1
|
Müller V, Chavez-Capilla T, Feldmann J, Mestrot A. Increasing temperature and flooding enhance arsenic release and biotransformations in Swiss soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156049. [PMID: 35598661 DOI: 10.1016/j.scitotenv.2022.156049] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/25/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Reductive dissolution is one of the main causes for arsenic (As) mobilisation in flooded soils while biomethylation and biovolatilisation are two microbial mechanisms that greatly influence the mobility and toxicity of As. Climate change results in more extreme weather events such as flooding and higher temperatures, potentially leading to an increase in As release and biotransformations. Here, we investigated the effects of flooding and temperature on As release, biomethylation and biovolatilisation from As-rich soils with different pH and source of As (one acidic and anthropogenic (Salanfe) and one neutral and geogenic (Liesberg)). Flooded soils incubated at 23 °C for two weeks showed a ~ 3-fold (Liesberg site) and ~ 7-fold (Salanfe site) increase in the total As concentration of soil solution compared to those incubated at 18 °C. Methyl- and thio-As species were found in the acidic soil and soil solution. High temperatures enhanced thiolation and methylation although inorganic As was predominant. We also show that volatile As fluxes increased more than 4-fold between treatments, from 18 ± 5 ng/kg/d at 18 °C to 75 ± 6 ng/kg/d at 23 °C from Salanfe soil. Our results suggest that high As soils with acidic pH can become an important source of As to the surrounding environment according to realistic climatic scenarios, and that biovolatilisation is very sensitive to increases in temperature. This study provides new data and further justifies further investigations into climate-induced changes on As release and speciation and its links to important factors such as microbial ecology and sulfate or iron biogeochemistry. SYNOPSIS: In the studied Swiss soils, elevated temperature increases arsenic mobility through volatilisation and methylation.
Collapse
Affiliation(s)
- Viktoria Müller
- TESLA - Environmental Analytical Chemistry, Institute of Chemistry, University of Graz, 8010 Graz, Austria
| | - Teresa Chavez-Capilla
- Institute of Geography, University of Bern, Hallerstrasse 12, 3012 Bern, Switzerland
| | - Jörg Feldmann
- TESLA - Environmental Analytical Chemistry, Institute of Chemistry, University of Graz, 8010 Graz, Austria
| | - Adrien Mestrot
- Institute of Geography, University of Bern, Hallerstrasse 12, 3012 Bern, Switzerland.
| |
Collapse
|
2
|
Agarwal A, Kumar Kn S, Jorwal P, Quadri JA, Gupta G, Biswas A. Arsenic intoxication with renal failure managed with hemodialysis alone: A case report. Drug Discov Ther 2022; 16:49-51. [PMID: 35264476 DOI: 10.5582/ddt.2021.01110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Arsenic has widespread use in agriculture, in alternative medicine and in treatment of certain malignancies, therefore it is vital to timely recognize and treat arsenic toxicity in a suspected patient. Hemodialysis conventionally is thought to play only a supportive role in managing arsenic toxicity but it can be life-saving when chelation is not possible or available. A middle-aged female with a history of non-dialysis-dependent chronic kidney disease (CKD) was brought to the emergency with altered sensorium. On presentation, she was hemodynamically stable with pallor and exfoliating lesions on palms, hyperkeratotic lesions on soles and hyperpigmented macules on the trunk. Investigations revealed pancytopenia and deranged kidney function tests. In view of skin lesions, the toxicological analysis was sent which revealed high levels of Arsenic (594 and 2,553 mcg/L in blood and urine respectively). Thus, a diagnosis of metabolic encephalopathy with the underlying cause being uremic or/and arsenic intoxication was made. Considering renal failure, she was managed with thrice-weekly hemodialysis. Chelation was not possible due to unavailability of agents during lockdown in Coronavirus disease (COVID-19) pandemic. Following dialysis, there was a significant improvement in sensorium, skin lesions, and pancytopenia depicting the utility of hemodialysis in such cases. Thus, hemodialysis is an effective and perhaps underutilized modality in the treatment of arsenic intoxication with impaired renal function.
