1
|
Fenoy E, Pradhan A, Pascoal C, Rubio-Ríos J, Batista D, Moyano-López FJ, Cássio F, Casas JJ. Elevated temperature may reduce functional but not taxonomic diversity of fungal assemblages on decomposing leaf litter in streams. GLOBAL CHANGE BIOLOGY 2022; 28:115-127. [PMID: 34651383 DOI: 10.1111/gcb.15931] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/02/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Mounting evidence points to a linkage between biodiversity and ecosystem functioning (B-EF). Global drivers, such as warming and nutrient enrichment, can alter species richness and composition of aquatic fungal assemblages associated with leaf-litter decomposition, a key ecosystem process in headwater streams. However, effects of biodiversity changes on ecosystem functions might be countered by the presumed high functional redundancy of fungal species. Here, we examined how environmental variables and leaf-litter traits (based on leaf chemistry) affect taxonomic and functional α- and β-diversity of fungal decomposers. We analysed taxonomic diversity (DNA-fingerprinting profiles) and functional diversity (community-level physiological profiles) of fungal communities in four leaf-litter species from four subregions differing in stream-water characteristics and riparian vegetation. We hypothesized that increasing stream-water temperature and nutrients would alter taxonomic diversity more than functional diversity due to the functional redundancy among aquatic fungi. Contrary to our expectations, fungal taxonomic diversity varied little with stream-water characteristics across subregions, and instead taxon replacement occurred. Overall taxonomic β-diversity was fourfold higher than functional diversity, suggesting a high degree of functional redundancy among aquatic fungi. Elevated temperature appeared to boost assemblage uniqueness by increasing β-diversity while the increase in nutrient concentrations appeared to homogenize fungal assemblages. Functional richness showed a negative relationship with temperature. Nonetheless, a positive relationship between leaf-litter decomposition and functional richness suggests higher carbon use efficiency of fungal communities in cold waters.
Collapse
Affiliation(s)
- Encarnación Fenoy
- Department of Biology and Geology, University of Almería, Almería, Spain
- Andalusian Centre for Assessment and Monitoring of Global Change (CAESCG), Almería, Spain
| | - Arunava Pradhan
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Braga, Portugal
- Institute of Science and Innovation for Bio-sustainability, University of Minho, Braga, Portugal
| | - Cláudia Pascoal
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Braga, Portugal
- Institute of Science and Innovation for Bio-sustainability, University of Minho, Braga, Portugal
| | - Juan Rubio-Ríos
- Department of Biology and Geology, University of Almería, Almería, Spain
- Andalusian Centre for Assessment and Monitoring of Global Change (CAESCG), Almería, Spain
| | - Daniela Batista
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Braga, Portugal
- Institute of Science and Innovation for Bio-sustainability, University of Minho, Braga, Portugal
| | | | - Fernanda Cássio
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Braga, Portugal
- Institute of Science and Innovation for Bio-sustainability, University of Minho, Braga, Portugal
| | - J Jesús Casas
- Department of Biology and Geology, University of Almería, Almería, Spain
- Andalusian Centre for Assessment and Monitoring of Global Change (CAESCG), Almería, Spain
| |
Collapse
|
2
|
Veselská T, Homutová K, García Fraile P, Kubátová A, Martínková N, Pikula J, Kolařík M. Comparative eco-physiology revealed extensive enzymatic curtailment, lipases production and strong conidial resilience of the bat pathogenic fungus Pseudogymnoascus destructans. Sci Rep 2020; 10:16530. [PMID: 33020524 PMCID: PMC7536203 DOI: 10.1038/s41598-020-73619-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 09/15/2020] [Indexed: 01/16/2023] Open
Abstract
The genus Pseudogymnoascus encompasses soil psychrophilic fungi living also in caves. Some are opportunistic pathogens; nevertheless, they do not cause outbreaks. Pseudogymnoascus destructans is the causative agent of the white-nose syndrome, which is decimating cave-hibernating bats. We used comparative eco-physiology to contrast the enzymatic potential and conidial resilience of P. destructans with that of phylogenetically diverse cave fungi, including Pseudogymnoascus spp., dermatophytes and outdoor saprotrophs. Enzymatic potential was assessed by Biolog MicroArray and by growth on labelled substrates and conidial viability was detected by flow cytometry. Pseudogymnoascus destructans was specific by extensive losses of metabolic variability and by ability of lipid degradation. We suppose that lipases are important enzymes allowing fungal hyphae to digest and invade the skin. Pseudogymnoascus destructans prefers nitrogenous substrates occurring in bat skin and lipids. Additionally, P. destructans alkalizes growth medium, which points to another possible virulence mechanism. Temperature above 30 °C substantially decreases conidial viability of cave fungi including P. destructans. Nevertheless, survival of P. destructans conidia prolongs by the temperature regime simulating beginning of the flight season, what suggests that conidia could persist on the body surface of bats and contribute to disease spreading during bats active season.
