1
|
Li Y, He X, Li S, Chen S, Zhao Z, Mu Y, Zhao AZ, Zhou S, Li F. The phosphodiesterase-4 inhibitor Zl-n-91 suppresses glioblastoma growth via EGR1/PTEN/AKT pathway. Eur J Pharmacol 2025; 988:177230. [PMID: 39732358 DOI: 10.1016/j.ejphar.2024.177230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/13/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
Glioblastoma multiforme (GBM) is a highly heterogeneous and aggressive brain tumor, which presents significant challenges for treatment in clinical settings. Phosphodiesterase 4 (PDE4) inhibitors can prevent the degradation of cAMP and have been used as a potential targeted therapeutic approach for different cancer types. However, their clinical use is restricted by side effects such as nausea and vomiting. Herein, we investigated the efficacy and therapeutic mechanisms of a specific PDE4 inhibitor, Zl-n-91, on GBM cells. The results demonstrated that Zl-n-91 exhibited greater effectiveness than the well-known PDE4 inhibitor Rolipram in treating GBM. It can notably suppress the proliferation of GBM cells by inducing G0/G1 phase arrest and apoptosis. Additionally, Zl-n-91 significantly inhibited the growth of subcutaneous glioma xenografts. Mechanistically, Zl-n-91 treatment increased the expression and nuclear transcription of Early growth response (EGR1), while knockdown of EGR1 could decrease PTEN levels and increase p-AKT levels, restoring the inhibition of cell proliferation induced by Zl-n-91. Collectively, we revealed for the first time that PDE4 inhibitor Zl-n-91 could inhibit the growth of GBM cells through the EGR1/PTEN/AKT signaling pathway. Zl-n-91, a specific PDE4 inhibitor, may be a promising therapeutic candidate for GBM.
Collapse
Affiliation(s)
- Yuyu Li
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Xin He
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Shiri Li
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Shenjie Chen
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Zhenggang Zhao
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Yunping Mu
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Allan Z Zhao
- Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Southern Medical University, Foshan, 528308, PR China
| | - Sujin Zhou
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Fanghong Li
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
2
|
Sun Y, Zhu G, Zhao R, Li Y, Li H, Liu Y, Jin N, Li X, Li Y, Liu T. Deapioplatycodin D inhibits glioblastoma cell proliferation by inducing BNIP3L-mediated incomplete mitophagy. Cancer Cell Int 2025; 25:11. [PMID: 39800710 PMCID: PMC11726947 DOI: 10.1186/s12935-025-03636-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
Deapioplatycodin D (DPD) is a triterpenoid saponin natural compound isolated from the Chinese herb Platycodon grandiflorum that has antiviral and antitumor properties. This study aimed to investigate the effects of DPD on glioblastoma (GBM) cells and to determine its intrinsic mechanism of action. Using a CCK8 assay, it was found that DPD significantly inhibited the growth of GBM cells. DPD-treated GBM cells contained swollen and degenerated mitochondria with empty vesicular bilayer membrane-like autophagic vesicle structures in the periphery of the mitochondria under transmission electron microscopy. DPD activated autophagy in GBM cells and induced a blockage of autophagic flux in the late stage. Transcriptomics identified differences in mitophagy-related genes, and analysis of the levels of the corresponding proteins indicated that mitophagy in GBM cells was induced mainly through BNIP3L. Increased expression of BNIP3L disrupts the Bcl-2-Beclin-1 complex, thereby releasing Beclin-1 and activating autophagy. Autophagy was inhibited after silencing of BNIP3L and overexpression of Bcl-2 in GBM cells, and the growth inhibitory effect of DPD was significantly reduced. This result demonstrated that DPD induces mitophagy in GBM cells through BNIP3L. Finally, activation of incomplete mitophagy in GBM cells by DPD through BNIP3L in vivo was demonstrated by establishing a mouse subcutaneous xenograft tumor model. In this study, in vitro and in vivo experiments established that DPD inhibited GBM cell growth by inducing BNIP3L-mediated incomplete mitophagy, which provides an experimental basis for studying new treatments of GBM.
