1
|
Gibert MK, Zhang Y, Saha S, Marcinkiewicz P, Dube C, Hudson K, Sun Y, Bednarek S, Chagari B, Sarkar A, Roig-Laboy C, Neace N, Saoud K, Setiady I, Hanif F, Schiff D, Kumar P, Kefas B, Hafner M, Abounader R. A comprehensive analysis of Transcribed Ultra Conserved Regions uncovers important regulatory functions of novel non-coding transcripts in gliomas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.12.557444. [PMID: 38562826 PMCID: PMC10983853 DOI: 10.1101/2023.09.12.557444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Transcribed Ultra-Conserved Regions (TUCRs) represent a severely understudied class of putative non-coding RNAs (ncRNAs) that are 100% conserved across multiple species. We performed the first-ever analysis of TUCRs in glioblastoma (GBM) and low-grade gliomas (LGG). We leveraged large human datasets to identify the genomic locations, chromatin accessibility, transcription, differential expression, correlation with survival, and predicted functions of all 481 TUCRs, and identified TUCRs that are relevant to glioma biology. Of these, we investigated the expression, function, and mechanism of action of the most highly upregulated intergenic TUCR, uc.110, identifying it as a new tumor enhancer. Uc.110 was highly overexpressed in GBM and LGG, where it promoted malignancy and tumor growth. Uc.110 activated the WNT pathway by upregulating the expression of membrane frizzled-related protein (MFRP), by sponging the tumor suppressor microRNA miR-544. This pioneering study shows important roles for TUCRs in gliomas and provides an extensive database and novel methods for future TUCR research.
Collapse
|
2
|
Gibert MK, Zhang Y, Saha S, Marcinkiewicz P, Dube C, Hudson K, Sun Y, Bednarek S, Chagari B, Sarkar A, Roig-Laboy C, Neace N, Saoud K, Setiady I, Hanif F, Schiff D, Kumar P, Kefas B, Hafner M, Abounader R. A first comprehensive analysis of Transcribed Ultra Conserved Regions uncovers important regulatory functions of novel non-coding transcripts in gliomas. RESEARCH SQUARE 2024:rs.3.rs-4164642. [PMID: 38699302 PMCID: PMC11065071 DOI: 10.21203/rs.3.rs-4164642/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Transcribed Ultra-Conserved Regions (TUCRs) represent a severely understudied class of putative non-coding RNAs (ncRNAs) that are 100% conserved across multiple species. We performed the first-ever analysis of TUCRs in glioblastoma (GBM) and low-grade gliomas (LGG). We leveraged large human datasets to identify the genomic locations, chromatin accessibility, transcription, differential expression, correlation with survival, and predicted functions of all 481 TUCRs, and identified TUCRs that are relevant to glioma biology. Of these, we investigated the expression, function, and mechanism of action of the most highly upregulated intergenic TUCR, uc.110, identifying it as a new oncogene. Uc.110 was highly overexpressed in GBM and LGG, where it promoted malignancy and tumor growth. Uc.110 activated the WNT pathway by upregulating the expression of membrane frizzled-related protein (MFRP), by sponging the tumor suppressor microRNA miR-544. This pioneering study shows important roles for TUCRs in gliomas and provides an extensive database and novel methods for future TUCR research.
