1
|
Mercola BM, Villalobos TV, Wood JE, Basu A, Johnson AE. Increased expression of the small lysosomal gene SVIP in the Drosophila gut suppresses pathophysiological features associated with a high-fat diet. Biol Open 2025; 14:BIO061601. [PMID: 39882732 DOI: 10.1242/bio.061601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 01/09/2025] [Indexed: 01/31/2025] Open
Abstract
Lysosomes are digestive organelles that are crucial for nutrient sensing and metabolism. Lysosome impairment is linked to a broad spectrum of metabolic disorders, underscoring their importance to human health. Thus, lysosomes are an attractive target for metabolic disease therapies. In previous work, we discovered a novel class of tubular lysosomes that are morphologically and functionally distinct from traditionally described vesicular lysosomes. Tubular lysosomes are present in multiple tissues, are broadly conserved from invertebrates to mammals, are more proficient at degrading autophagic cargo than vesicular lysosomes, and delay signs of tissue aging when induced ectopically. Thus, triggering tubular lysosome formation presents one mechanism to increase lysosome activity and, notably, overproduction of the small lysosomal protein, SVIP, is a robust genetic strategy for triggering lysosomal tubulation on demand. In this study, we examine whether SVIP overexpression in the fly gut can suppress pathophysiological phenotypes associated with an obesogenic high-fat diet. Indeed, our results indicate that increasing SVIP expression in the fly gut reduces lipid accumulation, suppresses body mass increase, and improves survival in flies fed a high-fat diet. Collectively, these data hint that increasing lysosomal activity through induction of tubular lysosomal networks, could be one strategy to combat obesity-related pathologies.
Collapse
Affiliation(s)
- Brennan M Mercola
- Louisiana State University, Department of Biological Sciences, Baton Rouge, LA 70803, USA
| | - Tatiana V Villalobos
- Louisiana State University, Department of Biological Sciences, Baton Rouge, LA 70803, USA
| | - Jocelyn E Wood
- Louisiana State University, Department of Biological Sciences, Baton Rouge, LA 70803, USA
| | - Ankita Basu
- Louisiana State University, Department of Biological Sciences, Baton Rouge, LA 70803, USA
| | - Alyssa E Johnson
- Louisiana State University, Department of Biological Sciences, Baton Rouge, LA 70803, USA
| |
Collapse
|
2
|
Jin S, Li Y, Xia T, Liu Y, Zhang S, Hu H, Chang Q, Yan M. Mechanisms and therapeutic implications of selective autophagy in nonalcoholic fatty liver disease. J Adv Res 2025; 67:317-329. [PMID: 38295876 PMCID: PMC11725165 DOI: 10.1016/j.jare.2024.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease worldwide, whereas there is no approved drug therapy due to its complexity. Studies are emerging to discuss the role of selective autophagy in the pathogenesis of NAFLD, because the specificity among the features of selective autophagy makes it a crucial process in mitigating hepatocyte damage caused by aberrant accumulation of dysfunctional organelles, for which no other pathway can compensate. AIM OF REVIEW This review aims to summarize the types, functions, and dynamics of selective autophagy that are of particular importance in the initiation and progression of NAFLD. And on this basis, the review outlines the therapeutic strategies against NAFLD, in particular the medications and potential natural products that can modulate selective autophagy in the pathogenesis of this disease. KEY SCIENTIFIC CONCEPTS OF REVIEW The critical roles of lipophagy and mitophagy in the pathogenesis of NAFLD are well established, while reticulophagy and pexophagy are still being identified in this disease due to the insufficient understanding of their molecular details. As gradual blockage of autophagic flux reveals the complexity of NAFLD, studies unraveling the underlying mechanisms have made it possible to successfully treat NAFLD with multiple pharmacological compounds that target associated pathways. Overall, it is convinced that the continued research into selective autophagy occurring in NAFLD will further enhance the understanding of the pathogenesis and uncover novel therapeutic targets.