Collapse
Affiliation(s)
- Yu Sun
- Department of Blood Transfusion, China-Japan, Union Hospital of Jilin University, Changchun, 130033, P.R. China
- Department of Neurology, Jilin Central Hospital, Jilin, 132011, P.R. China
| | - Guangze Zhu
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, 130117, P.R. China
| | - Renshuang Zhao
- Medical College, Yanbian University, Yanji, 133002, P.R. China
| | - Yaru Li
- Medical College, Yanbian University, Yanji, 133002, P.R. China
| | - Hongyang Li
- Department of Blood Transfusion, China-Japan, Union Hospital of Jilin University, Changchun, 130033, P.R. China
| | - Yunyun Liu
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, 130117, P.R. China
| | - Ningyi Jin
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, 130117, P.R. China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, P.R. China
| | - Xiao Li
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, 130117, P.R. China.
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, P.R. China.
| | - Yiquan Li
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, 130117, P.R. China.
| | - Tiemei Liu
- Department of Blood Transfusion, China-Japan, Union Hospital of Jilin University, Changchun, 130033, P.R. China.
- Jingyue Economic & Technological Development Zone, No. 1035, Boshuo road, Changchun, Jilin, P. R. China.
| |
Collapse
|
3
|
Zhang J, Zhang J, Yang C. Autophagy in brain tumors: molecular mechanisms, challenges, and therapeutic opportunities. J Transl Med 2025; 23:52. [PMID: 39806481 PMCID: PMC11727735 DOI: 10.1186/s12967-024-06063-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 12/27/2024] [Indexed: 01/16/2025] Open
Abstract
Autophagy is responsible for maintaining cellular balance and ensuring survival. Autophagy plays a crucial role in the development of diseases, particularly human cancers, with actions that can either promote survival or induce cell death. However, brain tumors contribute to high levels of both mortality and morbidity globally, with resistance to treatments being acquired due to genetic mutations and dysregulation of molecular mechanisms, among other factors. Hence, having knowledge of the role of molecular processes in the advancement of brain tumors is enlightening, and the current review specifically examines the role of autophagy. The discussion would focus on the molecular pathways that control autophagy in brain tumors, and its dual role as a tumor suppressor and a supporter of tumor survival. Autophagy can control the advancement of different types of brain tumors like glioblastoma, glioma, and ependymoma, demonstrating its potential for treatment. Autophagy mechanisms can influence metastasis and drug resistance in glioblastoma, and there is a complex interplay between autophagy and cellular responses to stress like hypoxia and starvation. Autophagy can inhibit the growth of brain tumors by promoting apoptosis. Hence, focusing on autophagy could offer fresh perspectives on creating successful treatments.
Collapse
Affiliation(s)
- Jiarui Zhang
- Department of Pathology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jinan Zhang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, No. 569 Xinsi Road, Xi'an, China.
| | - Chen Yang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, No. 569 Xinsi Road, Xi'an, China.
| |
Collapse
|
4
|
Peng YC, He ZJ, Yin LC, Pi HF, Jiang Y, Li KY, Tian L, Xie J, Zhang JB, Li CY, Feng GY, Wang K, Zhou DZ, Xie XW, Zhang ZY, Fan TF. Sanguinarine suppresses oral squamous cell carcinoma progression by targeting the PKM2/TFEB aix to inhibit autophagic flux. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156337. [PMID: 39729782 DOI: 10.1016/j.phymed.2024.156337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/25/2024] [Accepted: 12/17/2024] [Indexed: 12/29/2024]
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is one of the most common malignancies. However, there is no effective treatment for OSCC. PURPOSE This study aimed to identify a natural compound with significant efficacy against OSCC and elucidate its primary mechanism of action. METHODS An FDA-approved drug library and an MCE autophagy-related molecular compound library were screened through high-throughput screening to identify an effective natural compound against OSCC. The IC50 value of sanguinarine (Sang) in OSCC cells was determined using a CCK8 assay. Immunoblotting and immunofluorescence staining were used to assess the effect of Sang on autophagic flux in OSCC cells. Changes in the acidic lysosomal environment were evaluated using RFP-GFP-LC3B and LysoSensor Green DND-189. Furthermore, limited proteolysis-coupled mass spectrometry (LiP-MS) and virtual screening techniques were utilized to identify direct binding targets of Sang, which were subsequently validated by surface plasmon resonance (SPR) and microscale thermophoresis (MST). Molecular docking combined with molecular dynamics analysis identified the binding site between the target protein and Sang. In vitro and in vivo investigations with mutant plasmids confirmed this finding. RESULTS Screening led to the identification of the naturally occurring autophagy modulator Sang as a potent inhibitor of OSCC progression. Moreover, Sang impaired lysosomal function through reducing lysosomal-associated membrane proteins, inhibiting lysosomal proteolysis, and altering the lysosomal pH. These effects contributed to defects in autophagic clearance and subsequently suppressed OSCC progression. Notably, Sang bound the phenylalanine 26 (F26) residue in pyruvate kinase M2 (PKM2) and inhibited PKM2 enzymatic activity, subsequently suppressing transcription factor EB (TFEB) expression to inhibit lysosomal function and blocking autophagic flux in OSCC cells. CONCLUSION Our results demonstrate for the first time that Sang can suppress the PKM2/TFEB axis, and influence lysosomal function, thereby blocking autophagy and inhibiting the progression of OSCC, making it a promising therapeutic option for the treatment of OSCC.
