1
|
Alves M, Asbell P, Dogru M, Giannaccare G, Grau A, Gregory D, Kim DH, Marini MC, Ngo W, Nowinska A, Saldanha IJ, Villani E, Wakamatsu TH, Yu M, Stapleton F. TFOS Lifestyle Report: Impact of environmental conditions on the ocular surface. Ocul Surf 2023; 29:1-52. [PMID: 37062427 DOI: 10.1016/j.jtos.2023.04.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/18/2023]
Abstract
Environmental risk factors that have an impact on the ocular surface were reviewed and associations with age and sex, race/ethnicity, geographical area, seasonality, prevalence and possible interactions between risk factors are reviewed. Environmental factors can be (a) climate-related: temperature, humidity, wind speed, altitude, dew point, ultraviolet light, and allergen or (b) outdoor and indoor pollution: gases, particulate matter, and other sources of airborne pollutants. Temperature affects ocular surface homeostasis directly and indirectly, precipitating ocular surface diseases and/or symptoms, including trachoma. Humidity is negatively associated with dry eye disease. There is little data on wind speed and dewpoint. High altitude and ultraviolet light exposure are associated with pterygium, ocular surface degenerations and neoplastic disease. Pollution is associated with dry eye disease and conjunctivitis. Primary Sjögren syndrome is associated with exposure to chemical solvents. Living within a potential zone of active volcanic eruption is associated with eye irritation. Indoor pollution, "sick" building or house can also be associated with eye irritation. Most ocular surface conditions are multifactorial, and several environmental factors may contribute to specific diseases. A systematic review was conducted to answer the following research question: "What are the associations between outdoor environment pollution and signs or symptoms of dry eye disease in humans?" Dry eye disease is associated with air pollution (from NO2) and soil pollution (from chromium), but not from air pollution from CO or PM10. Future research should adequately account for confounders, follow up over time, and report results separately for ocular surface findings, including signs and symptoms.
Collapse
Affiliation(s)
- Monica Alves
- Department of Ophthalmology and Otorhinolaryngology, University of Campinas Campinas, Brazil.
| | - Penny Asbell
- Department of Bioengineering, University of Memphis, Memphis, USA
| | - Murat Dogru
- School of Optometry and Vision Science, UNSW, Sydney, NSW, Australia
| | - Giuseppe Giannaccare
- Department of Ophthalmology, University Magna Graecia of Catanzaro, Cantanzaro, Italy
| | - Arturo Grau
- Department of Ophthalmology, Pontifical Catholic University of Chile, Santiago, Chile
| | - Darren Gregory
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, USA
| | - Dong Hyun Kim
- Department of Ophthalmology, Korea University College of Medicine, Seoul, South Korea
| | | | - William Ngo
- School of Optometry & Vision Science, University of Waterloo, Waterloo, Canada
| | - Anna Nowinska
- Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Ian J Saldanha
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Edoardo Villani
- Department of Clinical Sciences and Community Health, University of Milan, Eye Clinic, San Giuseppe Hospital, IRCCS Multimedica, Milan, Italy
| | - Tais Hitomi Wakamatsu
- Department of Ophthalmology and Visual Sciences, Paulista School of Medicine, São Paulo Hospital, Federal University of São Paulo, Brazil
| | - Mitasha Yu
- Sensory Functions, Disability and Rehabilitation Unit, World Health Organization, Geneva, Switzerland
| | - Fiona Stapleton
- School of Optometry and Vision Science, UNSW, Sydney, NSW, Australia
| |
Collapse
|
2
|
Ayar O, Orcun Akdemir M, Erboy F, Yazgan S, Hayri Ugurbas S. Ocular findings in coal miners diagnosed with pneumoconiosis. Cutan Ocul Toxicol 2016; 36:114-117. [PMID: 27292375 DOI: 10.1080/15569527.2016.1196698] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Our study aimed at evaluating ocular findings and structural changes in coal mine workers who were chronically exposed to coal mine dust and diagnosed with pneumoconiosis. METHODS Ocular findings of 161 eyes of 81 patients diagnosed with pneumoconiosis who had previously worked or are currently working in coal mines were analyzed. Forty-six coal mine workers and sex matched healthy people (n = 20) participated in the study. Workers who had early changes of pneumoconiosis were included in Group 1 (n = 17), workers diagnosed with pneumoconiosis were included in Group 2 (n = 29), and healthy subjects were included in Group 3 (n = 20). Outcome measures were the difference in peripapillary retinal nerve fiber layer (RNFL) thickness, choroidal thickness (CT), central macular thickness (CMT) and tear function tests between the groups. RESULTS RNFL thickness values in Group 1 and 2 were lower than in Group 3, the control group, in all quadrants except the temporal quadrant. However, there was no statistically significant difference in peripapillary RNFL thickness values in any quadrants among the three groups (p > 0.05). Central subfoveal choroidal thickness and CMT measurements were thinner in Group 1 and 2 than in the control group. However, this difference among groups was not statistically significant (p > 0.05). Mean schirmer's test result was 8.8 ± 1.6 mm in group 1, 7.1 ± 1.8 mm in Group 2 and 11.5 ± 3.6 mm in the control group. Mean tear break up time (BUT) test result was 7.1 ± 1.3 seconds (sec) in Group 1, 6.5 ± 1.8 sec in Group 2 and 10.4 ± 2.9 s in the control group. The Schirmer's test and BUT test results were both statistically significantly lower in coal mine workers (Group 1 and 2) compared to the control group. Group 1 and Group 2 did not show statistically significant difference in terms of Schirmer's test and BUT test results. DISCUSSION The association between pneumoconiosis and coal mine dust contiguity is thought to be due to the effect of coal dust by producing chronic inflammation. In addition, there are several trace elements in coal dust which are toxic to vital tissues. In this study, ocular findings suggest that systemic levels of trace elements and chronic inflammation may not reach to a level that influences ocular structures. Nonetheless, tear functions seem to be affected in coal mine workers. CONCLUSION This study suggests that the systemic effect of coal mine dust in ocular structures is not evident. However, direct contact with coal mine and fume leads to a decrease in tear function tests.
Collapse
Affiliation(s)
| | | | - Fatma Erboy
- b Department of Chest Diseases , Faculty of Medicine, Bulent Ecevit University , Zonguldak , Turkey
| | | | | |
Collapse
|
3
|
Sun Z, Hong J, Liu Z, Jin X, Gu C. Coal Dust Contiguity-induced Changes in the Concentration of TNF-α and NF-κ B p65 on the Ocular Surface. Ocul Immunol Inflamm 2009; 17:76-82. [DOI: 10.1080/09273940802650380] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|