Collapse
Affiliation(s)
- Suwei Jin
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Yujia Li
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Tianji Xia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Yongguang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Shanshan Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Hongbo Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, China.
| | - Qi Chang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, China.
| | - Mingzhu Yan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, China.
| |
Collapse
|
3
|
Bonet-Ponce L, Kluss JH, Cookson MR. Mechanisms of lysosomal tubulation and sorting driven by LRRK2. Biochem Soc Trans 2024; 52:1909-1919. [PMID: 39083004 PMCID: PMC11668303 DOI: 10.1042/bst20240087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 08/29/2024]
Abstract
Lysosomes are dynamic cellular structures that adaptively remodel their membrane in response to stimuli, including membrane damage. Lysosomal dysfunction plays a central role in the pathobiology of Parkinson's disease (PD). Gain-of-function mutations in Leucine-rich repeat kinase 2 (LRRK2) cause familial PD and genetic variations in its locus increase the risk of developing the sporadic form of the disease. We previously uncovered a process we term LYTL (LYsosomal Tubulation/sorting driven by LRRK2), wherein membrane-damaged lysosomes generate tubules sorted into mobile vesicles. Subsequently, these vesicles interact with healthy lysosomes. LYTL is orchestrated by LRRK2 kinase activity, via the recruitment and phosphorylation of a subset of RAB GTPases. Here, we summarize the current understanding of LYTL and its regulation, as well as the unknown aspects of this process.
Collapse
Affiliation(s)
- Luis Bonet-Ponce
- Department of Neurology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, U.S.A
| | | | - Mark R. Cookson
- Cell Biology and Gene Expression Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, U.S.A
| |
Collapse
|
4
|
Johnson A, Ricaurte-Perez C, Wall P, Dubuisson O, Bohnert K. DAF-16/FOXO and HLH-30/TFEB comprise a cooperative regulatory axis controlling tubular lysosome induction in C. elegans. RESEARCH SQUARE 2024:rs.3.rs-4049366. [PMID: 38585786 PMCID: PMC10996798 DOI: 10.21203/rs.3.rs-4049366/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Although life expectancy has increased, longer lifespans do not always align with prolonged healthspans and, as a result, the occurrence of age-related degenerative diseases continues to increase. Thus, biomedical research has been shifting focus to strategies that enhance both lifespan and healthspan concurrently. Two major transcription factors that have been heavily studied in the context of aging and longevity are DAF-16/FOXO and HLH-30/TFEB; however, how these two factors coordinate to promote longevity is still not fully understood. In this study, we reveal a new facet of their cooperation that supports healthier aging in C. elegans. Namely, we demonstrate that the combinatorial effect of daf-16 and hlh-30 is required to trigger robust lysosomal tubulation, which contributes to systemic health benefits in late age by enhancing cross-tissue proteostasis mechanisms. Remarkably, this change in lysosomal morphology can be artificially induced via overexpression of SVIP, a previously characterized tubular lysosome stimulator, even when one of the key transcription factors, DAF-16, is absent. This adds to growing evidence that SVIP could be utilized to employ tubular lysosome activity in adverse conditions or disease states. Mechanistically, intestinal overexpression of SVIP leads to nuclear accumulation of HLH-30 in gut and non-gut tissues and triggers global gene expression changes that promotes systemic health benefits. Collectively, our work reveals a new cellular process that is under the control of DAF-16 and HLH-30 and provides further insight into how these two transcription factors may be exerting their pro-health effects.
Collapse
Affiliation(s)
| | | | - P Wall
- Louisiana State University System
| | | | | |
Collapse
|
5
|
Anjum F, Kaushik K, Salam A, Yadav A, Nandi CK. Super-Resolution Microscopy Unveils Synergistic Structural Changes of Organelles Upon Point Mutation. Adv Biol (Weinh) 2024; 8:e2300399. [PMID: 38053236 DOI: 10.1002/adbi.202300399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/02/2023] [Indexed: 12/07/2023]
Abstract
Ethyl methanesulphonate (EMS), is a widely used chemical mutagen that causes high-frequency germline null mutation by inserting an alkyl group into the nucleotide guanine in eukaryotic cells. The effect of EMS on the dynamics of the aneuploid genome, increased cellular instability, and carcinogenicity in relation to benign and malignant tumors are reported, but the molecular level understanding of morphological changes of higher-order chromatin structure has poorly been understood. This is due to a lack of sufficient resolution in conventional microscopic techniques to see small structures below the diffraction limit. Here, using super-resolution radial fluctuation, a largely fragmented, decompaction, and less dense heterochromatin structure upon EMS treatment to HEK 293A cells without any change in nuclear DNA domains is observed. This result suggests an early stage of carcinogenicity happened due to the point mutation. In addition, the distinct structural changes with an elongated morphology of lysosomes are also observed. On the other hand, fragmented and increased heterogeneous populations with an increased cytoplasmic occupancy of mitochondria are observed.