Collapse
Affiliation(s)
- Yong-Chun Peng
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Zhi-Jing He
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Lun-Cai Yin
- Department of Oncology, Affiliated Dazu Hospital of Chongqing Medical University, Chongqing 402360, China
| | - Hui-Feng Pi
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China. State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing 400038, China
| | - Yi Jiang
- Department of Pathology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Ke-Yan Li
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China
| | - Li Tian
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China. State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing 400038, China
| | - Jia Xie
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China. State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing 400038, China
| | - Jian-Bo Zhang
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Chen-Yao Li
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China
| | - Guan-Ying Feng
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China
| | - Kai Wang
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Ding-Zhou Zhou
- Department of Neurosurgery, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, Hunan 410005, China
| | - Xiao-Wei Xie
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Zhi-Yuan Zhang
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China; Department of Oral and Maxillofacial Surgery, Zhang Zhiyuan Academician Workstation, Hainan Western Central Hospital, Shanghai Ninth People's Hospital, Danzhou, Hainan 571700, China.
| | - Teng-Fei Fan
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China.
| |
Collapse
|
5
|
Niu X, You Q, Hou K, Tian Y, Wei P, Zhu Y, Gao B, Ashrafizadeh M, Aref AR, Kalbasi A, Cañadas I, Sethi G, Tergaonkar V, Wang L, Lin Y, Kang D, Klionsky DJ. Autophagy in cancer development, immune evasion, and drug resistance. Drug Resist Updat 2025; 78:101170. [PMID: 39603146 DOI: 10.1016/j.drup.2024.101170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
Macroautophagy/autophagy is a highly conserved evolutionary mechanism involving lysosomes for the degradation of cytoplasmic components including organelles. The constitutive, basal level of autophagy is fundamental for preserving cellular homeostasis; however, alterations in autophagy can cause disease pathogenesis, including cancer. The role of autophagy in cancer is particularly complicated, since this process acts both as a tumor suppressor in precancerous stages but facilitates tumor progression during carcinogenesis and later stages of cancer progression. This shift between anti-tumor and pro-tumor roles may be influenced by genetic and environmental factors modulating key pathways such as those involving autophagy-related proteins, the PI3K-AKT-MTOR axis, and AMPK, which often show dysregulation in tumors. Autophagy regulates various cellular functions, including metabolism of glucose, glutamine, and lipids, cell proliferation, metastasis, and several types of cell death (apoptosis, ferroptosis, necroptosis and immunogenic cell death). These multifaceted roles demonstrate the potential of autophagy to affect DNA damage repair, cell death pathways, proliferation and survival, which are critical in determining cancer cells' response to chemotherapy. Therefore, targeting autophagy pathways presents a promising strategy to combat chemoresistance, as one of the major reasons for the failure in cancer patient treatment. Furthermore, autophagy modulates immune evasion and the function of immune cells such as T cells and dendritic cells, influencing the tumor microenvironment and cancer's biological behavior. However, the therapeutic targeting of autophagy is complex due to its dual role in promoting survival and inducing cell death in cancer cells, highlighting the need for strategies that consider both the beneficial and detrimental effects of autophagy modulation in cancer therapy. Hence, both inducers and inhibitors of autophagy have been introduced for the treatment of cancer. This review emphasizes the intricate interplay between autophagy, tumor biology, and immune responses, offering insights into potential therapeutic approaches that deploy autophagy in the cancer suppression.
