1
|
Jammes M, Tabasi A, Bach T, Ritter T. Healing the cornea: Exploring the therapeutic solutions offered by MSCs and MSC-derived EVs. Prog Retin Eye Res 2024; 105:101325. [PMID: 39709150 DOI: 10.1016/j.preteyeres.2024.101325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Affecting a large proportion of the population worldwide, corneal disorders constitute a concerning health hazard associated to compromised eyesight or blindness for most severe cases. In the last decades, mesenchymal stem/stromal cells (MSCs) demonstrated promising abilities in improving symptoms associated to corneal diseases or alleviating these affections, especially through their anti-inflammatory, immunomodulatory and pro-regenerative properties. More recently, MSC therapeutic potential was shown to be mediated by the molecules they release, and particularly by their extracellular vesicles (EVs; MSC-EVs). Consequently, using MSC-EVs emerged as a pioneering strategy to mitigate the risks related to cell therapy while providing MSC therapeutic benefits. Despite the promises given by MSC- and MSC-EV-based approaches, many improvements are considered to optimize the therapeutic significance of these therapies. This review aspires to provide a comprehensive and detailed overview of current knowledge on corneal therapies involving MSCs and MSC-EVs, the strategies currently under evaluation, and the gaps remaining to be addressed for clinical implementation. From encapsulating MSCs or their EVs into biomaterials to enhance the ocular retention time to loading MSC-EVs with therapeutic drugs, a wide range of ground-breaking strategies are currently contemplated to lead to the safest and most effective treatments. Promising research initiatives also include diverse gene therapies and the targeting of specific cell types through the modification of the EV surface, paving the way for future therapeutic innovations. As one of the most important challenges, MSC-EV large-scale production strategies are extensively investigated and offer a wide array of possibilities to meet the needs of clinical applications.
Collapse
Affiliation(s)
- Manon Jammes
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
| | - Abbas Tabasi
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
| | - Trung Bach
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
| | - Thomas Ritter
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland; CURAM Centre for Research in Medical Devices, University of Galway, Galway, Ireland.
| |
Collapse
|
2
|
Kim J, Mondal H, Jin R, Yoon HJ, Kim HJ, Jee JP, Yoon KC. Cellulose Acetate Phthalate-Based pH-Responsive Cyclosporine A-Loaded Contact Lens for the Treatment of Dry Eye. Int J Mol Sci 2023; 24:ijms24032361. [PMID: 36768682 PMCID: PMC9916649 DOI: 10.3390/ijms24032361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
Cyclosporine A (CsA) as an eye drop is an effective treatment for dry eye. However, it has potential side effects and a short ocular residence time. To overcome these obstacles, we developed a cellulose acetate phthalate-based pH-responsive contact lens (CL) loaded with CsA (CsA-CL). The CsA was continuously released from the CsA-CL at physiological conditions (37 °C, pH 7.4) without an initial burst. CsA was well-contained in the selected storage condition (4 °C, pH 5.4) for as long as 90 days. In safety assays, cytotoxicity, ocular irritation, visible light transmittance, and oxygen permeability were in a normal range. CsA concentrations in the conjunctiva, cornea, and lens increased over time until 12 h. When comparing the therapeutic efficacy between the normal control, experimental dry eye (EDE), and treatment groups (CsA eye drop, naïve CL, and CsA-CL groups), the tear volume, TBUT, corneal fluorescein staining at 7 and 14 days, conjunctival goblet cell density, and corneal apoptotic cell counts at 14 days improved in all treatment groups compared to EDE, with a significantly better result in the CsA-CL group compared with other groups (all p < 0.05). The CsA-CL could be an effective, stable, and safe option for inflammatory dry eye.