Collapse
Affiliation(s)
- Farhan Anjum
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India
| | - Kush Kaushik
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India
| | - Abdul Salam
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India
| | - Aditya Yadav
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India
| | - Chayan Kanti Nandi
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India
| |
Collapse
|
6
|
Flora Y, Bohnert KA. SPIN-4/Spinster supports sperm activation in C. elegans via sphingosine-1-phosphate transport. Dev Biol 2023; 504:137-148. [PMID: 37805103 DOI: 10.1016/j.ydbio.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/17/2023] [Accepted: 09/28/2023] [Indexed: 10/09/2023]
Abstract
Spermiogenesis, a sperm-activation step, is crucial for the transformation of immotile spermatids into motile sperm. Though membrane transport of ions and molecules across the sperm plasma membrane has been implicated in this process, the full repertoire of transporters involved, and their respective substrates, is unclear. Here, we report that the major facilitator superfamily transporter SPIN-4/Spinster governs efficient spermiogenesis and fertility in the hermaphrodite nematode Caenorhabditis elegans. Unlike other C. elegans Spinster paralogs, SPIN-4 is germline-expressed. Moreover, SPIN-4 expression is gamete-specific; it is strongly expressed in developing sperm, where it localizes to the plasma membrane, but it is absent from oocytes. Consistent with these expression data, we demonstrate that knocking out spin-4 impairs sperm development, leading to the formation of non-motile sperm that lack pseudopodia. Consequently, hermaphrodites homozygous for the spin-4(knu1099) knockout allele show extensive sperm wasting and reduced self-progeny. We observe similar defects when we genetically inhibit production of sphingosine-1-phosphate, a lipid molecule that stimulates cell motility when exported extracellularly by Spinster homologs in other contexts. Remarkably, extracellular supplementation with sphingosine-1-phosphate rescues sperm activation and motility in the absence of SPIN-4, suggesting that Spinster-dependent efflux of sphingosine-1-phosphate plays a key role in sperm mobilization. These findings identify a new signaling mechanism in C. elegans spermiogenesis entailing Spinster and sphingosine-1-phosphate.
Collapse
Affiliation(s)
- Yash Flora
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA, 70803, USA
| | - K Adam Bohnert
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
7
|
Florin F, Bonneau B, Briseño-Roa L, Bessereau JL, Jospin M. Calcineurin-Dependent Homeostatic Response of C. elegans Muscle Cells upon Prolonged Activation of Acetylcholine Receptors. Cells 2023; 12:2201. [PMID: 37681933 PMCID: PMC10486475 DOI: 10.3390/cells12172201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023] Open
Abstract
Pharmacological adaptation is a common phenomenon observed during prolonged drug exposure and often leads to drug resistance. Understanding the cellular events involved in adaptation could provide new strategies to circumvent this resistance issue. We used the nematode Caenorhabditis elegans to analyze the adaptation to levamisole, an ionotropic acetylcholine receptor agonist, used for decades to treat nematode parasitic infections. Genetic screens in C. elegans identified "adapting mutants" that initially paralyze upon exposure to levamisole as the wild type (WT), but recover locomotion after a few hours whereas WT remain paralyzed. Here, we show that levamisole induces a sustained increase in cytosolic calcium concentration in the muscle cells of adapting mutants, lasting several hours and preceding a decrease in levamisole-sensitive acetylcholine receptors (L-AChR) at the muscle plasma membrane. This decrease correlated with a drop in calcium concentration, a relaxation of the animal's body and a resumption of locomotion. The decrease in calcium and L-AChR content depends on calcineurin activation in muscle cells. We also showed that levamisole adaptation triggers homeostatic mechanisms in muscle cells including mitochondria remodeling, lysosomal tubulation and an increase in autophagic activity. Levamisole adaptation thus provides a new experimental paradigm for studying how cells cope with calcium stress.
