor gene, CLDN6 overexpression was found to inhibit breast cancer metastasis in our previous studies, but the specific mechanism remains unclear. This study aimed to clarify the role and mechanism of CLDN6 in inhibiting breast cancer metastasis. METHODS Western blot, immunofluorescence and transmission electron microscopy were performed to detect autophagy. Wound healing, transwell assays and lung metastasis mouse models were used to examine breast cancer metastasis. Phalloidin staining and immunofluorescent staining were used to observe actin cytoskeleton. mRNA seq, RT-PCR, western blot, chromatin immunoprecipitation, dual luciferase reporter assay, co-immunoprecipitation and immunofluorescence were performed to define the molecular mechanism. The expression levels and clinical implication of CLDN6, WIP and LC3 in breast cancer tissues were evaluated using immunohistochemistry. RESULTS We demonstrated that CLDN6 inhibited breast cancer metastasis through autophagy in vitro and vivo. We unraveled a novel mechanism that CLDN6 regulated autophagy via WIP-dependent actin cytoskeleton assembly. Through its PDZ-binding motif, overexpressed CLDN6 interacted with JNK and upregulated JNK/c-Jun pathway. C-Jun promoted WIP expression at the transcriptional level. Notably, we observed c-Jun transcriptionally upregulated CLDN6 expression, and there was a positive feedback loop between CLDN6 and JNK/c-Jun. Finally, we found that CLDN6, WIP and LC3 expression correlated with each other, and WIP expression was significantly associated with lymph node metastasis of breast cancer patients. CONCLUSIONS The data provide a new insight into the inhibitory effects of CLDN6-mediated autophagy on breast cancer metastasis, and revealed the new mechanism of CLDN6 regulating autophagy through WIP-dependent actin cytoskeleton. Our findings enrich the theoretical basis for CLDN6 as a potential biomarker for breast cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Yuan Dong
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, Jilin, China
| | - Qiu Jin
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, Jilin, China
| | - Minghao Sun
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, Jilin, China
| | - Da Qi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, Jilin, China
| | - Huinan Qu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, Jilin, China
| | - Xinqi Wang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, Jilin, China
| | - Chengshi Quan
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, Jilin, China.
| |
Collapse
|
28
|
Zhang M, Li L, Li S, Liu Z, Zhang N, Sun B, Wang Z, Jia D, Liu M, Wang Q. Development of Clioquinol Platinum(IV) Conjugates as Autophagy-Targeted Antimetastatic Agents. J Med Chem 2023; 66:3393-3410. [PMID: 36891739 DOI: 10.1021/acs.jmedchem.2c01895] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
A series of autophagy-targeted antimetastatic clioquinol (CLQ) platinum(IV) conjugates were designed and prepared by incorporating an autophagy activator CLQ into the platinum(IV) system. Complex 5 with the cisplatin core bearing dual CLQ ligands with potent antitumor properties was screened out as a candidate. More importantly, it displayed potent antimetastatic properties both in vitro and in vivo as expected. Mechanism investigation manifested that complex 5 induced serious DNA damage to increase γ-H2AX and P53 expression and caused mitochondria-mediated apoptosis through the Bcl-2/Bax/caspase3 pathway. Then, it promoted prodeath autophagy by suppressing PI3K/AKT/mTOR signaling and activating the HIF-1α/Beclin1 pathway. The T-cell immunity was elevated by restraining the PD-L1 expression and subsequently increasing CD3+ and CD8+ T cells. Ultimately, metastasis of tumor cells was suppressed by the synergistic effects of DNA damage, autophagy promotion, and immune activation aroused by CLQ platinum(IV) complexes. Key proteins VEGFA, MMP-9, and CD34 tightly associated with angiogenesis and metastasis were downregulated.
Collapse
Affiliation(s)
- Ming Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China
| | - Linming Li
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China
| | - Suying Li
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China
| | - Zhifang Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China
| | - Ning Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China
| | - Bin Sun
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China
| | - Zhengping Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China.,Liaocheng High-Tech Biotechnology Co., Ltd, Liaocheng 252059, P. R. China
| | - Dianlong Jia
- School of Pharmacy, Liaocheng University, Liaocheng, Shandong 252059, P. R. China
| | - Min Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China
| | - Qingpeng Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China
| |
Collapse
|
29
|
Wang L, Han H, Feng Y, Ma J, Han Z, Li R, Zhu W, Li S, Tian J, Zhang L. Capilliposide B inhibits the migration of prostate cancer by inducing autophagy through the ROS/AMPK/mTOR pathway. Phytother Res 2023. [PMID: 36867511 DOI: 10.1002/ptr.7785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Capilliposide B (CPS-B), a novel oleanane triterpenoid saponin derived from Lysimachia capillipes Hemsl, is a potent anticancer agent. However, its anticancer mechanism remains elusive. In the present study, we demonstrated the potent anti-tumor activity and molecular mechanism of CPS-B both in vitro and in vivo. Proteomic analysis using isobaric tags for relative and absolute quantitation techniques suggested that CPS-B modulated autophagy in prostate cancer (PC). Moreover, Western blotting showed that both autophagy and epithelial-mesenchymal transition occurred place after CPS-B treatment in vivo, which was also proven in PC-3 cancer cells. We deduced that CPS-B inhibited migration by inducing autophagy. We examined the accumulation of reactive oxygen species (ROS) in cells, and in downstream pathways, LKB1 and AMPK were activated while mTOR was inhibited. Transwell experiment results showed that CPS-B inhibited the metastasis of PC-3 cells and that this effect was significantly attenuated after pretreatment with chloroquine, indicating that CPS-B inhibited metastasis via autophagy induction. Altogether, these data suggest that CPS-B is a potential therapeutic agent for cancer treatment that acts by inhibiting migration through the ROS/AMPK/mTOR signaling pathway.
Collapse
Affiliation(s)
- Luping Wang
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, People's Republic of China.,Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
| | - Haote Han
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Yue Feng
- Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
| | - Jiahui Ma
- Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang, People's Republic of China
| | - Zhuo Han
- Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
| | - Ruyi Li
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Wei Zhu
- Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
| | - Shouxin Li
- Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
| | - Jingkui Tian
- Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
| | - Lin Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
| |
Collapse
|
30
|
Ciaglia T, Vestuto V, Bertamino A, González-Muñiz R, Gómez-Monterrey I. On the modulation of TRPM channels: Current perspectives and anticancer therapeutic implications. Front Oncol 2023; 12:1065935. [PMID: 36844925 PMCID: PMC9948629 DOI: 10.3389/fonc.2022.1065935] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/15/2022] [Indexed: 02/11/2023] Open
Abstract
The transient melastatin receptor potential (TRPM) ion channel subfamily functions as cellular sensors and transducers of critical biological signal pathways by regulating ion homeostasis. Some members of TRPM have been cloned from cancerous tissues, and their abnormal expressions in various solid malignancies have been correlated with cancer cell growth, survival, or death. Recent evidence also highlights the mechanisms underlying the role of TRPMs in tumor epithelial-mesenchymal transition (EMT), autophagy, and cancer metabolic reprogramming. These implications support TRPM channels as potential molecular targets and their modulation as an innovative therapeutic approach against cancer. Here, we discuss the general characteristics of the different TRPMs, focusing on current knowledge about the connection between TRPM channels and critical features of cancer. We also cover TRPM modulators used as pharmaceutical tools in biological trials and an indication of the only clinical trial with a TRPM modulator about cancer. To conclude, the authors describe the prospects for TRPM channels in oncology.