Collapse
Affiliation(s)
- Ayush Agarwal
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Santhosh Kumar Kn
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Pankaj Jorwal
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Javed Ahsan Quadri
- Clinical Ecotoxicology (Diagnostic & Research) Facility, All India Institute of Medical Sciences, New Delhi, India
| | - Gaurav Gupta
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Ashutosh Biswas
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
3
|
Abstract
Extracorporeal therapies have been used to remove toxins from the body for over 50 years and have a greater role than ever before in the treatment of poisonings. Improvements in technology have resulted in increased efficacy of removing drugs and other toxins with hemodialysis, and newer extracorporeal therapy modalities have expanded the role of extracorporeal supportive care of poisoned patients. However, despite these changes, for at least the past three decades the most frequently dialyzed poisons remain salicylates, toxic alcohols, and lithium; in addition, the extracorporeal treatment of choice for therapeutic removal of nearly all poisonings remains intermittent hemodialysis. For the clinician, consideration of extracorporeal therapy in the treatment of a poisoning depends upon the characteristics of toxins amenable to extracorporeal removal (e.g., molecular mass, volume of distribution, protein binding), choice of extracorporeal treatment modality for a given poisoning, and when the benefit of the procedure justifies additive risk. Given the relative rarity of poisonings treated with extracorporeal therapies, the level of evidence for extracorporeal treatment of poisoning is not robust; however, extracorporeal treatment of a number of individual toxins have been systematically reviewed within the current decade by the Extracorporeal Treatment in Poisoning workgroup, which has published treatment recommendations with an improved evidence base. Some of these recommendations are discussed, as well as management of a small number of relevant poisonings where extracorporeal therapy use may be considered.
Collapse
Affiliation(s)
- Joshua David King
- Division of Nephrology, University of Maryland, Baltimore, Maryland; .,Maryland Poison Center, Baltimore, Maryland
| | - Moritz H Kern
- Department of Medicine, University Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Mannheim, Germany
| | - Bernard G Jaar
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland.,Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins University, Baltimore, Maryland.,Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; and.,Nephrology Center of Maryland, Baltimore, Maryland
| |
Collapse
|
4
|
Rajpert L, Kolvenbach BA, Ammann EM, Hockmann K, Nachtegaal M, Eiche E, Schäffer A, Corvini PFX, Skłodowska A, Lenz M. Arsenic Mobilization from Historically Contaminated Mining Soils in a Continuously Operated Bioreactor: Implications for Risk Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:9124-9132. [PMID: 27454004 DOI: 10.1021/acs.est.6b02037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Concentrations of soil arsenic (As) in the vicinity of the former Złoty Stok gold mine (Lower Silesia, southwest Poland) exceed 1000 μg g(-1) in the area, posing an inherent threat to neighboring bodies of water. This study investigated continuous As mobilization under reducing conditions for more than 3 months. In particular, the capacity of autochthonic microflora that live on natural organic matter as the sole carbon/electron source for mobilizing As was assessed. A biphasic mobilization of As was observed. In the first two months, As mobilization was mainly conferred by Mn dissolution despite the prevalence of Fe (0.1 wt % vs 5.4 for Mn and Fe, respectively) as indicated by multiple regression analysis. Thereafter, the sudden increase in aqueous As[III] (up to 2400 μg L(-1)) was attributed to an almost quintupling of the autochthonic dissimilatory As-reducing community (quantitative polymerase chain reaction). The aqueous speciation influenced by microbial activity led to a reduction of solid phase As species (X-ray absorption fine structure spectroscopy) and a change in the elemental composition of As hotspots (micro X-ray fluorescence mapping). The depletion of most natural dissolved organic matter and the fact that an extensive mobilization of As[III] occurred after two months raises concerns about the long-term stability of historically As-contaminated sites.