Collapse
Affiliation(s)
- Franklin Florin
- Institut NeuroMyoGène, CNRS UMR-5284, INSERM U-1314, MeLiS, Université Lyon, Université Claude Bernard Lyon 1, F-69008 Lyon, France (B.B.); (J.-L.B.)
| | - Benjamin Bonneau
- Institut NeuroMyoGène, CNRS UMR-5284, INSERM U-1314, MeLiS, Université Lyon, Université Claude Bernard Lyon 1, F-69008 Lyon, France (B.B.); (J.-L.B.)
- Institut Curie, CNRS UMR3347, INSERM U1021, Université Paris-Saclay, F-91405 Orsay, France
| | - Luis Briseño-Roa
- Institut NeuroMyoGène, CNRS UMR-5284, INSERM U-1314, MeLiS, Université Lyon, Université Claude Bernard Lyon 1, F-69008 Lyon, France (B.B.); (J.-L.B.)
- Medetia Pharmaceuticals, Institut Imagine, F-75015 Paris, France
| | - Jean-Louis Bessereau
- Institut NeuroMyoGène, CNRS UMR-5284, INSERM U-1314, MeLiS, Université Lyon, Université Claude Bernard Lyon 1, F-69008 Lyon, France (B.B.); (J.-L.B.)
| | - Maëlle Jospin
- Institut NeuroMyoGène, CNRS UMR-5284, INSERM U-1314, MeLiS, Université Lyon, Université Claude Bernard Lyon 1, F-69008 Lyon, France (B.B.); (J.-L.B.)
| |
Collapse
|
8
|
Villalobos TV, Ghosh B, DeLeo KR, Alam S, Ricaurte-Perez C, Wang A, Mercola BM, Butsch TJ, Ramos CD, Das S, Eymard ED, Bohnert KA, Johnson AE. Tubular lysosome induction couples animal starvation to healthy aging. NATURE AGING 2023; 3:1091-1106. [PMID: 37580394 PMCID: PMC10501908 DOI: 10.1038/s43587-023-00470-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 07/17/2023] [Indexed: 08/16/2023]
Abstract
Dietary restriction promotes longevity in several species via autophagy activation. However, changes to lysosomes underlying this effect remain unclear. Here using the nematode Caenorhabditis elegans, we show that the induction of autophagic tubular lysosomes (TLs), which occurs upon dietary restriction or mechanistic target of rapamycin inhibition, is a critical event linking reduced food intake to lifespan extension. We find that starvation induces TLs not only in affected individuals but also in well-fed descendants, and the presence of gut TLs in well-fed progeny is predictive of enhanced lifespan. Furthermore, we demonstrate that expression of Drosophila small VCP-interacting protein, a TL activator in flies, artificially induces TLs in well-fed worms and improves C. elegans health in old age. These findings identify TLs as a new class of lysosomes that couples starvation to healthy aging.
Collapse
Affiliation(s)
- Tatiana V Villalobos
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Bhaswati Ghosh
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Kathryn R DeLeo
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Sanaa Alam
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | | | - Andrew Wang
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Brennan M Mercola
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Tyler J Butsch
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Cara D Ramos
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Suman Das
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Eric D Eymard
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - K Adam Bohnert
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA.