Collapse
Affiliation(s)
- Xuegang Niu
- Department of Neurosurgery, Neurosurgery Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Qi You
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China
| | - Kaijian Hou
- School of Public Health(Long Hu people hospital), Shantou University, Shantou, 515000, Guangdong, China
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, IL 60532, USA
| | - Penghui Wei
- Department of Neurosurgery, Neurosurgery Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Yang Zhu
- Department of Neurosurgery, Neurosurgery Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Bin Gao
- Department of Neurosurgery, Neurosurgery Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Milad Ashrafizadeh
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China
| | - Amir Reza Aref
- VitroVision Department, DeepkinetiX, Inc, Boston, MA, USA
| | - Alireza Kalbasi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Israel Cañadas
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Gautam Sethi
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A⁎STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Lingzhi Wang
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore
| | - Yuanxiang Lin
- Department of Neurosurgery, Neurosurgery Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China.
| | - Dezhi Kang
- Department of Neurosurgery, Neurosurgery Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China.
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
6
|
Shou J, Ma J, Wang X, Li X, Chen S, Kang B, Shaw P. Free Cholesterol-Induced Liver Injury in Non-Alcoholic Fatty Liver Disease: Mechanisms and a Therapeutic Intervention Using Dihydrotanshinone I. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406191. [PMID: 39558866 PMCID: PMC11727260 DOI: 10.1002/advs.202406191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/28/2024] [Indexed: 11/20/2024]
Abstract
Build-up of free cholesterol (FC) substantially contributes to the development and severity of non-alcoholic fatty liver disease (NAFLD). Here, we investigate the specific mechanism by which FC induces liver injury in NAFLD and propose a novel therapeutic approach using dihydrotanshinone I (DhT). Rather than cholesterol ester (CE), we observed elevated levels of total cholesterol, FC, and alanine transaminase (ALT) in NAFLD patients and high-cholesterol diet-induced NAFLD mice compared to those in healthy controls. The FC level demonstrated a positive correlation with the ALT level in both patients and mice. Mechanistic studies revealed that FC elevated reactive oxygen species level, impaired the function of lysosomes, and disrupted lipophagy process, consequently inducing cell apoptosis. We then found that DhT protected mice on an HCD diet, independent of gut microbiota. DhT functioned as a potent ligand for peroxisome proliferator-activated receptor α (PPARα), stimulating its transcriptional function and enhancing catalase expression to lower reactive oxygen species (ROS) level. Notably, the protective effect of DhT was nullified in mice with hepatic PPARα knockdown. Thus, these findings are the first to report the detrimental role of FC in NAFLD, which could lead to the development of new treatment strategies for NAFLD by leveraging the therapeutic potential of DhT and PPARα pathway.
Collapse
Affiliation(s)
- Jia‐Wen Shou
- Li Dak Sum Yip Yio Chin R&D Centre for Chinese MedicineThe Chinese University of Hong KongHong Kong852852China
| | - Juncai Ma
- Centre for Cell and Developmental BiologyState Key Laboratory for AgrobiotechnologySchool of Life SciencesThe Chinese University of Hong KongHong Kong852852China
| | - Xuchu Wang
- Department of Laboratory Medicinethe Second Affiliated Hospital of Zhejiang UniversityHangzhou310000China
| | - Xiao‐Xiao Li
- Li Dak Sum Yip Yio Chin R&D Centre for Chinese MedicineThe Chinese University of Hong KongHong Kong852852China
- Research Center for Chinese Medicine InnovationThe Hong Kong Polytechnic UniversityHong Kong852852China
| | - Shu‐Cheng Chen
- School of NursingThe Hong Kong Polytechnic UniversityHong Kong852852China
| | - Byung‐Ho Kang
- Centre for Cell and Developmental BiologyState Key Laboratory for AgrobiotechnologySchool of Life SciencesThe Chinese University of Hong KongHong Kong852852China
| | - Pang‐Chui Shaw
- Li Dak Sum Yip Yio Chin R&D Centre for Chinese MedicineThe Chinese University of Hong KongHong Kong852852China
- School of Life SciencesThe Chinese University of Hong KongHong Kong852852China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants and Institute of Chinese MedicineThe Chinese University of Hong KongHong Kong852852China
| |
Collapse
|
7
|
Clark C, Barzegar Behrooz A, Cordani M, Shojaei S, Ghavami S. Assessing Autophagy Flux in Glioblastoma Temozolomide Resistant Cells. Methods Mol Biol 2025; 2879:225-238. [PMID: 39331341 DOI: 10.1007/7651_2024_571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Autophagy is a critical cellular process involved in the degradation and recycling of cytoplasmic components, playing a dual role in cancer by either promoting cell survival or facilitating cell death. In glioblastoma (GB), autophagy has been implicated in resistance to the chemotherapeutic agent temozolomide (TMZ). This study presents a novel method to accurately measure autophagy flux in TMZ-resistant glioblastoma cells, combining advanced imaging techniques with biochemical assays. By quantifying key autophagy markers such as LC3-II and SQSTM1, our approach provides detailed insights into the dynamic processes of autophagosome formation and clearance under therapeutic stress. This method advances our understanding of autophagy in GB chemoresistance and has significant implications for the development of autophagy-targeted therapies. The ability to monitor and manipulate autophagy flux in real time offers a promising avenue for monitoring and understanding TMZ resistance and improving patient outcomes in glioblastoma treatment.
