1
|
Ceccon C, Borga C, Angerilli V, Bergamo F, Munari G, Sabbadin M, Gasparello J, Schiavi F, Zovato S, Scarpa M, Urso EDL, Dei Tos AP, Luchini C, Grillo F, Lonardi S, Parente P, Fassan M. MLH1 gene promoter methylation status partially overlaps with CpG methylator phenotype (CIMP) in colorectal adenocarcinoma. Pathol Res Pract 2024; 266:155786. [PMID: 39724851 DOI: 10.1016/j.prp.2024.155786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND RAS/BRAF mutations, mismatch DNA repair complex deficiency (MMRd)/microsatellite instability (MSI), and CpG methylator phenotype (CIMP) are key molecular actors in colorectal carcinogenesis. To date, conflicting evidence about the correlations between these molecular features has been reported. MATERIALS AND METHODS A retrospectively selected cohort of 123 CRCs was divided into 3 groups based on the molecular characteristics: MMR proficient (MMRp)/BRAF p.V600E mutated (BRAFmut), MMRd/BRAFmut, and MMRd/BRAF wild type (BRAFwt). MLH1 promoter (pMLH1) methylation status was assessed by pyrosequencing. For 82 samples the CIMP phenotype was evaluated using the EpiTect® MethyLight kit. RESULTS The MMRd/BRAFmut group showed a higher pMLH1 methylation rate compared to both the MMRd/BRAFwt and the MMRp/BRAFmut groups. Overall, the two MMRd groups had a higher methylation rate compared to the MMRp cases independently from the mutational status of BRAF (p-value <0.0001). The MMRd/BRAFmut group was characterized by a 90.0 % of CIMP high (CIMP-H) tumors of which 97.2 % were pMLH1 methylated. Instead, the MMRd/BRAFwt group presented 50.0 % of CIMP-H adenocarcinomas. CONCLUSIONS Our study demonstrates that pMLH1 hypermethylation, MMRd, BRAFmut and CIMP phenotype do not completely overlap in CRC. These findings further refine the knowledge on the molecular landscape of CRC and may have critical implications also for the clinical management of the disease.
Collapse
Affiliation(s)
- Carlotta Ceccon
- Department of Medicine - DIMED, University of Padova, Padova, Italy; Department of Pathology, Azienda ULSS2 Marca Trevigiana, Treviso, Italy
| | - Chiara Borga
- Department of Pathology, Azienda Ospedale-Università Padova, Padua, Italy
| | - Valentina Angerilli
- Department of Medicine - DIMED, University of Padova, Padova, Italy; Department of Pathology, Azienda ULSS2 Marca Trevigiana, Treviso, Italy
| | | | - Giada Munari
- Department of Pathology, Azienda Ospedale-Università Padova, Padua, Italy
| | - Marianna Sabbadin
- Department of Medicine - DIMED, University of Padova, Padova, Italy; Department of Pathology, Azienda ULSS2 Marca Trevigiana, Treviso, Italy
| | | | | | | | - Marco Scarpa
- General Surgery 3, Department of Surgical, Oncological and Gastroenterological Sciences (DiSCOG), Azienda Ospedale-Università Padova, Padua, Italy
| | - Emanuele Damiano Luca Urso
- General Surgery 3, Department of Surgical, Oncological and Gastroenterological Sciences (DiSCOG), Azienda Ospedale-Università Padova, Padua, Italy
| | - Angelo Paolo Dei Tos
- Department of Medicine - DIMED, University of Padova, Padova, Italy; Department of Pathology, Azienda Ospedale-Università Padova, Padua, Italy
| | - Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Federica Grillo
- Anatomic Pathology, Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy, Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genova, Italy
| | - Sara Lonardi
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Paola Parente
- Unit of Pathology, Fondazione IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Matteo Fassan
- Department of Medicine - DIMED, University of Padova, Padova, Italy; Department of Pathology, Azienda ULSS2 Marca Trevigiana, Treviso, Italy.
