1
|
Dafsari HS, Martinelli D, Saffari A, Ebrahimi-Fakhari D, Fanto M, Dionisi-Vici C, Jungbluth H. An update on autophagy disorders. J Inherit Metab Dis 2025; 48:e12798. [PMID: 39420677 DOI: 10.1002/jimd.12798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 10/19/2024]
Abstract
Macroautophagy is a highly conserved cellular pathway for the degradation and recycling of defective cargo including proteins, organelles, and macromolecular complexes. As autophagy is particularly relevant for cellular homeostasis in post-mitotic tissues, congenital disorders of autophagy, due to monogenic defects in key autophagy genes, share a common "clinical signature" including neurodevelopmental, neurodegenerative, and neuromuscular features, as well as variable abnormalities of the eyes, skin, heart, bones, immune cells, and other organ systems, depending on the expression pattern and the specific function of the defective proteins. Since the clinical and genetic resolution of EPG5-related Vici syndrome, the paradigmatic congenital disorder of autophagy, the widespread use of massively parallel sequencing has resulted in the identification of a growing number of autophagy-associated disease genes, encoding members of the core autophagy machinery as well as related proteins. Recently identified monogenic disorders linking selective autophagy, vesicular trafficking, and other pathways have further expanded the molecular and phenotypical spectrum of congenital disorders of autophagy as a clinical disease spectrum. Moreover, significant advances in basic research have enhanced the understanding of the underlying pathophysiology as a basis for therapy development. Here, we review (i) autophagy in the context of other intracellular trafficking pathways; (ii) the main congenital disorders of autophagy and their typical clinico-pathological signatures; and (iii) the recommended primary health surveillance in monogenic disorders of autophagy based on available evidence. We further discuss recently identified molecular mechanisms that inform the current understanding of autophagy in health and disease, as well as perspectives on future therapeutic approaches.
Collapse
Affiliation(s)
- Hormos Salimi Dafsari
- Department of Pediatrics and Center for Rare Diseases, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Max-Planck-Institute for Biology of Ageing; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Cologne, Germany
| | - Diego Martinelli
- Division of Metabolic Diseases, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Afshin Saffari
- Division of Child Neurology and Inherited Metabolic Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Darius Ebrahimi-Fakhari
- Department of Neurology and F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Manolis Fanto
- Department of Basic & Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Carlo Dionisi-Vici
- Division of Metabolic Diseases, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Heinz Jungbluth
- Department of Paediatric Neurology, Neuromuscular Service, Evelina London Children's Hospital, Guy's and St Thomas' Hospital NHS Foundation Trust, London, UK
- Randall Centre for Cell and Molecular Biophysics, Muscle Signaling Section, Faculty of Life Sciences and Medicine (FoLSM), King's College London, London, UK
| |
Collapse
|
2
|
Tang X, Lin S, Luo H, Wang L, Zhong J, Xiong J, Lv H, Zhou F, Wan Z, Cao K. ATG9A as a potential diagnostic marker of intervertebral disc degeneration: Inferences from experiments and bioinformatics analysis incorporating sc-RNA-seq data. Gene 2024; 897:148084. [PMID: 38104954 DOI: 10.1016/j.gene.2023.148084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/02/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Disfunctional autophagy plays a pivotal role in Intervertebral Disc Degeneration (IDD) progression. however, the connection between Autophagy-related gene 9A (ATG9A) and IDD has not been reported. METHODS Firstly, transcriptome datasets from the GEO and Autophagy-related genes (ARGs) from GeneCards were carried out using R. Following this, IDD-specific signature genes were identified through methods such as least absolute shrinkage and selection operator (LASSO), random forest (RF), and support vector machine (SVM) analyses. Validation of these findings proceeded through in vitro experiments, evaluation of independent datasets, and analysis of receiver operating characteristic (ROC) curves. Subsequent steps incorporated co-expression analysis, Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, Gene Set Enrichment Analysis (GSEA), and construction of competing endogenous RNA (ceRNA) network. The final section established the correlation between immune cell infiltration, ATG9A, and IDD utilizing the CIBERSORT algorithm and single-cell RNA (scRNA) sequencing data. RESULTS Research identified 87 differentially expressed genes, with only ATG9A noted as an IDD signature gene. Analysis of in vitro experiments and independent datasets uncovered a decrease in ATG9A expression within the degeneration group. The area under the curve (AUC) of ATG9A exceeded 0.8 following ROC analysis. Furthermore, immune cell infiltration and scRNA sequencing data analysis elucidated the substantial role of immune cells in IDD progression. A ceRNA network was constructed, centered around ATG9A, included 4 miRNAs and 22 lncRNAs. CONCLUSION ATG9A was identified as a diagnostic gene for IDD, indicating its viability as a effective target for therapy disease.