Collapse
Affiliation(s)
- Tania Ciaglia
- Dipartimento di Farmacia (DIFARMA), Università degli Studi di Salerno, Fisciano, Italy
| | - Vincenzo Vestuto
- Dipartimento di Farmacia (DIFARMA), Università degli Studi di Salerno, Fisciano, Italy
| | - Alessia Bertamino
- Dipartimento di Farmacia (DIFARMA), Università degli Studi di Salerno, Fisciano, Italy
| | | | | |
Collapse
|
31
|
Pang X, He X, Qiu Z, Zhang H, Xie R, Liu Z, Gu Y, Zhao N, Xiang Q, Cui Y. Targeting integrin pathways: mechanisms and advances in therapy. Signal Transduct Target Ther 2023; 8:1. [PMID: 36588107 PMCID: PMC9805914 DOI: 10.1038/s41392-022-01259-6] [Citation(s) in RCA: 201] [Impact Index Per Article: 201.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 01/03/2023] Open
Abstract
Integrins are considered the main cell-adhesion transmembrane receptors that play multifaceted roles as extracellular matrix (ECM)-cytoskeletal linkers and transducers in biochemical and mechanical signals between cells and their environment in a wide range of states in health and diseases. Integrin functions are dependable on a delicate balance between active and inactive status via multiple mechanisms, including protein-protein interactions, conformational changes, and trafficking. Due to their exposure on the cell surface and sensitivity to the molecular blockade, integrins have been investigated as pharmacological targets for nearly 40 years, but given the complexity of integrins and sometimes opposite characteristics, targeting integrin therapeutics has been a challenge. To date, only seven drugs targeting integrins have been successfully marketed, including abciximab, eptifibatide, tirofiban, natalizumab, vedolizumab, lifitegrast, and carotegrast. Currently, there are approximately 90 kinds of integrin-based therapeutic drugs or imaging agents in clinical studies, including small molecules, antibodies, synthetic mimic peptides, antibody-drug conjugates (ADCs), chimeric antigen receptor (CAR) T-cell therapy, imaging agents, etc. A serious lesson from past integrin drug discovery and research efforts is that successes rely on both a deep understanding of integrin-regulatory mechanisms and unmet clinical needs. Herein, we provide a systematic and complete review of all integrin family members and integrin-mediated downstream signal transduction to highlight ongoing efforts to develop new therapies/diagnoses from bench to clinic. In addition, we further discuss the trend of drug development, how to improve the success rate of clinical trials targeting integrin therapies, and the key points for clinical research, basic research, and translational research.
Collapse
Affiliation(s)
- Xiaocong Pang
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Xu He
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Zhiwei Qiu
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Hanxu Zhang
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Ran Xie
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Zhiyan Liu
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Yanlun Gu
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Nan Zhao
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Qian Xiang
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034, Beijing, China. .,Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191, Beijing, China.
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034, Beijing, China. .,Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191, Beijing, China.
| |
Collapse
|
32
|
Luo K, Xu S, Zhao J, Liu F. Upregulation of lncRNA PINK1-AS Predicts the Distant Metastasis of Patients with Small Cell Lung Cancer. Mol Biotechnol 2023; 65:28-33. [PMID: 35764723 DOI: 10.1007/s12033-022-00512-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/11/2022] [Indexed: 01/22/2023]
Abstract
PINK1-AS has been shown to participate in gastric cancer, while its role in other tumors is unclear. This study was carried out to explore the participation of PINK1-AS in small cell lung cancer (SCLC). In this study, the expression of PINK1-AS in SCLC and paired non-cancer tissues from 60 SCLC patients and in plasma samples from 60 SCLC patients and 60 healthy controls was analyzed with RT-qPCR. Chi-squared t test was applied to analyze the associations between plasma expression levels of PINK1-AS and the clinical factors of the patients. Patients were followed up for 5 years to explore the role of PINK1-AS in the prognosis of SCLC. ROC curve analysis was applied to explore the role of PINK1-AS in the prediction of distant metastasis. Transwell assays were performed to evaluate the role of silencing and overexpression of PINK1-AS in the invasion and migration of SCLC cells. We found that PINK1-AS was upregulated in SCLC tissues compared to that in non-cancer tissues. Plasma expression levels of PINK1-AS were increased in SCLC patients compared to that in the controls. High plasma expression levels of PINK1-AS were closely associated with worse survival. Plasma expression of PINK1-AS was only closely correlated with distant tumor metastasis, but not other factors. High plasma expression levels of PINK1-AS effectively separated patients with distant metastasis from non-metastatic patients. Moreover, PINK1-AS positively regulated the migration and invasion of SCLC cells. Therefore, the upregulation of PINK1-AS predicts the distant metastasis of patients with SCLC.
Collapse
Affiliation(s)
- Kun Luo
- Department of Pulmonary and Critical Care Medicine, First Hospital of Qinhuangdao, No. 258 Wenhua Road, Haigang District, Qinhuangdao, 066000, Hebei, People's Republic of China
| | - Shufeng Xu
- Department of Pulmonary and Critical Care Medicine, First Hospital of Qinhuangdao, No. 258 Wenhua Road, Haigang District, Qinhuangdao, 066000, Hebei, People's Republic of China.
