1
|
Pankowska E, Kończak O, Żakowicz P, Wojciechowicz T, Gogulski M, Radko L. Protective Action of Cannabidiol on Tiamulin Toxicity in Humans-In Vitro Study. Int J Mol Sci 2024; 25:13542. [PMID: 39769305 PMCID: PMC11676896 DOI: 10.3390/ijms252413542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
The growing awareness and need to protect public health, including food safety, require a thorough study of the mechanism of action of veterinary drugs in consumers to reduce their negative impact on humans. Inappropriate use of veterinary drugs in animal husbandry, such as tiamulin, leads to the appearance of residues in edible animal tissues. The use of natural substances of plant origin, extracted from hemp (Cannabis sativa L.), such as cannabidiol (CBD), is one of the solutions to minimize the negative effects of tiamulin. This study aimed to determine the effect of CBD on the cytotoxicity of tiamulin in humans. The cytotoxic activity of tiamulin and the effect of its mixtures with CBD were tested after 72 h exposure to three human cell lines: SH-SY5Y, HepG2 and HEK-293. Cytotoxic concentrations (IC50) of the tested drug and in combination with CBD were assessed using five biochemical endpoints: mitochondrial and lysosomal activity, proliferation, cell membrane integrity and effects on DNA synthesis. Oxidative stress, cell death and cellular morphology were also assessed. The nature of the interaction between the veterinary drug and CBD was assessed using the combination index. The long-term effect of tiamulin inhibited lysosomal (SH-SY5SY) and mitochondrial (HepG2) activity and DNA synthesis (HEK-293). IC50 values for tiamulin ranged from 2.1 to >200 µg/mL (SH-SY5SY), 13.9 to 39.5 µg/mL (HepG2) and 8.5 to 76.9 µg/mL (HEK-293). IC50 values for the drug/CBD mixtures were higher. Reduced levels of oxidative stress, apoptosis and changes in cell morphology were demonstrated after exposure to the mixtures. Interactions between the veterinary drug and CBD showed a concentration-dependent nature of tiamulin in cell culture, ranging from antagonistic (low concentrations) to synergistic effects at high drug concentrations. The increased risk to human health associated with the presence of the veterinary drug in food products and the protective nature of CBD use underline the importance of these studies in food toxicology and require further investigation.
Collapse
Affiliation(s)
- Eryka Pankowska
- Students Scientific Society of Veterinary Medicine, Section of Veterinary Pharmacology and Toxicology “Paracelsus”, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, 60-637 Poznan, Poland; (E.P.); (O.K.); (P.Ż.)
| | - Oliwia Kończak
- Students Scientific Society of Veterinary Medicine, Section of Veterinary Pharmacology and Toxicology “Paracelsus”, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, 60-637 Poznan, Poland; (E.P.); (O.K.); (P.Ż.)
| | - Paula Żakowicz
- Students Scientific Society of Veterinary Medicine, Section of Veterinary Pharmacology and Toxicology “Paracelsus”, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, 60-637 Poznan, Poland; (E.P.); (O.K.); (P.Ż.)
| | - Tatiana Wojciechowicz
- Department of Animal Physiology, Biochemistry and Biostructure, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, 60-637 Poznan, Poland;
| | - Maciej Gogulski
- Department of Preclinical Sciences and Infectious Diseases, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, 60-637 Poznan, Poland;
| | - Lidia Radko
- Department of Preclinical Sciences and Infectious Diseases, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, 60-637 Poznan, Poland;
| |
Collapse
|
2
|
Zhou J, Zhang X, Qian W, Yang Q, Qi Y, Chen Y, Wang A. Quantum dots‐based fluorescence immunoassay for detection of tiamulin in pork. J Food Saf 2021. [DOI: 10.1111/jfs.12930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jingming Zhou
- School of Life Sciences Zhengzhou University Zhengzhou Henan China
| | - Xiaoli Zhang
- School of Life Sciences Zhengzhou University Zhengzhou Henan China
| | - Wenjing Qian
- School of Life Sciences Zhengzhou University Zhengzhou Henan China
| | - Qingbao Yang
- School of Life Sciences Zhengzhou University Zhengzhou Henan China
| | - Yanhua Qi
- School of Life Sciences Zhengzhou University Zhengzhou Henan China
| | - Yumei Chen
- School of Life Sciences Zhengzhou University Zhengzhou Henan China
| | - Aiping Wang
- School of Life Sciences Zhengzhou University Zhengzhou Henan China
| |
Collapse
|
3
|
You X, Zhang G, Chen Y, Liu D, Ma D, Zhou J, Liu Y, Liu H, Qi Y, Liang C, Ding P, Zhu X, Zhang C, Wang A. A novel electrochemical immunosensor for the sensitive detection of tiamulin based on staphylococcal protein A and silver nanoparticle-graphene oxide nanocomposites. Bioelectrochemistry 2021; 141:107877. [PMID: 34171508 DOI: 10.1016/j.bioelechem.2021.107877] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/29/2021] [Accepted: 06/13/2021] [Indexed: 12/17/2022]
Abstract
Tiamulin (TML) is a pleuromutilin antibiotic and mainly used to treat pulmonary and gastrointestinal infections. However, excessive use of TML can bring health threats to consumers. In this work, a label-free electrochemical immunosensor was proposed for sensitive detection of TML in pork and pork liver. Silver nanoparticles (AgNPs) were synthesized in situ on graphene oxide (GO), in which GO acted as a carrier for loading more AgNPs and AgNPs exhibited both strong conductivity and good redox property. In addition, staphylococcal protein A (SPA) was applied to oriented immobilization of fragment crystallizable (Fc) region of the TML monoclonal antibody. Under the optimal condition, the developed electrochemical immunosensor exhibited a good linear response with a concentration of TML ranging from 0.05 ng mL-1 to 100 ng mL-1 and the limit of detection (LOD) was 0.04 ng mL-1. Furthermore, the designed immunosensor was applied to detect TML in real samples with a good accuracy. Therefore, the label-free electrochemical immunosensor could be used as a potential method to detect TML and other antibiotic residues in animal derived foods.
Collapse
Affiliation(s)
- Xiaojuan You
- School of Life Sciences, Zhengzhou University, Zhengzhou, China; Henan Zhongze Biological Engineering Co. LTD, Zhengzhou, China
| | - Gaiping Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yumei Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, China; Henan Zhongze Biological Engineering Co. LTD, Zhengzhou, China
| | - Dan Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Dongdong Ma
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Jingming Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou, China; Henan Zhongze Biological Engineering Co. LTD, Zhengzhou, China
| | - Yankai Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Hongliang Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yanhua Qi
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Chao Liang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Peiyang Ding
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Xifang Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Chenyang Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Aiping Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China; Henan Zhongze Biological Engineering Co. LTD, Zhengzhou, China.
| |
Collapse
|