Collapse
Affiliation(s)
- Tereza Veselská
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences (CAS), Vídeňská 1083, 14220, Prague, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 12801, Prague, Czech Republic
| | - Karolína Homutová
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences (CAS), Vídeňská 1083, 14220, Prague, Czech Republic
| | - Paula García Fraile
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences (CAS), Vídeňská 1083, 14220, Prague, Czech Republic
| | - Alena Kubátová
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 12801, Prague, Czech Republic
| | - Natália Martínková
- Institute of Vertebrate Biology, Czech Academy of Sciences (CAS), Květná 8, 60365, Brno, Czech Republic
| | - Jiří Pikula
- Department of Ecology and Diseases of Game, Fish and Bees, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackého třída 1946/1, 61242, Brno, Czech Republic
| | - Miroslav Kolařík
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences (CAS), Vídeňská 1083, 14220, Prague, Czech Republic.
| |
Collapse
|
3
|
Grizzle HW, Zak JC. A microtiter plate procedure for evaluating fungal functional diversity on nitrogen substrates. Mycologia 2017. [DOI: 10.1080/15572536.2006.11832706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - John C. Zak
- Department of Biological Sciences, Texas Tech University, Mailstop 3131, Lubbock, Texas 79401
| |
Collapse
|
4
|
Pinzari F, Ceci A, Abu-Samra N, Canfora L, Maggi O, Persiani A. Phenotype MicroArray™ system in the study of fungal functional diversity and catabolic versatility. Res Microbiol 2016; 167:710-722. [PMID: 27283363 DOI: 10.1016/j.resmic.2016.05.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 05/18/2016] [Accepted: 05/26/2016] [Indexed: 11/30/2022]
Abstract
Fungi cover a range of important ecological functions associated with nutrient and carbon cycling in leaf litter and soil. As a result, research on existing relationships between fungal functional diversity, decomposition rates and competition is of key interest. Indeed, availability of nutrients in soil is largely the consequence of organic matter degradation dynamics. The Biolog® Phenotype MicroArrays™ (PM) system allows for the testing of fungi against many different carbon sources at any one time. The use and potential of the PM system as a tool for studying niche overlap and catabolic versatility of saprotrophic fungi is discussed here, and examples of its application are provided.
Collapse
Affiliation(s)
- Flavia Pinzari
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia agraria, Centro di Ricerca per lo Studio delle Relazioni tra Pianta e Suolo (CREA-RPS), Via della Navicella 2-4, 00184 Rome, Italy; Natural History Museum, Life Sciences Department, Cromwell Road, London SW7 5BD, UK.
| | - Andrea Ceci
- Dipartimento di Biologia ambientale, Sapienza Università di Roma, P.le Aldo Moro, 00185 Rome, Italy.
| | - Nadir Abu-Samra
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia agraria, Centro di Ricerca per lo Studio delle Relazioni tra Pianta e Suolo (CREA-RPS), Via della Navicella 2-4, 00184 Rome, Italy.
| | - Loredana Canfora
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia agraria, Centro di Ricerca per lo Studio delle Relazioni tra Pianta e Suolo (CREA-RPS), Via della Navicella 2-4, 00184 Rome, Italy.