Collapse
Affiliation(s)
- Courtney Clark
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Shahla Shojaei
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
- Faculty of Medicine in Zabrze, University of Technology in Katowice, Zabrze, Poland.
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
8
|
Li Y, Li W, Ye Z, Ji C, Zhou Z. Antioxidant, Anti-Inflammatory, and Anticancer Activities of Five Citrus Peel Essential Oils. Antioxidants (Basel) 2024; 13:1562. [PMID: 39765890 PMCID: PMC11672981 DOI: 10.3390/antiox13121562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Citrus peel essential oil (CPEO) is favored by people for its aromatic scent, while also possessing numerous bioactive compounds that are advantageous to human health. This study evaluated the antioxidant, anti-inflammatory, and anticancer activities of CPEOs through cell experiments. The results showed that CPEOs could increase the activity of the antioxidant enzyme system and nonenzymatic defence system in H2O2-treated RAW 264.7 cells by reducing cellular lipid peroxidation. CPEOs also reduced the nitric oxide production induced by lipopolysaccharide treatment in RAW 264.7 cells while decreasing proinflammatory cytokines expression and increasing anti-inflammatory cytokine expression. Wound healing assays, flow cytometry, and quantitative real-time fluorescent quantitative PCR (qRT-PCR) revealed that CPEOs could induce apoptosis in U87 cells through the mitochondrial apoptotic pathway. These findings indicate that CPEOs possess excellent antioxidant, anti-inflammatory, and anticancer activity potential, making them suitable for use in functional antioxidant and anti-inflammatory foods and nutritional health products.
Collapse
Affiliation(s)
- Yurong Li
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei District, Chongqing 400715, China; (Y.L.); (Z.Y.); (C.J.)
| | - Wenji Li
- School of Design, Chongqing Industry Polytechnic College, Chongqing 401120, China;
| | - Zimao Ye
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei District, Chongqing 400715, China; (Y.L.); (Z.Y.); (C.J.)
| | - Chen Ji
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei District, Chongqing 400715, China; (Y.L.); (Z.Y.); (C.J.)
| | - Zhiqin Zhou
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei District, Chongqing 400715, China; (Y.L.); (Z.Y.); (C.J.)
- The Southwest Institute of Fruits Nutrition, Banan District, Chongqing 400054, China
| |
Collapse
|
9
|
Tang Q, Ren T, Bai P, Wang X, Zhao L, Zhong R, Sun G. Novel strategies to overcome chemoresistance in human glioblastoma. Biochem Pharmacol 2024; 230:116588. [PMID: 39461382 DOI: 10.1016/j.bcp.2024.116588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Temozolomide (TMZ) is currently the first-line chemotherapeutic agent for the treatment of glioblastoma multiforme (GBM). However, the inherent heterogeneity of GBM often results in suboptimal outcomes, particularly due to varying degrees of resistance to TMZ. Over the past several decades, O6-methylguanine-DNA methyltransferase (MGMT)-mediated DNA repair pathway has been extensively investigated as a target to overcome TMZ resistance. Nonetheless, the combination of small molecule covalent MGMT inhibitors with TMZ and other chemotherapeutic agents has frequently led to adverse clinical effects. Recently, additional mechanisms contributing to TMZ resistance have been identified, including epidermal growth factor receptor (EGFR) mutations, overactivation of intracellular signalling pathways, energy metabolism reprogramming or survival autophagy, and changes in tumor microenvironment (TME). These findings suggest that novel therapeutic strategies targeting these mechanisms hold promise for overcoming TMZ resistance in GBM patients. In this review, we summarize the latest advancements in understanding the mechanisms underlying intrinsic and acquired TMZ resistance. Additionally, we compile various small-molecule compounds with potential to mitigate chemoresistance in GBM. These mechanism-based compounds may enhance the sensitivity of GBM to TMZ and related chemotherapeutic agents, thereby improving overall survival rates in clinical practice.