| |
Collapse
|
2
|
Gallardo‐Gómez M, Costas‐Ríos L, Garcia‐Prieto CA, Álvarez‐Rodríguez L, Bujanda L, Barrero M, Castells A, Balaguer F, Jover R, Esteller M, Tardío Baiges A, González‐Carreró Fojón J, Cubiella J, De Chiara L. Serum DNA methylome of the colorectal cancer serrated pathway enables non-invasive detection. Mol Oncol 2024; 18:2696-2713. [PMID: 38129291 PMCID: PMC11547225 DOI: 10.1002/1878-0261.13573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 12/23/2023] Open
Abstract
The clinical relevance of the colorectal cancer serrated pathway is evident, but the screening of serrated lesions remains challenging. We aimed to characterize the serum methylome of the serrated pathway and to evaluate circulating cell-free DNA (cfDNA) methylomes as a potential source of biomarkers for the non-invasive detection of serrated lesions. We collected serum samples from individuals with serrated adenocarcinoma (SAC), traditional serrated adenomas, sessile serrated lesions, hyperplastic polyps and individuals with no colorectal findings. First, we quantified cfDNA methylation with the MethylationEPIC array. Then, we compared the methylation profiles with tissue and serum datasets. Finally, we evaluated the utility of serum cfDNA methylation biomarkers. We identified a differential methylation profile able to distinguish high-risk serrated lesions from no serrated neoplasia, showing concordance with tissue methylation from SAC and sessile serrated lesions. Serum methylation profiles are pathway-specific, clearly separating serrated lesions from conventional adenomas. The combination of ninjurin 2 (NINJ2) and glutamate-rich 1 (ERICH1) methylation discriminated high-risk serrated lesions and SAC with 91.4% sensitivity (64.4% specificity), while zinc finger protein 718 (ZNF718) methylation reported 100% sensitivity for the detection of SAC (96% specificity). This is the first study exploring the serum methylome of serrated lesions. Differential methylation of cfDNA can be used for the non-invasive detection of colorectal serrated lesions.
Collapse
Affiliation(s)
- María Gallardo‐Gómez
- CINBIO, Universidade de VigoSpain
- Department of Biochemistry, Genetics and ImmunologyUniversidade de VigoSpain
- Galicia Sur Health Research Institute (IIS Galicia Sur)SERGAS‐UVIGOSpain
| | - Lara Costas‐Ríos
- CINBIO, Universidade de VigoSpain
- Department of Biochemistry, Genetics and ImmunologyUniversidade de VigoSpain
| | - Carlos A. Garcia‐Prieto
- Josep Carreras Leukaemia Research Institute (IJC)BadalonaSpain
- Life Sciences DepartmentBarcelona Supercomputing Center (BSC)Spain
| | - Lara Álvarez‐Rodríguez
- CINBIO, Universidade de VigoSpain
- Department of Biochemistry, Genetics and ImmunologyUniversidade de VigoSpain
| | - Luis Bujanda
- Department of Gastroenterology, Biodonostia Health Research Institute, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Universidad del País Vasco (UPV/EHU)San SebastiánSpain
| | - Maialen Barrero
- Department of OncologyHospital Universitario DonostiaSan SebastiánSpain
| | - Antoni Castells
- Gastroenterology Department, Hospital Clínic, IDIBAPS, CIBERehdUniversity of BarcelonaSpain
| | - Francesc Balaguer
- Gastroenterology Department, Hospital Clínic, IDIBAPS, CIBERehdUniversity of BarcelonaSpain
| | - Rodrigo Jover
- Servicio de Medicina Digestiva, Hospital General Universitario Dr. Balmis ISABIALUniversidad Miguel HernándezAlicanteSpain
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC)BadalonaSpain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC)MadridSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
- Physiological Sciences Department, School of Medicine and Health SciencesUniversity of Barcelona (UB)Spain
| | - Antoni Tardío Baiges
- Department of PathologyHospital Álvaro Cunqueiro, Instituto de Investigación Biomédica Galicia SurVigoSpain
| | | | - Joaquín Cubiella
- Department of GastroenterologyComplexo Hospitalario Universitario de Ourense, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)OurenseSpain
| | - Loretta De Chiara
- CINBIO, Universidade de VigoSpain
- Department of Biochemistry, Genetics and ImmunologyUniversidade de VigoSpain
- Galicia Sur Health Research Institute (IIS Galicia Sur)SERGAS‐UVIGOSpain
| |
Collapse
|
3
|