| | - Oriana Maggi
- Dipartimento di Biologia ambientale, Sapienza Università di Roma, P.le Aldo Moro, 00185 Rome, Italy.
| | - Annamaria Persiani
- Dipartimento di Biologia ambientale, Sapienza Università di Roma, P.le Aldo Moro, 00185 Rome, Italy.
| |
Collapse
|
5
|
Aguilar-Trigueros CA, Powell JR, Anderson IC, Antonovics J, Rillig MC. Ecological understanding of root-infecting fungi using trait-based approaches. TRENDS IN PLANT SCIENCE 2014; 19:432-438. [PMID: 24613596 DOI: 10.1016/j.tplants.2014.02.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/31/2014] [Accepted: 02/08/2014] [Indexed: 06/03/2023]
Abstract
Classification schemes have been popular to tame the diversity of root-infecting fungi. However, the usefulness of these schemes is limited to descriptive purposes. We propose that a shift to a multidimensional trait-based approach to disentangle the saprotrophic-symbiotic continuum will provide a better framework to understand fungal evolutionary ecology. Trait information reflecting the separation of root-infecting fungi from free-living soil relatives will help to understand the evolutionary process of symbiosis, the role that species interactions play in maintaining their large diversity in soil and in planta, and their contributions at the ecosystem level. Methodological advances in several areas such as microscopy, plant immunology, and metatranscriptomics represent emerging opportunities to populate trait databases.
Collapse
Affiliation(s)
- Carlos A Aguilar-Trigueros
- Institut für Biologie, Plant Ecology, Freie Universität Berlin, D-14195 Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research, D-14195 Berlin, Germany
| | - Jeff R Powell
- Hawkesbury Institute for the Environment, University of Western Sydney, Penrith NSW 2751, Australia
| | - Ian C Anderson
- Hawkesbury Institute for the Environment, University of Western Sydney, Penrith NSW 2751, Australia
| | - Janis Antonovics
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Matthias C Rillig
- Institut für Biologie, Plant Ecology, Freie Universität Berlin, D-14195 Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research, D-14195 Berlin, Germany.
| |
Collapse
|
6
|
Miller GL, Grand LF, Tredway LP. Identification and Distribution of Fungi Associated with Fairy Rings on Golf Putting Greens. PLANT DISEASE 2011; 95:1131-1138. [PMID: 30732054 DOI: 10.1094/pdis-11-10-0800] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Traditional methods for identification of fairy ring fungi rely on the morphology of mature basidiocarps, which are ephemeral and often do not reach maturity on golf greens due to management practices. From 2007 to 2009, basidiocarps and soil samples were collected from 15 hybrid bermudagrass and 30 bentgrass greens exhibiting fairy ring symptoms in California, Florida, Hawaii, Illinois, Oklahoma, North Caroline, South Carolina, and Wisconsin. Genomic DNA was extracted from 122 unknown samples. Extractions were made from mycelium isolated from puffball or mushroom tissue, from mycelium isolated from a soil block, or through direct DNA extraction from infested soil. DNA also was extracted from 16 reference isolates. The internal transcribed spacer (ITS) region of ribosomal DNA was amplified and sequenced using the basidiomycete-specific primer sets ITS1f/ITS4b and Basid0001/2R. Phylogenetic trees were constructed with the neighborjoining algorithm, with nodes evaluated by bootstrap analysis. Most samples grouped into one of three clades corresponding to species within the family Lycoperdaceae: Arachnion album, Bovista dermoxantha, and Vascellum curtisii. Although over 60 different basidiomycetes have been associated with fairy rings in turfgrasses, relatively few species were found on golf putting greens in this study. Presently, DNA sequencing may be the most efficient method for attempting speciation of fairy ring fungi from infested soil.