| | - Jing Zhao
- Department of Pulmonary and Critical Care Medicine, First Hospital of Qinhuangdao, No. 258 Wenhua Road, Haigang District, Qinhuangdao, 066000, Hebei, People's Republic of China
| | - Feifei Liu
- Department of Pulmonary and Critical Care Medicine, First Hospital of Qinhuangdao, No. 258 Wenhua Road, Haigang District, Qinhuangdao, 066000, Hebei, People's Republic of China
| |
Collapse
|
33
|
pPe Op inhibits HGC-27 cell proliferation, migration and invasion by upregulating miR-30b-5p and down-regulating the Rac1/Cdc42 pathway. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1897-1908. [PMID: 36789688 PMCID: PMC10157518 DOI: 10.3724/abbs.2022193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer is the fifth most frequently occurring and the fourth most lethal malignant cancer worldwide. A bioactive protein (pPe Op) from Omphalia lapidescens exhibits significant inhibitory effects on gastric cancer cells. miRNA deep sequencing analysis shows that miR-30b-5p is significantly upregulated in HGC-27 cells treated with pPe Op. Verification results show that the expression level of miR-30b-5p is significantly increased in HGC-27 cells after pPe Op treatment. Additionally, miR-30b-5p is significantly downregulated in clinical gastric cancer tissues compared to that in adjacent normal tissues. Following pPe Op treatment and/or transfection with miR-30b-5p mimic, the proliferation, migration, and invasion of HGC-27 cells are significantly impaired. Immunofluorescence microscopy shows that pPe Op and/or miR-30b-5p destroy(s) microfilaments and microstructures and inhibit(s) the formation of pseudopodia. Bioinformatics analysis, dual-luciferase reporter assay, and western blot analysis confirm that miR-30b-5p downregulates Rac1/Cdc42 expression and activation by targeting RAB22A. Available data indicate that miR-30b-5p plays an anti-gastric cancer role in mediating pPe Op. pPe Op upregulates miR-30b-5p expression, which in turn inhibits RAB22A expression, resulting in a reduction in the expression and activation of Rac1 and Cdc42 and their downstream targets, thus destroying the cytoskeletal structure and inhibiting the proliferation, migration, and invasion of cancer cells.
Collapse
|
34
|
Apoptosis, Proliferation, and Autophagy Are Involved in Local Anesthetic-Induced Cytotoxicity of Human Breast Cancer Cells. Int J Mol Sci 2022; 23:ijms232415455. [PMID: 36555096 PMCID: PMC9779437 DOI: 10.3390/ijms232415455] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Breast cancer accounts for almost one quarter of all female cancers worldwide, and more than 90% of those who are diagnosed with breast cancer undergo mastectomy or breast conservation surgery. Local anesthetics effectively inhibit the invasion of cancer cells at concentrations that are used in surgical procedures. The limited treatment options for triple-negative breast cancer (TNBC) demonstrate unmet clinical needs. In this study, four local anesthetics, lidocaine, levobupivacaine, bupivacaine, and ropivacaine, were applied to two breast tumor cell types, TNBC MDA-MB-231 cells and triple-positive breast cancer BT-474 cells. In addition to the induction of apoptosis and the suppression of the cellular proliferation rate, the four local anesthetics decreased the levels of reactive oxygen species and increased the autophagy elongation indicator in both cell types. Our combination index analysis with doxorubicin showed that ropivacaine had a synergistic effect on the two cell types, and lidocaine had a synergistic effect only in MDA-MB-231 cells; the others had no synergistic effects on doxorubicin. Lidocaine contributed significantly to the formation of autophagolysosomes in a dose-dependent manner in MDA-MB-231 cells but not in BT-474 cells. Our study demonstrated that the four local anesthetics can reduce tumor growth and proliferation and promote apoptosis and autophagy.
Collapse
|
35
|
Adipokines as Regulators of Autophagy in Obesity-Linked Cancer. Cells 2022; 11:cells11203230. [PMID: 36291097 PMCID: PMC9600294 DOI: 10.3390/cells11203230] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/02/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Excess body weight and obesity have become significant risk factors for cancer development. During obesity, adipose tissue alters its biological function, deregulating the secretion of bioactive factors such as hormones, cytokines, and adipokines that promote an inflammatory microenvironment conducive to carcinogenesis and tumor progression. Adipokines regulate tumor processes such as apoptosis, proliferation, migration, angiogenesis, and invasion. Additionally, it has been found that they can modulate autophagy, a process implicated in tumor suppression in healthy tissue and cancer progression in established tumors. Since the tumor-promoting role of autophagy has been well described, the process has been suggested as a therapeutic target in cancer. However, the effects of targeting autophagy might depend on the tumor type and microenvironmental conditions, where circulating adipokines could influence the role of autophagy in cancer. Here, we review recent evidence related to the role of adipokines in cancer cell autophagy in an effort to understand the tumor response in the context of obesity under the assumption of an autophagy-targeting treatment.
Collapse
|
36
|
Liu Q, Yang Y, Cheng M, Cheng F, Chen S, Zheng Q, Sun Y, Chen L. The marine natural product, dicitrinone B, induces apoptosis through autophagy blockade in breast cancer. Int J Mol Med 2022; 50:130. [PMID: 36052845 PMCID: PMC9448296 DOI: 10.3892/ijmm.2022.5186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/11/2022] [Indexed: 12/24/2022] Open
Abstract
Being a highly conserved catabolic process, autophagy is induced by various forms of cellular stress, and its modulation has considerable potential as a cancer therapeutic approach. In the present study, it was demonstrated that dicitrinone B (DB), a rare carbon-bridged citrinin dimer, may exert anticancer effects by blocking autophagy at a late stage, without disrupting lysosomal function in MCF7 breast cancer and MDA-MB-231 triple-negative breast cancer cells. Furthermore, it was discovered that DB significantly enhanced intracellular reactive oxygen species (ROS) production and that the removal of ROS was followed by the attenuation of autophagy inhibition. In addition, DB exerted notable inhibitory effects on the proliferation and promoting effects on the apoptosis of MCF7 and MDA-MB-231 cells. In combination with conventional chemotherapeutic drugs, DB exhibited a further enhanced synergistic effect than when used as a single agent. Overall, the data of the present study demonstrate that DB may prove to be a promising autophagy inhibitor with anticancer activity against breast cancer.
Collapse
Affiliation(s)
- Qinying Liu
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Medical University Cancer Hospital and Fujian Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Yi Yang
- Fujian Provincial Key Laboratory of Medical Instrument and Pharmaceutical Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 350108, P.R. China
| | - Miaomiao Cheng
- Fujian Provincial Key Laboratory of Medical Instrument and Pharmaceutical Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 350108, P.R. China
| | - Fangting Cheng
- Fujian Provincial Key Laboratory of Medical Instrument and Pharmaceutical Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 350108, P.R. China
| | - Shanshan Chen
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Medical University Cancer Hospital and Fujian Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Qiuhong Zheng
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Medical University Cancer Hospital and Fujian Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Yang Sun
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Medical University Cancer Hospital and Fujian Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Li Chen
- Fujian Provincial Key Laboratory of Medical Instrument and Pharmaceutical Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 350108, P.R. China
| |
Collapse
|
37
|
Synthesis of novel 4,7-disubstituted quinoline derivatives as autophagy inducing agents via targeting stabilization of ATG5. Bioorg Chem 2022; 127:105998. [DOI: 10.1016/j.bioorg.2022.105998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 06/03/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022]
|
38
|
Rab11a promotes the malignant progression of ovarian cancer by inducing autophagy. Genes Genomics 2022; 44:1375-1384. [PMID: 36125654 DOI: 10.1007/s13258-022-01314-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/03/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Rab11a is a novel identified tumorigenic factor involved in different cancers. OBJECTIVE This study aimed to assess the biological function of Rab11a in ovarian cancer (OC). METHODS GEPIA database and real-time PCR were used to determine Rab11a expression in OC tissues and normal ovarian tissues. CCK-8, cell cycle, wound healing, transwell, and enzyme linked immunosorbent assay were used to detect the effects of Rab11a knockdown or overexpression on the proliferation, migration, and invasion of OC cells. Western blot analysis of autophagy-related markers and immunofluorescence staining of LC3 were performed to determine autophagy induction in Rab11a-silenced or overexpressed OC cells. Moreover, autophagy inhibitor 3-MA was employed to clarify the effects of Rab11a-regulated autophagy on the malignant phenotypes of OC cells. RESULTS The mRNA level of Rab11a was increased in tumor tissues from OC patients as compared to the normal ovarian tissues. Knockdown of Rab11a in OVCAR-3 cells inhibited the growth of OC cells and led to cell cycle arrest, accompanied by reduced expression of PCNA and Cyclin D1. Rab11a deficiency suppressed migration and invasion of OC cells, accompanied by decreased secretion of MMP-2 and MMP-9. Silence of Rab11a impeded autophagy induction, as evidenced by decreased LC3 puncta formation, reduced abundance of LC3II and Beclin1, and increased p62 protein expression. In contrast, the ectopic expression of Rab11a in A2780 cells exerted opposite effects. Interestingly, autophagy inhibitor 3-MA abolished the effects of Rab11a overexpression on autophagy, proliferation, migration, and invasion. CONCLUSIONS Rab11a promotes the malignant phenotypes of OC cells by inducing autophagy.