Collapse
Affiliation(s)
- Qing Tang
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Ting Ren
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Peiying Bai
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Xin Wang
- Department of Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100029, China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
10
|
Li X, Hu J, Zhao Q, Yao W, Jing Z, Jin Z. Towards precision medicine: design considerations for nanozymes in tumor treatment. J Transl Med 2024; 22:1033. [PMID: 39550581 PMCID: PMC11568558 DOI: 10.1186/s12967-024-05845-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/31/2024] [Indexed: 11/18/2024] Open
Abstract
Since the discovery of Fe3O4 nanoparticles with enzyme-like activity in 2007, nanozymes have emerged as a promising class of catalysts, offering advantages such as high catalytic efficiency, low cost, mild reaction conditions, and excellent stability. These properties make nanozymes highly suitable for large-scale production. In recent years, the convergence of nanomedicine and nanocatalysis has highlighted the potential of nanozymes in diagnostic and therapeutic applications, particularly in tumor therapy. Despite these advancements, the clinical translation of nanozymes remains hindered by the lack of designs tailored to specific tumor characteristics, limiting their effectiveness in targeted therapy. This review addresses the mechanisms by which nanozymes induce cell death in various tumor types and emphasizes the key design considerations needed to enhance their therapeutic potential. By identifying the challenges and opportunities in the field, this study aims to provide a foundation for future nanozyme development, ultimately contributing to more precise and effective cancer treatments.
Collapse
Affiliation(s)
- Xinqiao Li
- Department of Neurosurgery, The First Hospital of China Medical University, Nanjing Street 155, Heping district, Shenyang, 110001, People's Republic of China
| | - Jinpeng Hu
- Department of Neurosurgery, The First Hospital of China Medical University, Nanjing Street 155, Heping district, Shenyang, 110001, People's Republic of China
| | - Qi Zhao
- Department of Chemistry and the Institute for Sustainability and Energy, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3113, USA.
| | - Weifeng Yao
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental & Chemical Engineering, Shanghai University of Electric Power, Shanghai, People's Republic of China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, People's Republic of China.
- Shanghai Engineering Research Center of Heat-Exchange System and Energy Saving, Shanghai University of Electric Power, Shanghai, People's Republic of China.
| | - Zhitao Jing
- Department of Neurosurgery, The First Hospital of China Medical University, Nanjing Street 155, Heping district, Shenyang, 110001, People's Republic of China.
| | - Zhizhong Jin
- Department of Neurosurgery, The First Hospital of China Medical University, Nanjing Street 155, Heping district, Shenyang, 110001, People's Republic of China.
| |
Collapse
|
11
|
Guan Y, Wang C, Li L, Dai X, Liu Y, Hsiang T, Liu S, Wang D. Structural characterization of Hericium coralloides polysaccharide and its neuroprotective function in Alzheimer's disease. Int J Biol Macromol 2024; 277:133865. [PMID: 39019356 DOI: 10.1016/j.ijbiomac.2024.133865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/21/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disorder. Polysaccharides have been scientifically demonstrated to possess neuroprotective properties. In this study, a polysaccharide was isolated from the fruiting bodies of Hericium coralloides using hot water extraction and purified using column chromatography. This H. coralloides polysaccharide (HCP) is a galactan with a main chain of →6)-α-d-Galp-(1 → and a molecular weight of 16.06 kDa. The partial α-l-Fucp-(1 → substitution takes place at its O-2 position. The neuroprotective effects of HCP were investigated in an APP/PS1 mouse model of Alzheimer's disease. The step-down and Morris water maze tests demonstrated that HCP effectively ameliorated cognitive impairment. After 8-week treatment, HCP reduced amyloid-β plaques and phosphorylated tau protein deposition. In combination with the gut microbiota and metabolites, proteomic analysis suggested that the neuroprotective effects of HCP are associated with neuroinflammation and autophagy. Immunofluorescence and western blotting analyses confirmed that HCP facilitated the polarization of M2 microglia by augmenting autophagy flux, thereby effectively reducing levels of amyloid-β plaques and neuroinflammation. These data demonstrate that HCP effectively mitigates neuroinflammation by enhancing autophagic flux, demonstrating its potential for the treatment of AD.