Collapse
Affiliation(s)
- G L Miller
- Department of Plant Pathology, North Carolina State University, Raleigh 27695
| | - L F Grand
- Department of Plant Pathology, North Carolina State University, Raleigh 27695
| | - L P Tredway
- Department of Plant Pathology, North Carolina State University, Raleigh 27695
| |
Collapse
|
7
|
Bell CW, Acosta-Martinez V, McIntyre NE, Cox S, Tissue DT, Zak JC. Linking microbial community structure and function to seasonal differences in soil moisture and temperature in a Chihuahuan desert grassland. MICROBIAL ECOLOGY 2009; 58:827-842. [PMID: 19466479 DOI: 10.1007/s00248-009-9529-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Accepted: 04/25/2009] [Indexed: 05/27/2023]
Abstract
Global and regional climate models predict higher air temperature and less frequent, but larger precipitation events in arid regions within the next century. While many studies have addressed the impact of variable climate in arid ecosystems on plant growth and physiological responses, fewer studies have addressed soil microbial community responses to seasonal shifts in precipitation and temperature in arid ecosystems. This study examined the impact of a wet (2004), average (2005), and dry (2006) year on subsequent responses of soil microbial community structure, function, and linkages, as well as soil edaphic and nutrient characteristics in a mid-elevation desert grassland in the Chihuahuan Desert. Microbial community structure was classified as bacterial (Gram-negative, Gram-positive, and actinomycetes) and fungal (saprophytic fungi and arbuscular mycorrhiza) categories using (fatty acid methyl ester) techniques. Carbon substrate use and enzymic activity was used to characterize microbial community function annually and seasonally (summer and winter). The relationship between saprophytic fungal community structure and function remained consistent across season independent of the magnitude or frequency of precipitation within any given year. Carbon utilization by fungi in the cooler winter exceeded use in the warmer summer each year suggesting that soil temperature, rather than soil moisture, strongly influenced fungal carbon use and structure and function dynamics. The structure/function relationship for AM fungi and soil bacteria notably changed across season. Moreover, the abundance of Gram-positive bacteria was lower in the winter compared to Gram-negative bacteria. Bacterial carbon use, however, was highest in the summer and lower during the winter. Enzyme activities did not respond to either annual or seasonal differences in the magnitude or timing of precipitation. Specific structural components of the soil microbiota community became uncoupled from total microbial function during different seasons. This change in the microbial structure/function relationship suggests that different components of the soil microbial community may provide similar ecosystem function, but differ in response to seasonal temperature and precipitation. As soil microbes encounter increased soil temperatures and altered precipitation amounts and timing that are predicted for this region, the ability of the soil microbial community to maintain functional resilience across the year may be reduced in this Chihuahuan Desert ecosystem.
Collapse
Affiliation(s)
- Colin W Bell
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409-3131, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Stutter MI, Langan SJ, Lumsdon DG. Vegetated buffer strips can lead to increased release of phosphorus to waters: a biogeochemical assessment of the mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:1858-63. [PMID: 19368183 DOI: 10.1021/es8030193] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Establishing vegetated buffer strips (VBS) between cropland and watercourses is currently promoted as a principal control of diffuse pollution transport. However, we lackthe mechanistic understanding to evaluate P retention in VBS and predict risks of P transport to aquatic ecosystems. We observed that VBS establishment led to enhanced rates of soil P cycling, increasing soil P solubility and the potential amount leached to watercourses. Soil in VBS, relative to adjacentfields, had increased inorganic P solubility indices, dissolved organic P, phosphatase enzyme activity, microbial diversity, and biomass P. Small relative increases in the pool of soil P rendered labile had disproportionate effects on the P available for leaching. We propose a mechanism whereby the establishment of VBS on previous agricultural land causes a diversifying plant-microbial system which can access previous immobilized soil P from past fertilization or trapped sediment P. Laboratory experiments suggested that sediment-P inputs to VBS were insufficient alone to increase P solubility without biological cycling. Results showthat VBS management may require strategies, for example, harvesting vegetation, to offset biochemical processes that can increase the susceptibility of VBS soil P to move to adjoining streams.