Collapse
|
39
|
Li Q, Xie D, Yao L, Qiu H, You P, Deng J, Li C, Zhan W, Weng M, Wu S, Li F, Zhou Y, Zeng F, Zheng Y, Zhou H. Combining autophagy and immune characterizations to predict prognosis and therapeutic response in lung adenocarcinoma. Front Immunol 2022; 13:944378. [PMID: 36177001 PMCID: PMC9513242 DOI: 10.3389/fimmu.2022.944378] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/17/2022] [Indexed: 02/05/2023] Open
Abstract
Background Autophagy, a key regulator of programmed cell death, is critical for maintaining the stability of the intracellular environment. Increasing evidence has revealed the clinical importance of interactions between autophagy and immune status in lung adenocarcinoma. The present study evaluated the potential of autophagy-immune-derived biomarkers to predict prognosis and therapeutic response in patients with lung adenocarcinoma. Methods Patients from the GSE72094 dataset were randomized 7:3 to a training set and an internal validation set. Three independent cohorts, TCGA, GSE31210, and GSE37745, were used for external verification. Unsupervised hierarchical clustering based on autophagy- and immune-associated genes was used to identify autophagy- and immune-associated molecular patterns, respectively. Significantly prognostic autophagy-immune genes were identified by LASSO analysis and by univariate and multivariate Cox regression analyses. Differences in tumor immune microenvironments, functional pathways, and potential therapeutic responses were investigated to differentiate high-risk and low-risk groups. Results High autophagy status and high immune status were associated with improved overall survival. Autophagy and immune subtypes were merged into a two-dimensional index to characterize the combined prognostic classifier, with 535 genes defined as autophagy-immune-related differentially expressed genes (DEGs). Four genes (C4BPA, CD300LG, CD96, and S100P) were identified to construct an autophagy-immune-related prognostic risk model. Survival and receiver operating characteristic (ROC) curve analyses showed that this model was significantly prognostic of survival. Patterns of autophagy and immune genes differed in low- and high-risk patients. Enrichment of most immune infiltrating cells was greater, and the expression of crucial immune checkpoint molecules was higher, in the low-risk group. TIDE and immunotherapy clinical cohort analysis predicted that the low-risk group had more potential responders to immunotherapy. GO, KEGG, and GSEA function analysis identified immune- and autophagy-related pathways. Autophagy inducers were observed in patients in the low-risk group, whereas the high-risk group was sensitive to autophagy inhibitors. The expression of the four genes was assessed in clinical specimens and cell lines. Conclusions The autophagy-immune-based gene signature represents a promising tool for risk stratification in patients with lung adenocarcinoma, guiding individualized targeted therapy or immunotherapy.
Collapse
Affiliation(s)
- Qiaxuan Li
- Department of Thoracic Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Daipeng Xie
- Department of Thoracic Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Cardiovascular Institute, Guangzhou, China
| | - Lintong Yao
- Department of Thoracic Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Hongrui Qiu
- Department of Thoracic Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peimeng You
- Department of Thoracic radiology, Cancer Hospital of Nanchang University, Jiangxi Key Laboratory of Translational Cancer Research (Jiangxi Cancer Hospital of Nanchang University), Nanchang, China
| | - Jialong Deng
- Department of Thoracic Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Congsen Li
- Department of Thoracic Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Weijie Zhan
- Department of Thoracic Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Maotao Weng
- Department of Thoracic Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Shaowei Wu
- Department of Thoracic Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Fasheng Li
- Department of Cardiothoracic Surgery, Affiliated Hospital of Guangdong Medical University, Guangzhou, China
| | - Yubo Zhou
- Department of Thoracic Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Fanjun Zeng
- Department of General Practice, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yong Zheng
- Department of Anesthesiology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Haiyu Zhou
- Department of Thoracic Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
- Jiangxi Lung Cancer Institute, Nanchang, China
| |
Collapse
|
40
|
Li P, Yang Y, Qiu L, Wan G, Yuan B, Wu Y, Gao Y, Li G. 4-Hydroxyisoleucine inhibits tumor growth by triggering endoplasmic reticulum stress and autophagy. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100127. [PMID: 36568272 PMCID: PMC9780060 DOI: 10.1016/j.crphar.2022.100127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/21/2022] [Accepted: 09/03/2022] [Indexed: 12/27/2022] Open
Abstract
4-Hydroxyisoleucine(4-HIL)is a non-protein amino acid that is able to reduce obesity and improve insulin sensitivity in mice, and recently emerged as a drug candidate against hypoglycemia. For the first time, we found that 4-HIL exhibits a potent anti-tumor activity in various cancer cell lines in vitro and in vivo. Most importantly, 4-HIL has no cytotoxic effect on normal or non-malignant cells. Proteomic data analysis revealed changes in endoplasmic reticulum stress(ERS)related protein and autophagy related protein. Western blot revealed that molecular components of the ERS pathway were activated, including phosphorylation of perk and EIF2a increased, while levels of GRP78 reduced, the cellular process of ERS potentially contributed to the activation of autophagy, Transmission electron microscopy revealed the formation of autophagic vesicles under 4-HIL treatment, and LC3B was increased. Meanwhile, activation of ERS inhibits intracellular protein synthesis rate, our results suggest that 4-HIL exhibits anti-tumor activity in various cancer cell lines by increasing ERS and triggering autophagy responses without causing damage to normal cells.