Collapse
Affiliation(s)
- Yue Guan
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Chunyue Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Xiaojing Dai
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Yang Liu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Ontario N1G 2W1, Guelph, Canada.
| | - Shuyan Liu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Di Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China; School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
12
|
Zhang L, Wang G, Li Z, Yang J, Li H, Wang W, Li Z, Li H. Molecular pharmacology and therapeutic advances of monoterpene perillyl alcohol. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155826. [PMID: 38897045 DOI: 10.1016/j.phymed.2024.155826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/20/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Perillyl alcohol (POH) is a aroma monoterpene commonly obtained from various plants' essential oil. Recently, increasing researches have demonstrated that POH may be useful, not only as flavor compound, but also as bioactive molecule because of a variety of biological activities. PURPOSE The aim of this review is to summarize the production, pharmacological activities and molecular mechanism, active derivatives, toxicity and parmacokinetics, and industrial application of POH. METHODS A systematic search of published articles up to January 2024 in Web of Science, China Knowledge Network, and PubMed databases is conducted using the following keywords: POH, POH derivatives, biological or pharmacological, production or synthesis, pharmacokinetics, toxicity and application. RESULTS Biotechnological production is considered to be a potential alternative approach to generate POH. POH provides diverse pharmacological benefits, including anticancer, antimicrobial, insecticidal, antioxidant, anti-inflammatory, hypotensive, vasorelaxant, antinociceptive, antiasthmatic, hepatoprotective effects, etc. The underlying mechanisms of action include modulation of NF-κB, JNK/c-Jun, Notch, Akt/mTOR, PI3K/Akt/eNOS, STAT3, Nrf2 and ERS response pathways, mitigation of mitochondrial dysfunction and membrane integrity damage, and inhibition of ROS accumulation, pro-inflammatory cytokines release and NLRP3 activation. What's more, the proteins or genes influenced by POH against diseases refer to Bax, Bcl-2, cyclin D1, CDK, p21, p53, HIF-1α, AP-1, caspase-3, M6P/IGF2R, PARP, VEGF, etc. Some clinical studies report that intranasal delivery of POH is a safe and effective treatment for cancer, but further clinical investigations are needed to confirm other health benefits of POH in human healthy. Depending on these health-promoting properties together with desirable flavor and safety, POH can be employed as dietary supplement, preservative and flavor additive in food and cosmetic fields, as building block in synthesis fields, as anticancer drug in medicinal fields, and as pesticides and herbicides in agricultural fields. CONCLUSION This review systematically summarizes the recent advances in POH and highlights its therapeutic effects and potential mechanisms as well as the clinical settings, which is helpful to develop POH into functional food and new candidate drug for prevention and management of diseases. Future studies are needed to conduct more biological activity studies of POH and its derivatives, and check their clinical efficacy and potential side effects.
Collapse
Affiliation(s)
- Lulu Zhang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China; Henan Province Wheat-flour Staple Food Engineering Technology Research Centre, Zhengzhou, Henan 450001, PR China.
| | - Guoguo Wang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China; Henan Province Wheat-flour Staple Food Engineering Technology Research Centre, Zhengzhou, Henan 450001, PR China
| | - Zehao Li
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China; Henan Province Wheat-flour Staple Food Engineering Technology Research Centre, Zhengzhou, Henan 450001, PR China
| | - Jinchu Yang
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, Henan 450000, PR China.
| | - Haoliang Li
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, Henan 450000, PR China
| | - Wanying Wang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China; Henan Province Wheat-flour Staple Food Engineering Technology Research Centre, Zhengzhou, Henan 450001, PR China
| | - Zhijian Li
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China; Henan Province Wheat-flour Staple Food Engineering Technology Research Centre, Zhengzhou, Henan 450001, PR China
| | - Hua Li
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China; Henan Province Wheat-flour Staple Food Engineering Technology Research Centre, Zhengzhou, Henan 450001, PR China.