| | - Alyssa E Johnson
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
9
|
Vintila AR, Slade L, Cooke M, Willis CRG, Torregrossa R, Rahman M, Anupom T, Vanapalli SA, Gaffney CJ, Gharahdaghi N, Szabo C, Szewczyk NJ, Whiteman M, Etheridge T. Mitochondrial sulfide promotes life span and health span through distinct mechanisms in developing versus adult treated Caenorhabditis elegans. Proc Natl Acad Sci U S A 2023; 120:e2216141120. [PMID: 37523525 PMCID: PMC10410709 DOI: 10.1073/pnas.2216141120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 05/30/2023] [Indexed: 08/02/2023] Open
Abstract
Living longer without simultaneously extending years spent in good health ("health span") is an increasing societal burden, demanding new therapeutic strategies. Hydrogen sulfide (H2S) can correct disease-related mitochondrial metabolic deficiencies, and supraphysiological H2S concentrations can pro health span. However, the efficacy and mechanisms of mitochondrion-targeted sulfide delivery molecules (mtH2S) administered across the adult life course are unknown. Using a Caenorhabditis elegans aging model, we compared untargeted H2S (NaGYY4137, 100 µM and 100 nM) and mtH2S (AP39, 100 nM) donor effects on life span, neuromuscular health span, and mitochondrial integrity. H2S donors were administered from birth or in young/middle-aged animals (day 0, 2, or 4 postadulthood). RNAi pharmacogenetic interventions and transcriptomics/network analysis explored molecular events governing mtH2S donor-mediated health span. Developmentally administered mtH2S (100 nM) improved life/health span vs. equivalent untargeted H2S doses. mtH2S preserved aging mitochondrial structure, content (citrate synthase activity) and neuromuscular strength. Knockdown of H2S metabolism enzymes and FoxO/daf-16 prevented the positive health span effects of mtH2S, whereas DCAF11/wdr-23 - Nrf2/skn-1 oxidative stress protection pathways were dispensable. Health span, but not life span, increased with all adult-onset mtH2S treatments. Adult mtH2S treatment also rejuvenated aging transcriptomes by minimizing expression declines of mitochondria and cytoskeletal components, and peroxisome metabolism hub components, under mechanistic control by the elt-6/elt-3 transcription factor circuit. H2S health span extension likely acts at the mitochondrial level, the mechanisms of which dissociate from life span across adult vs. developmental treatment timings. The small mtH2S doses required for health span extension, combined with efficacy in adult animals, suggest mtH2S is a potential healthy aging therapeutic.
Collapse
Affiliation(s)
- Adriana Raluca Vintila
- Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, ExeterEX1 2LU, United Kingdom
| | - Luke Slade
- Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, ExeterEX1 2LU, United Kingdom
- University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, ExeterEX1 2LU, United Kingdom
| | - Michael Cooke
- Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, ExeterEX1 2LU, United Kingdom
- Medical Research Council Versus Arthritis Centre for Musculoskeletal Ageing Research, Nottingham Biomedical Research Center, School of Medicine, Royal Derby Hospital, University of Nottingham, DerbyDE22 3DT, United Kingdom
| | - Craig R. G. Willis
- School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, BradfordBD7 1DP, United Kingdom
| | - Roberta Torregrossa
- University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, ExeterEX1 2LU, United Kingdom
| | - Mizanur Rahman
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX79409
| | - Taslim Anupom
- Department of Electrical Engineering, Texas Tech University, Lubbock, TX74909
| | - Siva A. Vanapalli
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX79409
| | - Christopher J. Gaffney
- Lancaster University Medical School, Lancaster University, LancasterLA1 4YW, United Kingdom
| | - Nima Gharahdaghi
- University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, ExeterEX1 2LU, United Kingdom
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, FribourgCH-1700, Switzerland
| | - Nathaniel J. Szewczyk
- Medical Research Council Versus Arthritis Centre for Musculoskeletal Ageing Research, Nottingham Biomedical Research Center, School of Medicine, Royal Derby Hospital, University of Nottingham, DerbyDE22 3DT, United Kingdom
- Ohio Musculoskeletal and Neurologic Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH45701
| | - Matthew Whiteman
- University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, ExeterEX1 2LU, United Kingdom
| | - Timothy Etheridge
- Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, ExeterEX1 2LU, United Kingdom
| |
Collapse
|
10
|
Deb R, Nagotu S. The nexus between peroxisome abundance and chronological ageing in Saccharomyces cerevisiae. Biogerontology 2023; 24:81-97. [PMID: 36209442 DOI: 10.1007/s10522-022-09992-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/23/2022] [Indexed: 01/20/2023]
Abstract
Ageing is characterized by changes in several cellular processes, with dysregulation of peroxisome function being one of them. Interestingly, the most conserved function of peroxisomes, ROS homeostasis, is strongly associated with ageing and age-associated pathologies. Previous studies have identified a role for peroxisomes in the regulation of chronological lifespan in yeast. In this study, we report the effect of altered peroxisome number on the chronological lifespan of yeast in two different growth media conditions. Three mutants, pex11, pex25 and pex27, defective in peroxisome fission, have been thoroughly investigated for the chronological lifespan. Reduced chronological lifespan of all the mutants was observed in peroxisome-inducing growth conditions. Furthermore, the combined deletion pex11pex25 exhibited the most prominent reduction in lifespan. Interestingly altered peroxisomal phenotype upon ageing was observed in all the cells. Increased ROS accumulation and reduced catalase activity was exhibited by chronologically aged mutant cells. Interestingly, mutants with reduced number of peroxisomes concomitantly also exhibited an accumulation of free fatty acids and increased number of lipid droplets. Taken together, our results reveal a previously unrealized effect of fission proteins in the chronological lifespan of yeast.