Collapse
Affiliation(s)
- Peng Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China,Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou University, Zhengzhou, 450001, China,International Joint Laboratory for Protein and Peptide Drugs of Henan Province, Zhengzhou University, Zhengzhou, 450001, China
| | - Yonghui Yang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China,Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou University, Zhengzhou, 450001, China,International Joint Laboratory for Protein and Peptide Drugs of Henan Province, Zhengzhou University, Zhengzhou, 450001, China
| | - Lu Qiu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China,Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou University, Zhengzhou, 450001, China,International Joint Laboratory for Protein and Peptide Drugs of Henan Province, Zhengzhou University, Zhengzhou, 450001, China
| | - Guangming Wan
- The First Affiliated Hospital of Zhengzhou University, China
| | - Baomei Yuan
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yahong Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China,Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou University, Zhengzhou, 450001, China,International Joint Laboratory for Protein and Peptide Drugs of Henan Province, Zhengzhou University, Zhengzhou, 450001, China
| | - Yanfeng Gao
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China,School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, 510006, China
| | - Guodong Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China,Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou University, Zhengzhou, 450001, China,International Joint Laboratory for Protein and Peptide Drugs of Henan Province, Zhengzhou University, Zhengzhou, 450001, China,Corresponding author. School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
41
|
Que T, Ren B, Fan Y, Liu T, Hou T, Dan W, Liu B, Wei Y, Lei Y, Zeng J, Li L. Capsaicin inhibits the migration, invasion and EMT of renal cancer cells by inducing AMPK/mTOR-mediated autophagy. Chem Biol Interact 2022; 366:110043. [PMID: 36044967 DOI: 10.1016/j.cbi.2022.110043] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/10/2022] [Accepted: 07/13/2022] [Indexed: 12/01/2022]
Abstract
Capsaicin (CAP), extracted from Capsicum fruits, has been reported to exhibit antitumor effects in various lines of cancer cells. However, the mechanism underlying its antitumor efficiency is not fully understood. Autophagy is a fundamental self-degradation process of cells that maintains homeostasis and plays a controversial role in tumor initiation and progression. The EMT is defined as a system regulating cells transformed from an epithelial-like phenotype into a mesenchymal phenotype by several internal and external factors, following the metastatic performance of the cells developed. The present study aimed to investigate the potential role of autophagy in CAP-induced antitumor effects in renal cell carcinoma (RCC) 786-O and CAKI-1 cell lines. The results revealed that CAP remarkably inhibited the migration and invasion of RCC cells in vitro and metastasis in vivo. Moreover, we found that the CAP treatment increased the formation of autophagolysosome vacuoles and LC3 yellow and red fluorescent puncta in RCC cells and upregulated the expression of LC3, suggesting that autophagy was induced by CAP in 786-O and CAKI-1 cell lines. Our further results demonstrated that CAP-induced autophagy was mediated by the AMPK/mTOR pathway. In conclusion, our study provides new knowledge of the potential relationship between autophagy and metastasis inhibition induced by CAP, which might be a promising therapeutic strategy in RCC.
Collapse
Affiliation(s)
- Taotao Que
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, PR China
| | - Bingyi Ren
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, PR China
| | - Yizeng Fan
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, PR China
| | - Tianjie Liu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, PR China
| | - Tao Hou
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, PR China
| | - Weichao Dan
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, PR China
| | - Bo Liu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, PR China
| | - Yi Wei
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, PR China
| | - Yuzeshi Lei
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, PR China
| | - Jin Zeng
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, PR China.
| | - Lei Li
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, PR China.
| |
Collapse
|
42
|
Yu T, Ben S, Ma L, Jiang L, Chen S, Lin Y, Chen T, Li S, Zhu L. Genetic variants in autophagy-related gene ATG2B predict the prognosis of colorectal cancer patients receiving chemotherapy. Front Oncol 2022; 12:876424. [PMID: 35992821 PMCID: PMC9389459 DOI: 10.3389/fonc.2022.876424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/07/2022] [Indexed: 11/26/2022] Open
Abstract
Autophagy-related genes have a vital effect on colorectal cancer (CRC) by affecting genomic stability and regulating immune responses. However, the associations between genetic variants in autophagy-related genes and CRC outcomes for chemotherapy therapy remain unclear. The Cox regression model was used to evaluate the associations between single-nucleotide polymorphisms (SNPs) in autophagy-related genes and overall survival (OS) and progression-free survival (PFS) of CRC patients. The results were corrected by the false discovery rate (FDR) correction. We used the logistic regression model to investigate the associations of SNPs with the disease control rate (DCR) of patients. Gene expression analysis was explored based on an in-house dataset and other databases. The associations between gene expression and infiltrating immune cells were evaluated using the Tumor Immune Estimation Resource (TIMER) database. We observed that ATG2B rs17094017 A > T was significantly associated with increased OS (HR = 0.65, 95% CI = 0.50-0.86, P = 2.54×10-3), PFS (HR = 0.76, 95% CI = 0.62-0.93, P = 7.34×10-3), and DCR (OR = 0.60, 95% CI = 0.37-0.96, P = 3.31×10-2) of CRC patients after chemotherapy. The expression of ATG2B was down-expressed in CRC tissues than in adjacent normal tissues. Moreover, ATG2B expression influenced the infiltration of CD8+ T cells, CD4+ T cells, B cells, and T cell receptor signaling pathways, which may inhibit the occurrence of CRC by affecting the immune system. This study suggests that genetic variants in the autophagy-related gene ATG2B play a critical role in predicting the prognosis of CRC prognosis undergoing chemotherapy.
Collapse
Affiliation(s)
- Ting Yu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shuai Ben
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Ling Ma
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lu Jiang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Silu Chen
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yu Lin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tao Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Lingjun Zhu, ; Shuwei Li, ; Tao Chen,
| | - Shuwei Li
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- *Correspondence: Lingjun Zhu, ; Shuwei Li, ; Tao Chen,
| | - Lingjun Zhu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Oncology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Lingjun Zhu, ; Shuwei Li, ; Tao Chen,
| |
Collapse
|
43
|
The cross-talk of autophagy and apoptosis in breast carcinoma: implications for novel therapies? Biochem J 2022; 479:1581-1608. [PMID: 35904454 DOI: 10.1042/bcj20210676] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 12/12/2022]
Abstract
Breast cancer is still the most common cancer in women worldwide. Resistance to drugs and recurrence of the disease are two leading causes of failure in treatment. For a more efficient treatment of patients, the development of novel therapeutic regimes is needed. Recent studies indicate that modulation of autophagy in concert with apoptosis induction may provide a promising novel strategy in breast cancer treatment. Apoptosis and autophagy are two tightly regulated distinct cellular processes. To maintain tissue homeostasis abnormal cells are disposed largely by means of apoptosis. Autophagy, however, contributes to tissue homeostasis and cell fitness by scavenging of damaged organelles, lipids, proteins, and DNA. Defects in autophagy promote tumorigenesis, whereas upon tumor formation rapidly proliferating cancer cells may rely on autophagy to survive. Given that evasion of apoptosis is one of the characteristic hallmarks of cancer cells, inhibiting autophagy and promoting apoptosis can negatively influence cancer cell survival and increase cell death. Hence, combination of antiautophagic agents with the enhancement of apoptosis may restore apoptosis and provide a therapeutic advantage against breast cancer. In this review, we discuss the cross-talk of autophagy and apoptosis and the diverse facets of autophagy in breast cancer cells leading to novel models for more effective therapeutic strategies.