Collapse
Affiliation(s)
- Xiaokai Tang
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Sijian Lin
- The Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Hao Luo
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Lixia Wang
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Junlong Zhong
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Jiachao Xiong
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Hao Lv
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Faxin Zhou
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Zongmiao Wan
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Kai Cao
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China.
| |
Collapse
|
3
|
Hentrich L, Parnes M, Lotze TE, Coorg R, de Koning TJ, Nguyen KM, Yip CK, Jungbluth H, Koy A, Dafsari HS. Novel Genetic and Phenotypic Expansion in GOSR2-Related Progressive Myoclonus Epilepsy. Genes (Basel) 2023; 14:1860. [PMID: 37895210 PMCID: PMC10606070 DOI: 10.3390/genes14101860] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
Biallelic variants in the Golgi SNAP receptor complex member 2 gene (GOSR2) have been reported in progressive myoclonus epilepsy with neurodegeneration. Typical clinical features include ataxia and areflexia during early childhood, followed by seizures, scoliosis, dysarthria, and myoclonus. Here, we report two novel patients from unrelated families with a GOSR2-related disorder and novel genetic and clinical findings. The first patient, a male compound heterozygous for the GOSR2 splice site variant c.336+1G>A and the novel c.364G>A,p.Glu122Lys missense variant showed global developmental delay and seizures at the age of 2 years, followed by myoclonus at the age of 8 years with partial response to clonazepam. The second patient, a female homozygous for the GOSR2 founder variant p.Gly144Trp, showed only mild fine motor developmental delay and generalized tonic-clonic seizures triggered by infections during adolescence, with seizure remission on levetiracetam. The associated movement disorder progressed atypically slowly during adolescence compared to its usual speed, from initial intention tremor and myoclonus to ataxia, hyporeflexia, dysmetria, and dystonia. These findings expand the genotype-phenotype spectrum of GOSR2-related disorders and suggest that GOSR2 should be included in the consideration of monogenetic causes of dystonia, global developmental delay, and seizures.
Collapse
Affiliation(s)
- Lea Hentrich
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (L.H.)
- Max-Planck-Institute for Biology of Ageing, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), 50931 Cologne, Germany
| | - Mered Parnes
- Division of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; (M.P.); (T.E.L.)
| | - Timothy Edward Lotze
- Division of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; (M.P.); (T.E.L.)
| | - Rohini Coorg
- Division of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; (M.P.); (T.E.L.)
| | - Tom J. de Koning
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
- Pediatrics, Department of Clinical Sciences, Lund University, 221 00 Lund, Sweden
| | - Kha M. Nguyen
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (K.M.N.); (C.K.Y.)
| | - Calvin K. Yip
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (K.M.N.); (C.K.Y.)
| | - Heinz Jungbluth
- Department of Paediatric Neurology, Evelina’s Children Hospital, Guy’s & St. Thomas’ Hospital NHS Foundation Trust, London SE1 7EH, UK
- Randall Division of Cell and Molecular Biophysics, Muscle Signaling Section, King’s College London, London WC2R 2LS, UK
| | - Anne Koy
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (L.H.)
- Center for Rare Diseases, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Hormos Salimi Dafsari
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (L.H.)
- Max-Planck-Institute for Biology of Ageing, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), 50931 Cologne, Germany
- Department of Paediatric Neurology, Evelina’s Children Hospital, Guy’s & St. Thomas’ Hospital NHS Foundation Trust, London SE1 7EH, UK
- Randall Division of Cell and Molecular Biophysics, Muscle Signaling Section, King’s College London, London WC2R 2LS, UK
- Center for Rare Diseases, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| |
Collapse
|