Collapse
Affiliation(s)
- Rachayeeta Deb
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Shirisha Nagotu
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
11
|
Antimicrobial peptides with cell-penetrating activity as prophylactic and treatment drugs. Biosci Rep 2022; 42:231731. [PMID: 36052730 PMCID: PMC9508529 DOI: 10.1042/bsr20221789] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 01/18/2023] Open
Abstract
Health is fundamental for the development of individuals and evolution of species. In that sense, for human societies is relevant to understand how the human body has developed molecular strategies to maintain health. In the present review, we summarize diverse evidence that support the role of peptides in this endeavor. Of particular interest to the present review are antimicrobial peptides (AMP) and cell-penetrating peptides (CPP). Different experimental evidence indicates that AMP/CPP are able to regulate autophagy, which in turn regulates the immune system response. AMP also assists in the establishment of the microbiota, which in turn is critical for different behavioral and health aspects of humans. Thus, AMP and CPP are multifunctional peptides that regulate two aspects of our bodies that are fundamental to our health: autophagy and microbiota. While it is now clear the multifunctional nature of these peptides, we are still in the early stages of the development of computational strategies aimed to assist experimentalists in identifying selective multifunctional AMP/CPP to control nonhealthy conditions. For instance, both AMP and CPP are computationally characterized as amphipatic and cationic, yet none of these features are relevant to differentiate these peptides from non-AMP or non-CPP. The present review aims to highlight current knowledge that may facilitate the development of AMP’s design tools for preventing or treating illness.
Collapse
|
12
|
Ramos CD, Bohnert KA, Johnson AE. Reproductive tradeoffs govern sexually dimorphic tubular lysosome induction in Caenorhabditis elegans. J Exp Biol 2022; 225:jeb244282. [PMID: 35620964 PMCID: PMC9250795 DOI: 10.1242/jeb.244282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/23/2022] [Indexed: 11/20/2022]
Abstract
Sex-specific differences in animal behavior commonly reflect unique reproductive interests. In the nematode Caenorhabditis elegans, hermaphrodites can reproduce without a mate and thus prioritize feeding to satisfy the high energetic costs of reproduction. However, males, which must mate to reproduce, sacrifice feeding to prioritize mate-searching behavior. Here, we demonstrate that these behavioral differences influence sexual dimorphism at the organelle level; young males raised on a rich food source show constitutive induction of gut tubular lysosomes, a non-canonical lysosome morphology that forms in the gut of hermaphrodites when food is limited or as animals age. We found that constitutive induction of gut tubular lysosomes in males results from self-imposed dietary restriction through DAF-7/TGFβ, which promotes exploratory behavior. In contrast, age-dependent induction of gut tubular lysosomes in hermaphrodites is stimulated by self-fertilization activity. Thus, separate reproductive tradeoffs influence tubular lysosome induction in each sex, potentially supporting different requirements for reproductive success.