Collapse
Affiliation(s)
- Myron K Gibert
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - Ying Zhang
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - Shekhar Saha
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - Pawel Marcinkiewicz
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - Collin Dube
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - Kadie Hudson
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - Yunan Sun
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - Sylwia Bednarek
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - Bilhan Chagari
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - Aditya Sarkar
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - Christian Roig-Laboy
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - Natalie Neace
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - Karim Saoud
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - Initha Setiady
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - Farina Hanif
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - David Schiff
- University of Virginia Department of Neurology, Charlottesville, VA, 22908, USA
| | - Pankaj Kumar
- University of Virginia Department of Public Health Sciences and Bioinformatics Core, Charlottesville, VA, 22908, USA
| | | | | | - Roger Abounader
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
- University of Virginia Department of Neurology, Charlottesville, VA, 22908, USA
- University of Virginia Department of Cancer Center, Charlottesville, VA, 22908, USA
| |
Collapse
|
3
|
Sanders AR, Bhongir N, vonHoldt B, Pellegrini M. Association of DNA methylation with energy and fear-related behaviors in canines. Front Psychol 2022; 13:1025494. [PMID: 36591016 PMCID: PMC9794564 DOI: 10.3389/fpsyg.2022.1025494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/17/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction Behavioral traits are influenced by gene by environment interactions. To study the genetic and epigenetic components of behavior, we analyzed whether dog behavioral traits could be predicted by their DNA methylation and genotypes. Methods We conducted an analysis on dog behaviors such as sociability, trainability and energy as measured by Canine Behavioral and Research Assessment Questionnaire (C-BARQ) behavioral surveys paired with buccal swabs from 46 dogs. Previously we used targeted bisulfite sequencing to analyze DNA methylation and collected genotype data from over 1,500 single nucleotide polymorphisms (SNPs). Owner-reported C-BARQ responses were used to quantify 14 behavioral trait values. Results Using Partial Least Squares (PLS) Regression analysis we found behavioral traits such as energy, attachment/attention-seeking, non-social fear, and stranger-directed fear to be significantly associated with DNA methylation across 3,059 loci. After we adjusted for age as a confounding variable, energy and stranger-directed fear remained significantly associated with methylation. We found that most behavioral traits were not predictable by our limited set of SNPs. Discussion By identifying individual genes whose methylation is significantly associated with behavioral traits, we generate hypotheses about possible mechanisms involved in behavioral regulation. Overall, our study extends previous work in behavioral epigenetics, shows that canine behaviors are predictable by DNA methylation, and serves as a proof of concept for future studies in behavioral epigenetics.
Collapse
Affiliation(s)
- Abigail R. Sanders
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Neha Bhongir
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Bridgett vonHoldt
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, United States
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States,*Correspondence: Matteo Pellegrini,
| |
Collapse
|
4
|
Varma SJ, Calvani E, Grüning NM, Messner CB, Grayson N, Capuano F, Mülleder M, Ralser M. Global analysis of cytosine and adenine DNA modifications across the tree of life. eLife 2022; 11:81002. [PMID: 35900202 PMCID: PMC9333990 DOI: 10.7554/elife.81002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 12/12/2022] Open
Abstract
Interpreting the function and metabolism of enzymatic DNA modifications requires both position-specific and global quantities. Sequencing-based techniques that deliver the former have become broadly accessible, but analytical methods for the global quantification of DNA modifications have thus far been applied mostly to individual problems. We established a mass spectrometric method for the sensitive and accurate quantification of multiple enzymatic DNA modifications. Then, we isolated DNA from 124 archean, bacterial, fungal, plant, and mammalian species, and several tissues and created a resource of global DNA modification quantities. Our dataset provides insights into the general nature of enzymatic DNA modifications, reveals unique biological cases, and provides complementary quantitative information to normalize and assess the accuracy of sequencing-based detection of DNA modifications. We report that only three of the studied DNA modifications, methylcytosine (5mdC), methyladenine (N6mdA) and hydroxymethylcytosine (5hmdC), were detected above a picomolar detection limit across species, and dominated in higher eukaryotes (5mdC), in bacteria (N6mdA), or the vertebrate central nervous systems (5hmdC). All three modifications were detected simultaneously in only one of the tested species, Raphanus sativus. In contrast, these modifications were either absent or detected only at trace quantities, across all yeasts and insect genomes studied. Further, we reveal interesting biological cases. For instance, in Allium cepa, Helianthus annuus, or Andropogon gerardi, more than 35% of cytosines were methylated. Additionally, next to the mammlian CNS, 5hmdC was also detected in plants like Lepidium sativum and was found on 8% of cytosines in the Garra barreimiae brain samples. Thus, identifying unexpected levels of DNA modifications in several wild species, our resource underscores the need to address biological diversity for studying DNA modifications.