van Toledo DEFWM, Bleijenberg AGC, Venema A, de Wit MJ, van Eeden S, Meijer GA, Carvalho B, Dekker E, Henneman P, IJspeert JEG, van Noesel CJM. Aberrant PRDM2 methylation as an early event in serrated lesions destined to evolve into microsatellite-instable colorectal cancers. J Pathol Clin Res 2024; 10:e348. [PMID: 38380944 PMCID: PMC10880511 DOI: 10.1002/cjp2.348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/17/2023] [Accepted: 10/15/2023] [Indexed: 02/22/2024]
Abstract
Up to 30% of colorectal cancers (CRCs) develop from sessile serrated lesions (SSLs). Within the serrated neoplasia pathway, at least two principally distinct oncogenetic routes exist generating microsatellite-stable and microsatellite-instable CRCs, respectively. Aberrant DNA methylation (DNAm) is found early in the serrated pathway and might play a role in both oncogenetic routes. We studied a cohort of 23 SSLs with a small focus (<10 mm) of dysplasia or cancer, 10 of which were MLH1 deficient and 13 MLH1 proficient. By comparing, for each SSL, the methylation status of (1) the region of dysplasia or cancer (SSL-D), (2) the nondysplastic SSL (SSL), and (3) adjacent normal mucosa, differentially methylated probes (DMPs) and regions (DMRs) were assessed both genome-wide as well as in a tumor-suppressor gene-focused approach. By comparing DNAm of MLH1-deficient SSL-Ds with their corresponding SSLs, we identified five DMRs, including those annotating for PRDM2 and, not unexpectedly, MLH1. PRDM2 gene promotor methylation was associated with MLH1 expression status, as it was largely hypermethylated in MLH1-deficient SSL-Ds and hypomethylated in MLH1-proficient SSL-Ds. Significantly increased DNAm levels of PRDM2 and MLH1, in particular at 'critical' MLH1 probe sites, were to some extent already visible in SSLs as compared to normal mucosa (p = 0.02, p = 0.01, p < 0.0001, respectively). No DMRs, nor DMPs, were identified for SSLs destined to evolve into MLH1-proficient SSL-Ds. Our data indicate that, within both arms of the serrated CRC pathway, the majority of the epigenetic alterations are introduced early during SSL formation. Promoter hypermethylation of PRDM2 and MLH1 on the other hand specifically initiates in SSLs destined to transform into MLH1-deficient CRCs suggesting that the fate of SSLs may not necessarily result from a stochastic process but possibly is already imprinted and predisposed.
Collapse
Affiliation(s)
- David EFWM van Toledo
- Department of Gastroenterology and HepatologyAmsterdam University Medical Centers, location Academic Medical CenterAmsterdamThe Netherlands
- Amsterdam Gastroenterology Endocrinology and MetabolismAmsterdamThe Netherlands
- Cancer Center AmsterdamAmsterdam University Medical Centers, Location Academic Medical CenterAmsterdamThe Netherlands
| | - Arne GC Bleijenberg
- Department of Gastroenterology and HepatologyAmsterdam University Medical Centers, location Academic Medical CenterAmsterdamThe Netherlands
- Amsterdam Gastroenterology Endocrinology and MetabolismAmsterdamThe Netherlands
- Cancer Center AmsterdamAmsterdam University Medical Centers, Location Academic Medical CenterAmsterdamThe Netherlands
| | - Andrea Venema
- Department of Human Genetics, Epigenetics of disease, Amsterdam Gastroenterology Endocrinology and MetabolismAmsterdam University Medical Centers, Location Academic Medical CenterAmsterdamThe Netherlands
| | - Mireille J de Wit
- Department of PathologyAmsterdamAmsterdam University Medical Centers, Location Academic Medical CenterThe Netherlands
| | - Susanne van Eeden
- Department of PathologyAmsterdamAmsterdam University Medical Centers, Location Academic Medical CenterThe Netherlands
| | - Gerrit A Meijer
- Department of PathologyNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Beatrice Carvalho
- Department of PathologyNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Evelien Dekker
- Department of Gastroenterology and HepatologyAmsterdam University Medical Centers, location Academic Medical CenterAmsterdamThe Netherlands
- Amsterdam Gastroenterology Endocrinology and MetabolismAmsterdamThe Netherlands
- Cancer Center AmsterdamAmsterdam University Medical Centers, Location Academic Medical CenterAmsterdamThe Netherlands
| | - Peter Henneman