Collapse
Affiliation(s)
- Marc I Stutter
- The Macaulay Institute, Craigiebuckler, Aberdeen, AB15 8QH, United Kingdom.
| | | | | |
Collapse
|
9
|
Campbell JH, Clark JS, Zak JC. PCR-DGGE comparison of bacterial community structure in fresh and archived soils sampled along a Chihuahuan Desert elevational gradient. MICROBIAL ECOLOGY 2009; 57:261-266. [PMID: 19107315 DOI: 10.1007/s00248-008-9479-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Accepted: 11/19/2008] [Indexed: 05/27/2023]
Abstract
The polymerase chain reaction coupled with denaturing gradient gel electrophoresis (PCR-DGGE) has been used widely to determine species richness and structure of microbial communities in a variety of environments. Researchers commonly archive soil samples after routine chemical or microbial analyses, and applying PCR-DGGE technology to these historical samples offers evaluation of long-term patterns in bacterial species richness and community structure that was not available with previous technology. However, use of PCR-DGGE to analyze microbial communities of archived soils has been largely unexplored. To evaluate the stability of DGGE patterns in archived soils in comparison with fresh soils, fresh and archived soils from five sites along an elevational gradient in the Chihuahuan Desert were compared using PCR-DGGE of 16S rDNA. DNA from all archived samples was extracted reliably, but DNA in archived soils collected from a closed-canopy oak forest site could not be amplified. DNA extraction yields were lower for most archived soils, but minimal changes in bacterial species richness and structure due to archiving were noted in bacterial community profiles from four sites. Use of archived soils to determine long-term changes in bacterial community structure via PCR-DGGE appears to be a viable option for addressing microbial community dynamics for particular ecosystems or landscapes.
Collapse
Affiliation(s)
- James H Campbell
- Department of Biological Sciences, Texas Tech University, P.O. Box 43131, Lubbock, TX 79409-3131, USA.
| | | | | |
Collapse
|
10
|
Bell C, McIntyre N, Cox S, Tissue D, Zak J. Soil microbial responses to temporal variations of moisture and temperature in a chihuahuan desert grassland. MICROBIAL ECOLOGY 2008; 56:153-167. [PMID: 18246293 DOI: 10.1007/s00248-007-9333-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Accepted: 10/02/2007] [Indexed: 05/25/2023]
Abstract
Global climate change models indicate that storm magnitudes will increase in many areas throughout southwest North America, which could result in up to a 25% increase in seasonal precipitation in the Big Bend region of the Chihuahuan Desert over the next 50 years. Seasonal precipitation is a key limiting factor regulating primary productivity, soil microbial activity, and ecosystem dynamics in arid and semiarid regions. As decomposers, soil microbial communities mediate critical ecosystem processes that ultimately affect the success of all trophic levels, and the activity of these microbial communities is primarily regulated by moisture availability. This research is focused on elucidating soil microbial responses to seasonal and yearly changes in soil moisture, temperature, and selected soil nutrient and edaphic properties in a Sotol Grassland in the Chihuahuan Desert at Big Bend National Park. Soil samples were collected over a 3-year period in March and September (2004-2006) at 0-15 cm soil depth from 12 3 x 3 m community plots. Bacterial and fungal carbon usage (quantified using Biolog 96-well micro-plates) was related to soil moisture patterns (ranging between 3.0 and 14%). In addition to soil moisture, the seasonal and yearly variability of soil bacterial activity was most closely associated with levels of soil organic matter, extractable NH(4)-N, and soil pH. Variability in fungal activity was related to soil temperatures ranging between 13 and 26 degrees C. These findings indicate that changes in soil moisture, coupled with soil temperatures and resource availability, drive the functioning of soil-microbial dynamics in these desert grasslands. Temporal patterns in microbial activity may reflect the differences in the ability of bacteria and fungi to respond to seasonal patterns of moisture and temperature. Bacteria were more able to respond to moisture pulses regardless of temperature, while fungi only responded to moisture pulses during cooler seasons with the exception of substantial increased magnitudes in precipitation occurring during warmer months. Changes in the timing and magnitude of precipitation will alter the proportional contribution of bacteria and fungi to decomposition and nitrogen mineralization in this desert grassland.