Collapse
|
44
|
Gillson J, Abd El-Aziz YS, Leck LYW, Jansson PJ, Pavlakis N, Samra JS, Mittal A, Sahni S. Autophagy: A Key Player in Pancreatic Cancer Progression and a Potential Drug Target. Cancers (Basel) 2022; 14:3528. [PMID: 35884592 PMCID: PMC9315706 DOI: 10.3390/cancers14143528] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 01/18/2023] Open
Abstract
Pancreatic cancer is known to have the lowest survival outcomes among all major cancers, and unfortunately, this has only been marginally improved over last four decades. The innate characteristics of pancreatic cancer include an aggressive and fast-growing nature from powerful driver mutations, a highly defensive tumor microenvironment and the upregulation of advantageous survival pathways such as autophagy. Autophagy involves targeted degradation of proteins and organelles to provide a secondary source of cellular supplies to maintain cell growth. Elevated autophagic activity in pancreatic cancer is recognized as a major survival pathway as it provides a plethora of support for tumors by supplying vital resources, maintaining tumour survival under the stressful microenvironment and promoting other pathways involved in tumour progression and metastasis. The combination of these features is unique to pancreatic cancer and present significant resistance to chemotherapeutic strategies, thus, indicating a need for further investigation into therapies targeting this crucial pathway. This review will outline the autophagy pathway and its regulation, in addition to the genetic landscape and tumor microenvironment that contribute to pancreatic cancer severity. Moreover, this review will also discuss the mechanisms of novel therapeutic strategies that inhibit autophagy and how they could be used to suppress tumor progression.
Collapse
Affiliation(s)
- Josef Gillson
- Faculty of Medicine and Health, University of Sydney, Camperdown, Sydney, NSW 2050, Australia; (J.G.); (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.); (N.P.); (J.S.S.); (A.M.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, St Leonards, Sydney, NSW 2065, Australia
| | - Yomna S. Abd El-Aziz
- Faculty of Medicine and Health, University of Sydney, Camperdown, Sydney, NSW 2050, Australia; (J.G.); (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.); (N.P.); (J.S.S.); (A.M.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, St Leonards, Sydney, NSW 2065, Australia
- Oral Pathology Department, Faculty of Dentistry, Tanta University, Tanta 31527, Egypt
| | - Lionel Y. W. Leck
- Faculty of Medicine and Health, University of Sydney, Camperdown, Sydney, NSW 2050, Australia; (J.G.); (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.); (N.P.); (J.S.S.); (A.M.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, St Leonards, Sydney, NSW 2065, Australia
- Cancer Drug Resistance and Stem Cell Program, University of Sydney, Sydney, NSW 2006, Australia
| | - Patric J. Jansson
- Faculty of Medicine and Health, University of Sydney, Camperdown, Sydney, NSW 2050, Australia; (J.G.); (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.); (N.P.); (J.S.S.); (A.M.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, St Leonards, Sydney, NSW 2065, Australia
- Cancer Drug Resistance and Stem Cell Program, University of Sydney, Sydney, NSW 2006, Australia
| | - Nick Pavlakis
- Faculty of Medicine and Health, University of Sydney, Camperdown, Sydney, NSW 2050, Australia; (J.G.); (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.); (N.P.); (J.S.S.); (A.M.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, St Leonards, Sydney, NSW 2065, Australia
| | - Jaswinder S. Samra
- Faculty of Medicine and Health, University of Sydney, Camperdown, Sydney, NSW 2050, Australia; (J.G.); (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.); (N.P.); (J.S.S.); (A.M.)
- Upper GI Surgical Unit, Royal North Shore Hospital and North Shore Private Hospital, St Leonards, Sydney, NSW 2065, Australia
- Australian Pancreatic Centre, St Leonards, Sydney, NSW 2065, Australia
| | - Anubhav Mittal
- Faculty of Medicine and Health, University of Sydney, Camperdown, Sydney, NSW 2050, Australia; (J.G.); (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.); (N.P.); (J.S.S.); (A.M.)
- Upper GI Surgical Unit, Royal North Shore Hospital and North Shore Private Hospital, St Leonards, Sydney, NSW 2065, Australia
- Australian Pancreatic Centre, St Leonards, Sydney, NSW 2065, Australia
- School of Medicine, University of Notre Dame, Darlinghurst, Sydney, NSW 2010, Australia
| | - Sumit Sahni
- Faculty of Medicine and Health, University of Sydney, Camperdown, Sydney, NSW 2050, Australia; (J.G.); (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.); (N.P.); (J.S.S.); (A.M.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, St Leonards, Sydney, NSW 2065, Australia
- Australian Pancreatic Centre, St Leonards, Sydney, NSW 2065, Australia
| |
Collapse
|
45
|
Han JH, Kim YK, Kim H, Lee J, Oh MJ, Kim SB, Kim M, Kim KH, Yoon HJ, Lee MS, Minna JD, White MA, Kim HS. Snail acetylation by autophagy-derived acetyl-coenzyme A promotes invasion and metastasis of KRAS-LKB1 co-mutated lung cancer cells. CANCER COMMUNICATIONS (LONDON, ENGLAND) 2022; 42:716-749. [PMID: 35838183 PMCID: PMC9395322 DOI: 10.1002/cac2.12332] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/21/2022] [Accepted: 06/26/2022] [Indexed: 11/29/2022]
Abstract
Background Autophagy is elevated in metastatic tumors and is often associated with active epithelial‐to‐mesenchymal transition (EMT). However, the extent to which EMT is dependent on autophagy is largely unknown. This study aimed to identify the mechanisms by which autophagy facilitates EMT. Methods We employed a liquid chromatography‐based metabolomic approach with kirsten rat sarcoma viral oncogene (KRAS) and liver kinase B1 (LKB1) gene co‐mutated (KL) cells that represent an autophagy/EMT‐coactivated invasive lung cancer subtype for the identification of metabolites linked to autophagy‐driven EMT activation. Molecular mechanisms of autophagy‐driven EMT activation were further investigated by quantitative real‐time polymerase chain reaction (qRT‐PCR), Western blotting analysis, immunoprecipitation, immunofluorescence staining, and metabolite assays. The effects of chemical and genetic perturbations on autophagic flux were assessed by two orthogonal approaches: microtubule‐associated protein 1A/1B‐light chain 3 (LC3) turnover analysis by Western blotting and monomeric red fluorescent protein‐green fluorescent protein (mRFP‐GFP)‐LC3 tandem fluorescent protein quenching assay. Transcription factor EB (TFEB) activity was measured by coordinated lysosomal expression and regulation (CLEAR) motif‐driven luciferase reporter assay. Experimental metastasis (tail vein injection) mouse models were used to evaluate the impact of calcium/calmodulin‐dependent protein kinase kinase 2 (CAMKK2) or ATP citrate lyase (ACLY) inhibitors on lung metastasis using IVIS luciferase imaging system. Results We found that autophagy in KL cancer cells increased acetyl‐coenzyme A (acetyl‐CoA), which facilitated the acetylation and stabilization of the EMT‐inducing transcription factor Snail. The autophagy/acetyl‐CoA/acetyl‐Snail axis was further validated in tumor tissues and in autophagy‐activated pancreatic cancer cells. TFEB acetylation in KL cancer cells sustained pro‐metastatic autophagy in a mammalian target of rapamycin complex 1 (mTORC1)‐independent manner. Pharmacological inhibition of this axis via CAMKK2 inhibitors or ACLY inhibitors consistently reduced the metastatic capacity of KL cancer cells in vivo. Conclusions This study demonstrates that autophagy‐derived acetyl‐CoA promotes Snail acetylation and thereby facilitates invasion and metastasis of KRAS‐LKB1 co‐mutated lung cancer cells and that inhibition of the autophagy/acetyl‐CoA/acetyl‐Snail axis using CAMKK2 or ACLY inhibitors could be a potential therapeutic strategy to suppress metastasis of KL lung cancer.