| |
Collapse
|
13
|
Yin HT, Hui-Lu, Yang JH, Li Q, Li M, Zhao QQ, Wen ZP. Daurisoline suppress glioma progression by inhibiting autophagy through PI3K/AKT/mTOR pathway and increases TMZ sensitivity. Biochem Pharmacol 2024; 223:116113. [PMID: 38460907 DOI: 10.1016/j.bcp.2024.116113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/26/2024] [Accepted: 03/05/2024] [Indexed: 03/11/2024]
Abstract
Glioma is one of the most common primary malignant tumors of the central nervous system. Temozolomide (TMZ) is the only effective chemotherapeutic agent, but it easily develops resistance and has unsatisfactory efficacy. Consequently, there is an urgent need to develop safe and effective compounds for glioma treatment. The cytotoxicity of 30 candidate compounds to glioma cells was detected by the CCK-8 assay. Daurisoline (DAS) was selected for further investigation due to its potent anti-glioma effects. Our study revealed that DAS induced glioma cell apoptosis through increasing caspase-3/6/9 activity. DAS significantly inhibited the proliferation of glioma cells by inducing G1-phase cell cycle arrest. Meanwhile, DAS remarkably suppressed the migration and invasion of glioma cells by regulating epithelial-mesenchymal transition. Mechanistically, our results revealed that DAS impaired the autophagic flux of glioma cells at a late stage by mediating the PI3K/AKT/mTOR pathway. DAS could inhibit TMZ-induced autophagy and then significantly promote TMZ chemosensitivity. Nude mice xenograft model revealed that DAS could restrain glioma proliferation and promote TMZ chemosensitivity. Thus, DAS is a potential anti-glioma drug that can improve glioma sensitivity to TMZ and provide a new therapeutic strategy for glioma in chemoresistance.
Collapse
Affiliation(s)
- Hai-Tang Yin
- Department of Pharmacy, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, PR China; College of Pharmacy, Guizhou Medical University, Guiyang, Guizhou Province, PR China
| | - Hui-Lu
- Department of Pharmacy, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, PR China; College of Pharmacy, Guizhou Medical University, Guiyang, Guizhou Province, PR China
| | - Ji-Hong Yang
- Department of Pharmacy, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, PR China; College of Pharmacy, Guizhou Medical University, Guiyang, Guizhou Province, PR China.
| | - Qin Li
- Centre of Clinical Trials, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, PR China
| | - Ming Li
- Department of Pharmacy, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, PR China; College of Pharmacy, Guizhou Medical University, Guiyang, Guizhou Province, PR China.
| | - Qing-Qing Zhao
- Clinical Research Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, PR China
| | - Zhi-Peng Wen
- Department of Pharmacy, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, PR China; College of Pharmacy, Guizhou Medical University, Guiyang, Guizhou Province, PR China.
| |
Collapse
|
14
|
Kaina B. Temozolomide, Procarbazine and Nitrosoureas in the Therapy of Malignant Gliomas: Update of Mechanisms, Drug Resistance and Therapeutic Implications. J Clin Med 2023; 12:7442. [PMID: 38068493 PMCID: PMC10707404 DOI: 10.3390/jcm12237442] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2024] Open
Abstract
The genotoxic methylating agents temozolomide (TMZ) and procarbazine and the chloroethylating nitrosourea lomustine (CCNU) are part of the standard repertoire in the therapy of malignant gliomas (CNS WHO grade 3 and 4). This review describes the mechanisms of their cytotoxicity and cytostatic activity through apoptosis, necroptosis, drug-induced senescence, and autophagy, interaction of critical damage with radiation-induced lesions, mechanisms of glioblastoma resistance to alkylating agents, including the alkyltransferase MGMT, mismatch repair, DNA double-strand break repair and DNA damage responses, as well as IDH-1 and PARP-1. Cyclin-dependent kinase inhibitors such as regorafenib, synthetic lethality using PARP inhibitors, and alternative therapies including tumor-treating fields (TTF) and CUSP9v3 are discussed in the context of alkylating drug therapy and overcoming glioblastoma chemoresistance. Recent studies have revealed that senescence is the main trait induced by TMZ in glioblastoma cells, exhibiting hereupon the senescence-associated secretory phenotype (SASP). Strategies to eradicate therapy-induced senescence by means of senolytics as well as attenuating SASP by senomorphics are receiving increasing attention, with therapeutic implications to be discussed.
Collapse
Affiliation(s)
- Bernd Kaina
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| |
Collapse
|