Collapse
Affiliation(s)
- Colin Bell
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA.
| | | | | | | | | |
Collapse
|
11
|
Lamarche J, Bradley RL, Hooper E, Shipley B, Simao Beaunoir AM, Beaulieu C. Forest floor bacterial community composition and catabolic profiles in relation to landscape features in Québec's southern boreal forest. MICROBIAL ECOLOGY 2007; 54:10-20. [PMID: 17510763 DOI: 10.1007/s00248-006-9156-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 07/20/2006] [Accepted: 07/28/2006] [Indexed: 05/15/2023]
Abstract
Bacterial communities mediate many of the processes in boreal forest floors that determine the functioning of these ecosystems, yet it remains uncertain whether the composition of these communities is distributed nonrandomly across the landscape. In a study performed in the southern boreal mixed wood forest of Québec, Canada, we tested the hypothesis that stand type (spruce/fir, aspen, paper birch), stand age (57, 78-85, and 131 years old), and geologic parent material (clay and till) were correlated with forest floor bacterial community composition. Forest floors in 54 independent forest stands were sampled to comprise a full factorial array of the three predictor variables. Bacterial community structure was examined by terminal restriction fragment (T-RF) length polymorphism analysis of genes encoding for 16S rRNA. Distance-based redundancy analysis of T-RF assemblages revealed that each predictor variable, as well as their interaction terms, had a significant effect on bacterial community composition, geologic parent material being the most discriminating factor. A survey of the 15 T-RFs with the highest percentage fit on the first two ordination axes describing the main effects indicated that each landscape feature correlated to a distinct group of bacteria. A survey of the most discriminant T-RFs describing the effect of stand type within each combination of stand age and geologic parent material indicated a strong dependency of several T-RFs on geologic parent material. Given the possible link between bacterial community composition and forest floor functioning, we also assessed the effects of the same three landscape features on community-level catabolic profiles (CLCP) of the extractable forest floor microbiota. Geologic parent material and stand type had significant effects on CLCPs. On clay plots, the effects of landscape features on T-RF patterns were highly consistent with their effects on CLCPs. In light of our results, we suggest that future research examine whether bacterial community composition or CLCPs can be used to detect latent environmental changes across landscape units.
Collapse
Affiliation(s)
- Josyanne Lamarche
- Laboratoire d'écologie des sols, Département de biologie, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, Québec, Canada, J1K 2R1
| | | | | | | | | | | |
Collapse
|
12
|
Miglia KJ, McArthur ED, Redman RS, Rodriguez RJ, Zak JC, Freeman DC. Genotype, soil type, and locale effects on reciprocal transplant vigor, endophyte growth, and microbial functional diversity of a narrow sagebrush hybrid zone in Salt Creek Canyon, Utah. AMERICAN JOURNAL OF BOTANY 2007; 94:425-436. [PMID: 21636412 DOI: 10.3732/ajb.94.3.425] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
When addressing the nature of ecological adaptation and environmental factors limiting population ranges and contributing to speciation, it is important to consider not only the plant's genotype and its response to the environment, but also any close interactions that it has with other organisms, specifically, symbiotic microorganisms. To investigate this, soils and seedlings were reciprocally transplanted into common gardens of the big sagebrush hybrid zone in Salt Creek Canyon, Utah, to determine location and edaphic effects on the fitness of parental and hybrid plants. Endophytic symbionts and functional microbial diversity of indigenous and transplanted soils and sagebrush plants were also examined. Strong selection occurred against the parental genotypes in the middle hybrid zone garden in middle hybrid zone soil; F(1) hybrids had the highest fitness under these conditions. Neither of the parental genotypes had superior fitness in their indigenous soils and habitats; rather F(1) hybrids with the nonindigenous maternal parent were superiorly fit. Significant garden-by-soil type interactions indicate adaptation of both plant and soil microorganisms to their indigenous soils and habitats, most notably in the middle hybrid zone garden in middle hybrid zone soil. Contrasting performances of F(1) hybrids suggest asymmetrical gene flow with mountain, rather than basin, big sagebrush acting as the maternal parent. We showed that the microbial community impacted the performance of parental and hybrid plants in different soils, likely limiting the ranges of the different genotypes.
Collapse
Affiliation(s)
- Kathleen J Miglia
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202 USA
| | | | | | | | | | | |
Collapse
|