Collapse
Affiliation(s)
| | - Enrica Calvani
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, United Kingdom.,Department of Biochemistry and Cambridge Systems Biology Center, University of Cambridge, Cambridge, United Kingdom
| | - Nana-Maria Grüning
- Department of Biochemistry, Charité Universitätsmedizin, Berlin, Germany
| | - Christoph B Messner
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, United Kingdom.,Department of Biochemistry and Cambridge Systems Biology Center, University of Cambridge, Cambridge, United Kingdom
| | - Nicholas Grayson
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Floriana Capuano
- Department of Biochemistry and Cambridge Systems Biology Center, University of Cambridge, Cambridge, United Kingdom
| | - Michael Mülleder
- Core Facility-High Throughput Mass Spectrometry, Charité Universitätsmedizin, Berlin, Germany
| | - Markus Ralser
- Department of Biochemistry, Charité Universitätsmedizin, Berlin, Germany.,The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, United Kingdom.,Department of Biochemistry and Cambridge Systems Biology Center, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
5
|
Drown MK, DeLiberto AN, Flack N, Doyle M, Westover AG, Proefrock JC, Heilshorn S, D’Alessandro E, Crawford DL, Faulk C, Oleksiak MF. Sequencing Bait: Nuclear and Mitogenome Assembly of an Abundant Coastal Tropical and Subtropical Fish, Atherinomorus stipes. Genome Biol Evol 2022; 14:6648392. [PMID: 35866575 PMCID: PMC9348626 DOI: 10.1093/gbe/evac111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2022] [Indexed: 02/01/2023] Open
Abstract
Genetic data from nonmodel species can inform ecology and physiology, giving insight into a species' distribution and abundance as well as their responses to changing environments, all of which are important for species conservation and management. Moreover, reduced sequencing costs and improved long-read sequencing technology allows researchers to readily generate genomic resources for nonmodel species. Here, we apply Oxford Nanopore long-read sequencing and low-coverage (∼1x) whole genome short-read sequencing technology (Illumina) to assemble a genome and examine population genetics of an abundant tropical and subtropical fish, the hardhead silverside (Atherinomorus stipes). These fish are found in shallow coastal waters and are frequently included in ecological models because they serve as abundant prey for commercially and ecologically important species. Despite their importance in sub-tropical and tropical ecosystems, little is known about their population connectivity and genetic diversity. Our A. stipes genome assembly is about 1.2 Gb with comparable repetitive element content (∼47%), number of protein duplication events, and DNA methylation patterns to other teleost fish species. Among five sampled populations spanning 43 km of South Florida and the Florida Keys, we find little population structure suggesting high population connectivity.
Collapse
Affiliation(s)
| | | | - Nicole Flack
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Minnesota, USA
| | - Meghan Doyle
- The Rosenstiel School, University of Miami, Florida, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Gibert MK, Sarkar A, Chagari B, Roig-Laboy C, Saha S, Bednarek S, Kefas B, Hanif F, Hudson K, Dube C, Zhang Y, Abounader R. Transcribed Ultraconserved Regions in Cancer. Cells 2022; 11:1684. [PMID: 35626721 PMCID: PMC9139194 DOI: 10.3390/cells11101684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 11/25/2022] Open
Abstract
Transcribed ultraconserved regions are putative lncRNA molecules that are transcribed from DNA that is 100% conserved in human, mouse, and rat genomes. This is notable, as lncRNAs are typically poorly conserved. TUCRs remain very understudied in many diseases, including cancer. In this review, we summarize the current literature on TUCRs in cancer with respect to expression deregulation, functional roles, mechanisms of action, and clinical perspectives.
Collapse
Affiliation(s)
- Myron K. Gibert
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; (M.K.G.J.); (A.S.); (B.C.); (C.R.-L.); (S.S.); (S.B.); (B.K.); (F.H.); (K.H.); (C.D.); (Y.Z.)
| | - Aditya Sarkar
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; (M.K.G.J.); (A.S.); (B.C.); (C.R.-L.); (S.S.); (S.B.); (B.K.); (F.H.); (K.H.); (C.D.); (Y.Z.)
| | - Bilhan Chagari
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; (M.K.G.J.); (A.S.); (B.C.); (C.R.-L.); (S.S.); (S.B.); (B.K.); (F.H.); (K.H.); (C.D.); (Y.Z.)
| | - Christian Roig-Laboy
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; (M.K.G.J.); (A.S.); (B.C.); (C.R.-L.); (S.S.); (S.B.); (B.K.); (F.H.); (K.H.); (C.D.); (Y.Z.)
| | - Shekhar Saha
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; (M.K.G.J.); (A.S.); (B.C.); (C.R.-L.); (S.S.); (S.B.); (B.K.); (F.H.); (K.H.); (C.D.); (Y.Z.)
| | - Sylwia Bednarek
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; (M.K.G.J.); (A.S.); (B.C.); (C.R.-L.); (S.S.); (S.B.); (B.K.); (F.H.); (K.H.); (C.D.); (Y.Z.)