Collapse
Affiliation(s)
- Liwia Rajpert
- Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland , Gründenstrasse 40, 4132 Muttenz, Switzerland
| | - Boris A Kolvenbach
- Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland , Gründenstrasse 40, 4132 Muttenz, Switzerland
| | - Erik M Ammann
- Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland , Gründenstrasse 40, 4132 Muttenz, Switzerland
| | - Kerstin Hockmann
- Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich , Universitätstrasse 16, 8092 Zürich, Switzerland
| | | | - Elisabeth Eiche
- Institute of Applied Geosciences, Karlsruhe Institute of Technology (KIT) , Adenauerring 20b, 76131 Karlsruhe, Germany
| | - Andreas Schäffer
- Institute for Environmental Research (Biology V), RWTH Aachen University , 52074 Aachen, Germany
| | - Philippe Francois Xavier Corvini
- Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland , Gründenstrasse 40, 4132 Muttenz, Switzerland
| | - Aleksandra Skłodowska
- Laboratory of Environmental Pollution Analysis, University of Warsaw , 02-096 Warsaw, Poland
| | - Markus Lenz
- Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland , Gründenstrasse 40, 4132 Muttenz, Switzerland
- Sub-Department of Environmental Technology, Wageningen University , 6700 EV Wageningen, The Netherlands
| |
Collapse
|
5
|
Plantamura J, Dorandeu F, Burnat P, Renard C. L’arsine : un toxique chimique industriel peu connu. ANNALES PHARMACEUTIQUES FRANÇAISES 2011; 69:196-200. [DOI: 10.1016/j.pharma.2011.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 05/11/2011] [Accepted: 05/31/2011] [Indexed: 10/17/2022]
|
6
|
Mestrot A, Merle JK, Broglia A, Feldmann J, Krupp EM. Atmospheric stability of arsine and methylarsines. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:4010-4015. [PMID: 21469665 DOI: 10.1021/es2004649] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Arsenic (As) occurs in a variety of different chemical forms, among them volatile (gaseous) species, usually referred to as arsine and methylarsines. Here we demonstrate that arsine and methylarsines are stable in air in concentrations at the μg/L gas level. We determined half-lives of approximately 8 h under daytime conditions (UV light) for all methylated arsines, while the same species were found to be considerably more stable in night-time (dark) conditions. Arsine (AsH₃) showed under both day and night-time conditions, considerably higher stabilities than methylated arsines. We show here that volatile As species seem stable enough to travel considerable distances in the atmosphere from a point source before converting into nonvolatile, oxidized compounds. Also, the degradation pathway leading to the conversion to nonvolatile compounds was investigated using computational chemistry. Arsine and methylarsines' reactions with the hydroxyl radical (•OH) as well as As-C and As-H bonds strengths in the species studied were modeled. Results showed that conversion could not be explained by H abstraction, nor by OH addition. Moreover, it was found that As-C and As-H bonds strengths are not the determining factor responsible for the decrease in stability with ascending methylation of the different volatile arsine species, as previously suggested.
Collapse
Affiliation(s)
- Adrien Mestrot
- TESLA (Trace Element Speciation Laboratory), Chemistry Department, University of Aberdeen , Aberdeen, AB24 3UE, UK
| | | | | | | | | |
Collapse
|
7
|
Haemolytic anaemia secondary to arsenic poisoning: a case report. CASES JOURNAL 2009; 2:7768. [PMID: 19918480 PMCID: PMC2769370 DOI: 10.4076/1757-1626-2-7768] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 07/16/2009] [Indexed: 11/08/2022]
Abstract
We report the case of a 56-year-old white man who presented at the Emergency Department for evaluation of dark-red urine. Rapid development of acute renal failure and haemolytic anaemia initially elicited the hypothesis of a haemolytic-uremic syndrome. A previous exposure to a gas mixture containing arsenic and copper was later recognized as the probable aetiology while other differential diagnoses were excluded. Chelating treatment was promptly initiated before laboratorial confirmation of arsenic and copper poisoning. Renal and haematological recovery was gradually observed and the patient survived with no sequelae.
Collapse
|