Collapse
Affiliation(s)
- Jang Hee Han
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, Korea.,Department of Medical Science, Yonsei University Graduate School, Seoul, 03722, Korea.,Department of Urology, Seoul National University Hospital, Seoul, 03722, Korea
| | - Yong Keon Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, Korea.,Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Hakhyun Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, Korea.,Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Jooyoung Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, Korea.,Checkmate Therapeutics Inc., Seoul, 07207, Korea
| | - Myung Joon Oh
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, Korea.,Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Sang Bum Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Minjee Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, Korea.,Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Kook Hwan Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Hyun Ju Yoon
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, Korea.,Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Myung-Shik Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - John D Minna
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
| | - Michael A White
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
| | - Hyun Seok Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, Korea.,Checkmate Therapeutics Inc., Seoul, 07207, Korea.,Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Korea
| |
Collapse
|
46
|
Shi YX, Sun ZW, Jia DL, Wang HB. Autophagy deficiency promotes lung metastasis of prostate cancer via stabilization of TWIST1. Clin Transl Oncol 2022; 24:1403-1412. [PMID: 35133601 DOI: 10.1007/s12094-022-02786-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/20/2022] [Indexed: 10/19/2022]
Abstract
PURPOSE The role of autophagy in prostate cancer metastasis remains controversial, and the effects of the autophagy-related gene ATG5 on prostate cancer metastasis are poorly understood. This study aims to explore the effects of ATG5 on prostate cancer metastasis and its molecular mechanism. METHODS The metastatic characteristics of LNCaP and DU145 cells were assessed by NOD/SCID mouse experiments, western blot, transwell assay, and wound-healing assay. Double membrane autophagic vesicle observation and the adenovirus-expressing mCherry-GFP-LC3B fusion protein were used to assess the autophagic characteristics of LNCaP and DU145 cells. The role of p62 in the accumulation of TWIST1 was confirmed by western blot under different conditions. The lentivirus particles of shATG5, NOD/SCID mice experiments, western blot, transwell assay, and wound-healing assay were used to confirm the role of ATG5 in TWIST1 accumulation and prostate cancer cell metastasis. RESULTS We identified a stabilizing effect of p62 on TWIST1 in the autophagic regulation of EMT and prostate cancer metastasis. The loss of ATG5 in DU145 cells resulted in autophagy deficiency and p62 accumulation, which stabilized TWIST1 and increased the TWIST1 level in prostate cancer cells, and eventually promoted EMT and metastasis. In comparison, LNCaP cells with regular ATG5 expression and autophagy status retained remarkable epithelial cell characteristics and had limited metastatic characteristics. Similar results were also found in wild-type LNCaP cells and LNCaP cells with stable ATG5 interference. CONCLUSIONS Our research revealed ATG5-mediated autophagy as a key mechanism that controls the metastasis of prostate cancer by regulating p62 abundance and TWIST1 stabilization.
Collapse
Affiliation(s)
- Y X Shi
- Department of Orthopaedics, Affiliated Hospital of Jining Medical University, No. 129 Hehua Road, Jining, Shandong, China.,Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, No. 89 Guhuai Road, Jining, Shandong, China
| | - Z W Sun
- Institute of Life Sciences, Chongqing Medical University, No. 1 Yixue Yuan Road, Chongqing, China
| | - D L Jia
- Department of Orthopaedics, Affiliated Hospital of Jining Medical University, No. 129 Hehua Road, Jining, Shandong, China.,Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, No. 89 Guhuai Road, Jining, Shandong, China
| | - H B Wang
- Department of Orthopaedics, Affiliated Hospital of Jining Medical University, No. 129 Hehua Road, Jining, Shandong, China. .,Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, No. 89 Guhuai Road, Jining, Shandong, China.
| |
Collapse
|
47
|
Wang L, Shi J, Liu S, Huang Y, Ding H, Zhao B, Liu Y, Wang W, Yang J, Chen Z. RAC3 Inhibition Induces Autophagy to Impair Metastasis in Bladder Cancer Cells via the PI3K/AKT/mTOR Pathway. Front Oncol 2022; 12:915240. [PMID: 35847878 PMCID: PMC9279623 DOI: 10.3389/fonc.2022.915240] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Background Bladder cancer (BCa) is one of the most frequent malignant tumors globally, with a significant morbidity and mortality rate. Gene expression dysregulation has been proven to play a critical role in tumorigenesis. Ras-related C3 botulinum toxin substrate3 (RAC3), which is overexpressed in several malignancies and promotes tumor progression, has been identified as an oncogene. However, RAC3 has important but not fully understood biological functions in cancer. Our research aims to reveal the new functions and potential mechanisms of RAC3 involved in BCa progression. Methods We explored the expression level of RAC3 and its relationship with prognosis by publicly accessible BCa datasets, while the correlation of RAC3 expression with clinicopathological variables of patients was analyzed. In vitro and in vivo proliferation, migration, autophagy, and other phenotypic changes were examined by constructing knockdown(KD)/overexpression(OE) RAC3 cells and their association with PI3K/AKT/mTOR pathway was explored by adding autophagy-related compounds. Results Compared with non-tumor samples, RAC3 was highly expressed in BCa and negatively correlated with prognosis. KD/OE RAC3 inhibited/promoted the proliferation and migration of BCa cells. Knockdown RAC3 caused cell cycle arrest and decreased adhesion without affecting apoptosis. Inhibition of RAC3 activates PI3K/AKT/mTOR mediated autophagy and inhibits proliferation and migration of BCa cells in vivo and in vitro. Autophagy inhibitor 3MA can partially rescue the metastasis and proliferation inhibition effect caused by RAC3 inhibition. Inhibit/activate mTOR enhanced/impaired autophagy, resulting in shRAC3-mediated migration defect exacerbated/rescued. Conclusion RAC3 is highly expressed in BCa. It is associated with advanced clinicopathological variables and poor prognosis. Knockdown RAC3 exerts an antitumor effect by enhancing PI3K/AKT/mTOR mediated autophagy. Targeting RAC3 and autophagy simultaneously is a potential therapeutic strategy for inhibiting BCa progression and prolonging survival.