| | - Benjamin Kefas
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; (M.K.G.J.); (A.S.); (B.C.); (C.R.-L.); (S.S.); (S.B.); (B.K.); (F.H.); (K.H.); (C.D.); (Y.Z.)
| | - Farina Hanif
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; (M.K.G.J.); (A.S.); (B.C.); (C.R.-L.); (S.S.); (S.B.); (B.K.); (F.H.); (K.H.); (C.D.); (Y.Z.)
| | - Kadie Hudson
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; (M.K.G.J.); (A.S.); (B.C.); (C.R.-L.); (S.S.); (S.B.); (B.K.); (F.H.); (K.H.); (C.D.); (Y.Z.)
| | - Collin Dube
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; (M.K.G.J.); (A.S.); (B.C.); (C.R.-L.); (S.S.); (S.B.); (B.K.); (F.H.); (K.H.); (C.D.); (Y.Z.)
| | - Ying Zhang
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; (M.K.G.J.); (A.S.); (B.C.); (C.R.-L.); (S.S.); (S.B.); (B.K.); (F.H.); (K.H.); (C.D.); (Y.Z.)
| | - Roger Abounader
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; (M.K.G.J.); (A.S.); (B.C.); (C.R.-L.); (S.S.); (S.B.); (B.K.); (F.H.); (K.H.); (C.D.); (Y.Z.)
- Department of Neurology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
- NCI Designated Comprehensive Cancer Center, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
7
|
Rubbi L, Zhang H, Feng J, He C, Kurnia P, Ratan P, Tammana A, House S, Thompson M, Farrell C, Snir S, Stahler D, Ostrander EA, vonHoldt BM, Pellegrini M. The effects of age, sex, weight, and breed on canid methylomes. Epigenetics 2022; 17:1497-1512. [PMID: 35502722 PMCID: PMC9586589 DOI: 10.1080/15592294.2022.2069385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Unlike genomes, which are static throughout the lifespan of an organism, DNA methylomes are dynamic. To study these dynamics, we developed quantitative models that measure the effect of multiple factors on DNA methylomes including, age, sex, weight, and genetics. We conducted our study in canids, which prove to be an ideal species to assess epigenetic moderators due to their extreme variability in size and well-characterized genetic structure. We collected buccal swabs from 217 canids (207 domestic dogs and 10 grey wolves) and used targeted bisulphite sequencing to measure methylomes. We also measured genotypes at over one thousand single nucleotide polymorphisms (SNPs). As expected, we found that DNA methylomes are strongly associated with age, enabling the construction of epigenetic clocks. However, we also identify novel associations between methylomes and sex, weight, and sterilization status, leading to accurate models that predict these factors. Methylomes are also affected by genetics, and we observe multiple associations between SNP loci and methylated CpGs. Finally, we show that several factors moderate the relationship between epigenetic ages and real ages, such as body weight, which increases epigenetic ageing. In conclusion, we demonstrate that the plasticity of DNA methylomes is impacted by myriad genetics and physiological factors, and that DNA methylation biomarkers are accurate predictors of age, sex and sterilization status.