Collapse
Affiliation(s)
| | - K. Adam Bohnert
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Alyssa E. Johnson
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
13
|
Bohnert KA, Johnson AE. Branching Off: New Insight Into Lysosomes as Tubular Organelles. Front Cell Dev Biol 2022; 10:863922. [PMID: 35646899 PMCID: PMC9130654 DOI: 10.3389/fcell.2022.863922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/25/2022] [Indexed: 12/13/2022] Open
Abstract
Lysosomes are acidic, membrane-bound organelles that play essential roles in cellular quality control, metabolism, and signaling. The lysosomes of a cell are commonly depicted as vesicular organelles. Yet, lysosomes in fact show a high degree of ultrastructural heterogeneity. In some biological contexts, lysosome membranes naturally transform into tubular, non-vesicular morphologies. Though the purpose and regulation of tubular lysosomes has been historically understudied, emerging evidence suggests that tubular lysosomes may carry out unique activities, both degradative and non-degradative, that are critical to cell behavior, function, and viability. Here, we discuss recent advances in understanding the biological significance of tubular lysosomes in cellular physiology, and we highlight a growing number of examples that indicate the centrality of this special class of lysosomes to health and disease.
Collapse
Affiliation(s)
- K. Adam Bohnert
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Alyssa E. Johnson
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
14
|
Johnson MA, Klickstein JA, Khanna R, Gou Y, Raman M. The Cure VCP Scientific Conference 2021: Molecular and clinical insights into neurodegeneration and myopathy linked to multisystem proteinopathy-1 (MSP-1). Neurobiol Dis 2022; 169:105722. [PMID: 35405261 PMCID: PMC9169230 DOI: 10.1016/j.nbd.2022.105722] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/08/2022] [Accepted: 04/05/2022] [Indexed: 12/17/2022] Open
Abstract
The 2021 VCP Scientific Conference took place virtually from September 9–10, 2021. This conference, planned and organized by the nonprofit patient advocacy group Cure VCP Disease, Inc. (https://www.curevcp.org), was the first VCP focused meeting since the 215th ENMC International Workshop VCP-related multi-system proteinopathy in 2016 (Evangelista et al., 2016). Mutations in VCP cause a complex and heterogenous disease termed inclusion body myopathy (IBM) with Paget’s disease of the bone (PDB) and frontotemporal dementia (FTD) (IBMPFD), or multisystem proteinopathy 1 (MSP-1) Kimonis (n.d.), Kovach et al. (2001), Kimonis et al. (2000). In addition, VCP mutations also cause other age-related neurodegenerative disorders including amyptrophic lateral sclerosis (ALS), Parkinsonism, Charcot-Marie type II-B, vacuolar tauopathy among others (Korb et al., 2022). The objectives of this conference were as follows: (1) to provide a forum that facilitates sharing of published and unpublished information on physiological roles of p97/VCP, and on how mutations of VCP lead to diseases; (2) to bolster understanding of mechanisms involved in p97/VCP-relevant diseases and to enable identification of therapeutics to treat these conditions; (3) to identify gaps and barriers of further discoveries and translational research in the p97/VCP field; (4) to set a concrete basic and translational research agenda for future studies including crucial discussions on biomarker discoveries and patient longitudinal studies to facilitate near-term clinical trials; (5) to accelerate cross-disciplinary research collaborations among p97/VCP researchers; (6) to enable attendees to learn about new tools and reagents with the potential to facilitate p97/VCP research; (7) to assist trainees in propelling their research and to foster mentorship from leaders in the field; and (8) to promote diversity and inclusion of under-represented minorities in p97/VCP research as diversity is critically important for strong scientific research. Given the range of topics, the VCP Scientific Conference brought together over one hundred and forty individuals representing a diverse group of research scientists, trainees, medical practitioners, industry representatives, and patient advocates. Twenty-five institutions with individuals from thirteen countries attended this virtual meeting. In this report, we summarize the major topics presented at this conference by a range of experts.
Collapse
Affiliation(s)
- Michelle A Johnson
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, United States of America
| | - Jacob A Klickstein
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, United States of America
| | - Richa Khanna
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, United States of America
| | - Yunzi Gou
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, United States of America
| | - Malavika Raman
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, United States of America.
| |
Collapse
|