Collapse
Affiliation(s)
- Liwei Wang
- Urology Institute of People’s Liberation Army, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Unit 32357 of People’s Liberation Army, Pujiang, China
| | - Jiazhong Shi
- Department of Cell Biology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Sha Liu
- Department of Cell Biology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yaqin Huang
- Department of Cell Biology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hua Ding
- Urology Institute of People’s Liberation Army, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Baixiong Zhao
- Urology Institute of People’s Liberation Army, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yuting Liu
- Urology Institute of People’s Liberation Army, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Wuxing Wang
- Urology Institute of People’s Liberation Army, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jin Yang
- Department of Cell Biology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhiwen Chen
- Urology Institute of People’s Liberation Army, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
48
|
Qin S, Li B, Ming H, Nice EC, Zou B, Huang C. Harnessing redox signaling to overcome therapeutic-resistant cancer dormancy. Biochim Biophys Acta Rev Cancer 2022; 1877:188749. [PMID: 35716972 DOI: 10.1016/j.bbcan.2022.188749] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 02/07/2023]
Abstract
Dormancy occurs when cells preserve viability but stop proliferating, which is considered an important cause of tumor relapse, which may occur many years after clinical remission. Since the life cycle of dormant cancer cells is affected by both intracellular and extracellular factors, gene mutation or epigenetic regulation of tumor cells may not fully explain the mechanisms involved. Recent studies have indicated that redox signaling regulates the formation, maintenance, and reactivation of dormant cancer cells by modulating intracellular signaling pathways and the extracellular environment, which provides a molecular explanation for the life cycle of dormant tumor cells. Indeed, redox signaling regulates the onset of dormancy by balancing the intrinsic pathways, the extrinsic environment, and the response to therapy. In addition, redox signaling sustains dormancy by managing stress homeostasis, maintaining stemness and immunogenic equilibrium. However, studies on dormancy reactivation are still limited, partly explained by redox-mediated activation of lipid metabolism and the transition from the tumor microenvironment to inflammation. Encouragingly, several drug combination strategies based on redox biology are currently under clinical evaluation. Continuing to gain an in-depth understanding of redox regulation and develop specific methods targeting redox modification holds the promise to accelerate the development of strategies to treat dormant tumors and benefit cancer patients.
Collapse
Affiliation(s)
- Siyuan Qin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China
| | - Bowen Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China
| | - Hui Ming
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Bingwen Zou
- Department of Thoracic Oncology and Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China.
| |
Collapse
|
49
|
Zhu Y, Liao X, Han T, Chen JY, He C, Lu Z. Symbiodiniaceae microRNAs and their targeting sites in coral holobionts: A transcriptomics-based exploration. Genomics 2022; 114:110404. [PMID: 35714829 DOI: 10.1016/j.ygeno.2022.110404] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/30/2022] [Accepted: 06/09/2022] [Indexed: 01/23/2023]
Abstract
Corals should make excellent models for cross-kingdom research because of their natural animal-photobiont holobiont composition, yet a lack of studies and experimental data restricts their use. Here we integrate new full-length transcriptomes and small RNAs of four common reef-building corals with the published Cladocopium genomes to gain deeper insight into gene regulation in coral-Symbiodiniaceae holobionts. Eleven novel Symbiodiniaceae miRNAs get identified, and enrichment results of their target genes show that they might play a role in downregulating rejection from host coral cells, protecting symbiont from autophagy and apoptosis in parallel. This work provides evidence for the early origin of cross-kingdom regulation as a mechanism of self-defense autotrophs can use against heterotrophs, sheds more light on coral-Symbiodiniaceae holobionts, and contributes valuable data for further coral research.
Collapse
Affiliation(s)
- Yunchi Zhu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu, China
| | - Xin Liao
- Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Mangrove Research Center, Beihai, Guangxi, China
| | - Tingyu Han
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu, China
| | - J-Y Chen
- Nanjing Institute of Paleontology and Geology, Nanjing, China
| | - Chunpeng He
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu, China.
| | - Zuhong Lu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
50
|
Arif A, Khawar MB, Mehmood R, Abbasi MH, Sheikh N. Dichotomous role of autophagy in cancer. ASIAN BIOMED 2022; 16:111-120. [PMID: 37551378 PMCID: PMC10321184 DOI: 10.2478/abm-2022-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Autophagy is an evolutionary conserved catabolic process that plays physiological and pathological roles in a cell. Its effect on cellular metabolism, the proteome, and the number and quality of organelles, diversely holds the potential to alter cellular functions. It acts paradoxically in cancer as a tumor inhibitor as well as a tumor promoter. In the early stage of tumorigenesis, it prevents tumor initiation by the so-called "quality control mechanism" and suppresses cancer progression. For late-staged tumors that are exposed to stress, it acts as a vibrant process of degradation and recycling that promotes cancer by facilitating metastasis. Despite this dichotomy, the crucial role of autophagy is evident in cancer, and associated with mammalian targets of rapamycin (mTOR), p53, and Ras-derived major cancer networks. Irrespective of the controversy regarding autophagic manipulation, promotion and suppression of autophagy act as potential therapeutic targets in cancer treatment and may provide various anticancer therapies.
Collapse
Affiliation(s)
- Amin Arif
- Institute of Zoology, University of the Punjab, Lahore54000, Pakistan
| | - Muhammad Babar Khawar
- Institute of Zoology, University of the Punjab, Lahore54000, Pakistan
- Department of Zoology, University of Narowal, Narowal51750, Pakistan
| | - Rabia Mehmood
- Institute of Zoology, University of the Punjab, Lahore54000, Pakistan
| | - Muddasir Hassan Abbasi
- Institute of Zoology, University of the Punjab, Lahore54000, Pakistan
- Department of Zoology, University of Okara, Okara56130, Pakistan
| | - Nadeem Sheikh
- Institute of Zoology, University of the Punjab, Lahore54000, Pakistan
| |
Collapse
|