Collapse
Affiliation(s)
- Liudmilla Rubbi
- Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Haoxuan Zhang
- Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Junxi Feng
- Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Christopher He
- Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Patrick Kurnia
- Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Prashansa Ratan
- Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Aakash Tammana
- Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Sabina House
- Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Michael Thompson
- Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Colin Farrell
- Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Sagi Snir
- Department Evolutionary and Environmental Biology, University of Haifa, Israel
| | - Daniel Stahler
- Yellowstone Center for Resources, Yellowstone National Park, Wyo, USA
| | - Elaine A Ostrander
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, CA, USA
| | - Bridgett M vonHoldt
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Matteo Pellegrini
- Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
8
|
Wanner N, Larsen PA, McLain A, Faulk C. The mitochondrial genome and Epigenome of the Golden lion Tamarin from fecal DNA using Nanopore adaptive sequencing. BMC Genomics 2021; 22:726. [PMID: 34620074 PMCID: PMC8499546 DOI: 10.1186/s12864-021-08046-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/29/2021] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The golden lion tamarin (Leontopithecus rosalia) is an endangered Platyrrhine primate endemic to the Atlantic coastal forests of Brazil. Despite ongoing conservation efforts, genetic data on this species remains scarce. Complicating factors include limitations on sample collection and a lack of high-quality reference sequences. Here, we used nanopore adaptive sampling to resequence the L. rosalia mitogenome from feces, a sample which can be collected non-invasively. RESULTS Adaptive sampling doubled the fraction of both host-derived and mitochondrial sequences compared to sequencing without enrichment. 258x coverage of the L. rosalia mitogenome was achieved in a single flow cell by targeting the unfinished genome of the distantly related emperor tamarin (Saguinus imperator) and the mitogenome of the closely related black lion tamarin (Leontopithecus chrysopygus). The L. rosalia mitogenome has a length of 16,597 bp, sharing 99.68% sequence identity with the L. chrysopygus mitogenome. A total of 38 SNPs between them were identified, with the majority being found in the non-coding D-loop region. DNA methylation and hydroxymethylation were directly detected using a neural network model applied to the raw signal from the MinION sequencer. In contrast to prior reports, DNA methylation was negligible in mitochondria in both CpG and non-CpG contexts. Surprisingly, a quarter of the 642 CpG sites exhibited DNA hydroxymethylation greater than 1% and 44 sites were above 5%, with concentration in the 3' side of several coding regions. CONCLUSIONS Overall, we report a robust new mitogenome assembly for L. rosalia and direct detection of cytosine base modifications in all contexts.
Collapse
Affiliation(s)
- Nicole Wanner
- Department of Animal Sciences, University of Minnesota, College of Food, Agricultural, and Natural Resource Sciences, 1988 Fitch Ave., Saint Paul, MN 55108 USA
| | - Peter A. Larsen
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN USA
| | - Adam McLain
- Department of Biology and Chemistry, College of Arts and Sciences, SUNY Polytechnic Institute, Utica, NY USA
| | - Christopher Faulk
- Department of Animal Sciences, University of Minnesota, College of Food, Agricultural, and Natural Resource Sciences, 1988 Fitch Ave., Saint Paul, MN 55108 USA
| |
Collapse
|
9
|
Wanner NM, Colwell M, Drown C, Faulk C. Developmental cannabidiol exposure increases anxiety and modifies genome-wide brain DNA methylation in adult female mice. Clin Epigenetics 2021; 13:4. [PMID: 33407853 PMCID: PMC7789000 DOI: 10.1186/s13148-020-00993-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/16/2020] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Use of cannabidiol (CBD), the primary non-psychoactive compound found in cannabis, has recently risen dramatically, while relatively little is known about the underlying molecular mechanisms of its effects. Previous work indicates that direct CBD exposure strongly impacts the brain, with anxiolytic, antidepressant, antipsychotic, and other effects being observed in animal and human studies. The epigenome, particularly DNA methylation, is responsive to environmental input and can direct persistent patterns of gene regulation impacting phenotype. Epigenetic perturbation is particularly impactful during embryogenesis, when exogenous exposures can disrupt critical resetting of epigenetic marks and impart phenotypic effects lasting into adulthood. The impact of prenatal CBD exposure has not been evaluated; however, studies using the psychomimetic cannabinoid Δ9-tetrahydrocannabinol (THC) have identified detrimental effects on psychological outcomes in developmentally exposed adult offspring. We hypothesized that developmental CBD exposure would have similar negative effects on behavior mediated in part by the epigenome. Nulliparous female wild-type Agouti viable yellow (Avy) mice were exposed to 20 mg/kg CBD or vehicle daily from two weeks prior to mating through gestation and lactation. Coat color shifts, a readout of DNA methylation at the Agouti locus in this strain, were measured in F1 Avy/a offspring. Young adult F1 a/a offspring were then subjected to tests of working spatial memory and anxiety/compulsive behavior. Reduced-representation bisulfite sequencing was performed on both F0 and F1 cerebral cortex and F1 hippocampus to identify genome-wide changes in DNA methylation for direct and developmental exposure, respectively. RESULTS F1 offspring exposed to CBD during development exhibited increased anxiety and improved memory behavior in a sex-specific manner. Further, while no significant coat color shift was observed in Avy/a offspring, thousands of differentially methylated loci (DMLs) were identified in both brain regions with functional enrichment for neurogenesis, substance use phenotypes, and other psychologically relevant terms. CONCLUSIONS These findings demonstrate for the first time that despite positive effects of direct exposure, developmental CBD is associated with mixed behavioral outcomes and perturbation of the brain epigenome.