Collapse
Affiliation(s)
- Jonghwa Kim
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Republic of Korea
| | - Himangsu Mondal
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| | - Rujun Jin
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Republic of Korea
| | - Hyeon Jeong Yoon
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Republic of Korea
| | - Ho-Joong Kim
- Department of Chemistry, Chosun University, Gwangju 61452, Republic of Korea
| | - Jun-Pil Jee
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
- Correspondence: (J.-P.J.); (K.C.Y.); Tel.: +82-62-230-6364 (J.-P.J.); +82-62-220-6741 (K.C.Y.)
| | - Kyung Chul Yoon
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Republic of Korea
- Correspondence: (J.-P.J.); (K.C.Y.); Tel.: +82-62-230-6364 (J.-P.J.); +82-62-220-6741 (K.C.Y.)
| |
Collapse
|
3
|
Shinji K, Chikama T, Okazaki S, Sueoka K, Ko JA, Kiuchi Y, Sakaguchi T. Synergistic effect of TONS504-mediated photodynamic antimicrobial chemotherapy and additives widely contained in ophthalmic solutions: benzalkonium chloride and ethylenediaminetetraacetic acid. Photochem Photobiol Sci 2022; 21:1895-1905. [PMID: 35859250 DOI: 10.1007/s43630-022-00266-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 06/30/2022] [Indexed: 10/17/2022]
Abstract
TONS504 (C51H58N8O5I2), a chlorine derivative, effectively generates singlet oxygen by light activation and exhibits photodynamic antimicrobial effects (PAEs) on various pathogens. However, this photosensitizer has some limitations: a high tendency to self-aggregate and a relatively weak PAE for Gram-negative bacteria compared with Gram-positive bacteria. To overcome these limitations, the present study investigated the synergistic effects of the PAE of TONS504 and two additives commonly contained in ophthalmic solutions: benzalkonium chloride (BAC) or ethylenediaminetetraacetic acid (EDTA). Staphylococcus aureus and Pseudomonas aeruginosa were exposed to TONS504 and/or each additive. Photodynamic antimicrobial chemotherapy was performed with light irradiation centered at a wavelength of 665 nm with a total light energy of 30 J/cm2. Following incubation, the number of colonies formed was counted. Additionally, we examined the inhibitory effects of the additives on TONS504 self-aggregation by observing its absorption spectrum. Consequently, the PAEs of TONS504 on S. aureus were enhanced by both additives, and BAC displayed stronger synergistic effects on the bacteria than EDTA. By contrast, only EDTA increased the PAE on P. aeruginosa. The peak of the TONS504 absorption spectrum shifted to a longer wave length and the absorbance increased in the presence of BAC, suggesting that BAC inhibited the self-aggregation of the photosensitizer. In conclusion, the combination of BAC or EDTA and TONS504-mediated photodynamic antimicrobial chemotherapy exhibits a synergistic antimicrobial effect on S. aureus and P. aeruginosa. The optimal additive to enhance the PAE may differ between bacterial strains.
Collapse
Affiliation(s)
- Koichiro Shinji
- Department of Ophthalmology and Visual Science, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Taiichiro Chikama
- Department of Ophthalmology and Visual Science, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Shigetoshi Okazaki
- HAMAMATSU BioPhotonics Innovation Chair, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Kentaro Sueoka
- Department of Ophthalmology and Visual Science, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Ji-Ae Ko
- Department of Ophthalmology and Visual Science, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yoshiaki Kiuchi
- Department of Ophthalmology and Visual Science, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Takemasa Sakaguchi
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8551, Japan
| |
Collapse
|
4
|
Caban M, Owczarek K, Chojnacka K, Lewandowska U. Overview of Polyphenols and Polyphenol-rich Extracts as Modulators of Inflammatory Response in Dry Eye Syndrome. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1874412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Miłosz Caban
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Katarzyna Owczarek
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Katarzyna Chojnacka
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Urszula Lewandowska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
5
|
Mitochondrial Dysfunctions May Be One of the Major Causative Factors Underlying Detrimental Effects of Benzalkonium Chloride. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8956504. [PMID: 32104543 PMCID: PMC7035552 DOI: 10.1155/2020/8956504] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/23/2019] [Accepted: 01/10/2020] [Indexed: 02/06/2023]
Abstract
Benzalkonium chloride (BAC) is currently the most commonly used antimicrobial preservative in ophthalmic solutions, nasal sprays, and cosmetics. However, a large number of clinical and experimental investigations showed that the topical administration of BAC-containing eye drops could cause a variety of ocular surface changes, from ocular discomfort to potential risk for future glaucoma surgery. BAC-containing albuterol may increase the risk of albuterol-related systemic adverse effects. BAC, commonly present in personal care products, in cosmetic products can induce irritation and dose-dependent changes in the cell morphology. The cationic nature of BAC (it is a quaternary ammonium) suggests that one of the major targets of BAC in the cell may be mitochondria, the only intracellular compartment charged negatively. However, the influence of BAC on mitochondria has not been clearly understood. Here, the effects of BAC on energy parameters of rat liver mitochondria as well as on yeast cells were examined. BAC, being a "weaker" uncoupler, potently inhibited respiration in state 3, diminished the mitochondrial membrane potential, caused opening of the Ca2+/Pi-dependent pore, blocked ATP synthesis, and promoted H2O2 production by mitochondria. BAC triggered oxidative stress and mitochondrial fragmentation in yeast cells. BAC-induced oxidative stress in mitochondria and yeast cells was almost totally prevented by the mitochondria-targeted antioxidant SkQ1; the protective effect of SkQ1 on mitochondrial fragmentation was only partial. Collectively, these data showed that BAC acts adversely on cell bioenergetics (especially on ATP synthesis) and mitochondrial dynamics and that its prooxidant effect can be partially prevented by the mitochondria-targeted antioxidant SkQ1.