Collapse
Affiliation(s)
- Nicole M Wanner
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1334 Eckles Avenue, St. Paul, MN, USA
| | - Mathia Colwell
- Department of Animal Science, University of Minnesota, 1334 Eckles Avenue, 225 Food Science, St. Paul, MN, 55018, USA
| | - Chelsea Drown
- Department of Animal Science, University of Minnesota, 1334 Eckles Avenue, 225 Food Science, St. Paul, MN, 55018, USA
| | - Christopher Faulk
- Department of Animal Science, University of Minnesota, 1334 Eckles Avenue, 225 Food Science, St. Paul, MN, 55018, USA.
| |
Collapse
|
10
|
An Evolutionary Cancer Epigenetic Approach Revealed DNA Hypermethylation of Ultra-Conserved Non-Coding Elements in Squamous Cell Carcinoma of Different Mammalian Species. Cells 2020; 9:cells9092092. [PMID: 32933205 PMCID: PMC7565279 DOI: 10.3390/cells9092092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Ultra-conserved non-coding elements (UCNEs) are genomic sequences that exhibit > 95% sequence identity between humans, mammals, birds, reptiles, and fish. Recent findings reported their functional role in cancer. The aim of this study was to evaluate the DNA methylation modifications of UNCEs in squamous cell carcinoma (SCC) from different mammal species. Methods: Fifty SCCs from 26 humans, 17 cats, 3 dogs, 1 horse, 1 bovine, 1 badger, and 1 porcupine were investigated. Fourteen feline stomatitis and normal samples from 36 healthy human donors, 7 cats, 5 dogs, 5 horses, 2 bovines and 1 badger were collected as normal controls. Bisulfite next generation sequencing evaluated the DNA methylation level from seven UCNEs (uc.160, uc.283, uc.416, uc.339, uc.270, uc.299, and uc.328). Results: 57/59 CpGs were significantly different according to the Kruskal–Wallis test (p < 0.05) comparing normal samples with SCC. A common DNA hypermethylation pattern was observed in SCCs from all the species evaluated in this study, with an increasing trend of hypermethylation starting from normal mucosa, through stomatitis to SCC. Conclusions: Our findings indicate that UCNEs are hypermethylated in human SCC, and this behavior is also conserved among different species of mammals.
Collapse
|
11
|
Zhu L, Yuan C, Wang M, Liu Y, Wang Z, Seif MM. Bisphenol A-associated alterations in DNA and histone methylation affects semen quality in rare minnow Gobiocypris rarus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 226:105580. [PMID: 32712368 DOI: 10.1016/j.aquatox.2020.105580] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 07/04/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Bisphenol A (BPA), a well-known estrogenic endocrine disruptor, is ubiquitously present in the environment, possessing the potential to interfere with the reproductive endocrine system in male mammals. However, there are limited studies on the reproductive toxicity in male aquatic animals associated with epigenetic modifications. In order to evaluate the potential effects of BPA on reproduction and better understand the underlying mechanism, adult male rare minnow (Gobiocypris rarus) were exposed to 15 μg L-1 BPA over a period of 63 d. Results showed that BPA induced congestion of blood vessels and infiltration of inflammatory cells after 21 d exposure, and decreased sperm fertilization after 63 d exposure. The genome DNA methylation levels were significantly increased throughout the treatment, and a strong positive stain were found in the spermatocyte, spermatid and sperm. The H3K4me3 level in all types of germ cell were increased by 21 d exposure while decreased following 63 d exposure. The positive stain of H3K9me3 was decreased in sperms while increased in spermatids by 21 d exposure. In addition, the H3K9me3 level was significantly increased after 63 d exposure, and a strong positive stain were found in spermatocytes, spermatids, and sperms. Our result also revealed that the transcripts of DNA methyltransferase genes (dnmt1 and dnmt3-8) and histone methyltransferase genes (mll2-5, setdb1-2 and ezh2) were also markedly changed under BPA exposure for 21-63 d. These findings indicated that BPA had toxicity in male reproductive, and DNA/histone methylation might play a vital role in the regulation of BPA-triggered the decreased of sperm quality.