Collapse
|
6
|
Polyphenolic Fraction from Olive Mill Wastewater: Scale-Up and in Vitro Studies for Ophthalmic Nutraceutical Applications. Antioxidants (Basel) 2019; 8:antiox8100462. [PMID: 31597377 PMCID: PMC6827079 DOI: 10.3390/antiox8100462] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/02/2019] [Accepted: 10/04/2019] [Indexed: 02/06/2023] Open
Abstract
The valorization of food wastes is a challenging opportunity for a green, sustainable, and competitive development of industry. Approximately 30 million m3 of olive mill wastewater (OMWW) are produced annually in the world as a by-product of the olive oil extraction process. In addition to being a serious environmental and economic issue because of their polluting load, OMWW can also represent a precious resource of high-added-value molecules such as polyphenols that show acclaimed antioxidant and anti-inflammatory activities and can find useful applications in the pharmaceutical industry. In particular, the possibility to develop novel nutraceutical ophthalmic formulations containing free radical scavengers would represent an important therapeutic opportunity for all inflammatory diseases of the ocular surface. In this work, different adsorbents were tested to selectively recover a fraction that is rich in polyphenols from OMWW. Afterward, cytotoxicity and antioxidant/anti-inflammatory activities of polyphenolic fraction were evaluated through in vitro tests. Our results showed that the fraction (0.01%) had no toxic effects and was able to protect cells against oxidant and inflammatory stimulus, reducing reactive oxygen species and TNF-α levels. Finally, a novel stable ophthalmic hydrogel containing a polyphenolic fraction (0.01%) was formulated and the technical and economic feasibility of the process at a pre-industrial level was investigated.
Collapse
|
7
|
Walsh K, Jones L. The use of preservatives in dry eye drops. Clin Ophthalmol 2019; 13:1409-1425. [PMID: 31447543 PMCID: PMC6682755 DOI: 10.2147/opth.s211611] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/03/2019] [Indexed: 12/14/2022] Open
Abstract
Topical ocular preparations are widely recommended by health care professionals, or chosen by patients, to help manage dry eye disease (DED). The chronic and progressive nature of DED may result in the administration of topical products several times a day, over a period of many years. Given DED is a condition that by definition affects the ocular surface, it is important to understand how the repeated use of eye drops may impact the ocular surface, influence clinical signs, affect symptoms, and impact the overall disease process of dry eye. The component in topical preparations with the greatest potential to adversely affect the ocular surface is the preservative. This paper reviews the literature in relation to the use of preservatives in formulations for dry eye. The ocular effects of benzalkonium chloride (BAK) are summarised and compared to the performance of alternative preservatives and preservative-free formulations. Use of preserved and preservative-free drops in relation to the management of varying stages of DED is discussed.
Collapse
Affiliation(s)
- Karen Walsh
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, N2L 3G1, Canada
| | - Lyndon Jones
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, N2L 3G1, Canada
| |
Collapse
|