Collapse
Affiliation(s)
- Long Zhu
- College of Animal Science and Technology, Northwest A&F University, Yang Ling, Shaanxi, 712100, China
| | - Cong Yuan
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Mingrong Wang
- College of Animal Science and Technology, Northwest A&F University, Yang Ling, Shaanxi, 712100, China
| | - Yan Liu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Yang Ling, Shaanxi, 712100, China.
| | - Mohamed M Seif
- College of Animal Science and Technology, Northwest A&F University, Yang Ling, Shaanxi, 712100, China; Toxicology and Food Contaminants Department, National Research Centre, Cairo 11435, Egypt
| |
Collapse
|
12
|
McLain AT, Faulk C. The evolution of CpG density and lifespan in conserved primate and mammalian promoters. Aging (Albany NY) 2019; 10:561-572. [PMID: 29661983 PMCID: PMC5940106 DOI: 10.18632/aging.101413] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 04/09/2018] [Indexed: 12/12/2022]
Abstract
Gene promoters are evolutionarily conserved across holozoans and enriched in CpG sites, the target for DNA methylation. As animals age, the epigenetic pattern of DNA methylation degrades, with highly methylated CpG sites gradually becoming demethylated while CpG islands increase in methylation. Across vertebrates, aging is a trait that varies among species. We used this variation to determine whether promoter CpG density correlates with species’ maximum lifespan. Human promoter sequences were used to identify conserved regions in 131 mammals and a subset of 28 primate genomes. We identified approximately 1000 gene promoters (5% of the total), that significantly correlated CpG density with lifespan. The correlations were performed via the phylogenetic least squares method to account for trait similarity by common descent using phylogenetic branch lengths. Gene set enrichment analysis revealed no significantly enriched pathways or processes, consistent with the hypothesis that aging is not under positive selection. However, within both mammals and primates, 95% of the promoters showed a positive correlation between increasing CpG density and species lifespan, and two thirds were shared between the primate subset and mammalian datasets. Thus, these genes may require greater buffering capacity against age-related dysregulation of DNA methylation in longer-lived species.
Collapse
Affiliation(s)
- Adam T McLain
- Department of Biology and Chemistry, College of Arts and Sciences, SUNY Polytechnic Institute, Utica, NY 13502, USA
| | - Christopher Faulk
- Department of Animal Sciences, University of Minnesota, College of Food, Agricultural, and Natural Resource Sciences, Saint Paul, MN 55108, USA
| |
Collapse
|
13
|
Gonzalez-Fierro A, Dueñas-González A. Emerging DNA methylation inhibitors for cancer therapy: challenges and prospects. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2019. [DOI: 10.1080/23808993.2019.1571906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
| | - Alfonso Dueñas-González
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México UNAM/Instituto Nacional de Can cerología, México City, Mexico
| |
Collapse
|
14
|
Singh RK, Diaz PE, Binette F, Nasonkin IO. Immunohistochemical Detection of 5-Methylcytosine and 5-Hydroxymethylcytosine in Developing and Postmitotic Mouse Retina. J Vis Exp 2018. [PMID: 30222161 PMCID: PMC6235063 DOI: 10.3791/58274] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The epigenetics of retinal development is a well-studied research field, which promises to bring a new level of understanding about the mechanisms of a variety of human retinal degenerative diseases and pinpoint new treatment approaches. The nuclear architecture of mouse retina is organized in two different patterns: conventional and inverted. Conventional pattern is universal where heterochromatin is localized to the periphery of the nucleus, while active euchromatin resides in the nuclear interior. In contrast, inverted nuclear pattern is unique to the adult rod photoreceptor cell nuclei where heterochromatin localizes to the nuclear center, and euchromatin resides in the nuclear periphery. DNA methylation is predominantly observed in chromocenters. DNA methylation is a dynamic covalent modification on the cytosine residues (5-methylcytosine, 5mC) of CpG dinucleotides that are enriched in the promoter regions of many genes. Three DNA methyltransferases (DNMT1, DNMT3A and DNMT3B) participate in methylation of DNA during development. Detecting 5mC with immunohistochemical techniques is very challenging, contributing to variability in results, as all DNA bases including 5mC modified bases are hidden within the double-stranded DNA helix. However, detailed delineation of 5mC distribution during development is very informative. Here, we describe a reproducible technique for robust immunohistochemical detection of 5mC and another epigenetic DNA marker 5-hydroxymethylcytosine (5hmC), which colocalizes with the "open", transcriptionally active chromatin in developing and postmitotic mouse retina.
Collapse
|