- Department of Human Genetics, Epigenetics of disease, Amsterdam Gastroenterology Endocrinology and MetabolismAmsterdam University Medical Centers, Location Academic Medical CenterAmsterdamThe Netherlands
| | - Joep EG IJspeert
- Department of Gastroenterology and HepatologyAmsterdam University Medical Centers, location Academic Medical CenterAmsterdamThe Netherlands
- Amsterdam Gastroenterology Endocrinology and MetabolismAmsterdamThe Netherlands
- Cancer Center AmsterdamAmsterdam University Medical Centers, Location Academic Medical CenterAmsterdamThe Netherlands
| | - Carel JM van Noesel
- Department of PathologyAmsterdamAmsterdam University Medical Centers, Location Academic Medical CenterThe Netherlands
| |
Collapse
|
4
|
Sajibu S, Sonder E, Tiwari A, Orjuela S, Parker HR, Frans OT, Gubler C, Marra G, Robinson MD. Validation of hypermethylated DNA regions found in colorectal cancers as potential aging-independent biomarkers of precancerous colorectal lesions. BMC Cancer 2023; 23:998. [PMID: 37853362 PMCID: PMC10585861 DOI: 10.1186/s12885-023-11487-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND We previously identified 16,772 colorectal cancer-associated hypermethylated DNA regions that were also detectable in precancerous colorectal lesions (preCRCs) and unrelated to normal mucosal aging. We have now conducted a study to validate 990 of these differentially methylated DNA regions (DMRs) in a new series of preCRCs. METHODS We used targeted bisulfite sequencing to validate these 990 potential biomarkers in 59 preCRC tissue samples (41 conventional adenomas, 18 sessile serrated lesions), each with a patient-matched normal mucosal sample. Based on differential DNA methylation tests, a panel of candidate DMRs was chosen on a subset of our cohort and then validated on the remaining part of our cohort and two publicly available datasets with respect to their stratifying potential between preCRCs and normal mucosa. RESULTS Strong statistical significance for the difference in methylation levels was observed across the full set of 990 investigated DMRs. From these, a selected candidate panel of 30 DMRs correctly identified 58/59 tumors (area under the receiver operating curve: 0.998). CONCLUSIONS These validated DNA hypermethylation markers can be exploited to develop more accurate noninvasive colorectal tumor screening assays.
Collapse
Affiliation(s)
- Sija Sajibu
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Emanuel Sonder
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
- Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Amit Tiwari
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Stephany Orjuela
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Hannah R Parker
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | | | - Christoph Gubler
- Division of Gastroenterology, Triemli Hospital, Zurich, Switzerland
| | - Giancarlo Marra
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Mark D Robinson
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland.
- SIB Swiss Institute of Bioinformatics, Vaud, Switzerland.
| |
Collapse
|
5
|
Takeda K, Koi M, Okita Y, Sajibu S, Keku TO, Carethers JM. Fusobacterium nucleatum Load Correlates with KRAS Mutation and Sessile Serrated Pathogenesis in Colorectal Adenocarcinoma. CANCER RESEARCH COMMUNICATIONS 2023; 3:1940-1951. [PMID: 37772997 PMCID: PMC10530411 DOI: 10.1158/2767-9764.crc-23-0179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/14/2023] [Accepted: 09/05/2023] [Indexed: 09/30/2023]
Abstract
Fusobacterium nucleatum (Fn) has been frequently detected in colorectal cancer. A high load of Fn has been associated with subtypes of colorectal cancers, located in the proximal colon, exhibiting microsatellite instability-high (MSI-H), MLH1 promoter hypermethylation, the CpG island hypermethylation phenotype-high, or BRAF mutation in some studies. Although these features characterize the sessile serrated pathway (SSP) of colon cancers, other studies have shown that Fn infection is associated with KRAS mutations mainly characteristic of non-serrated neoplasia. It is also not clear at what point the association of Fn infection with these genomic alterations is established during colorectal carcinogenesis. Here we show that MSI-H, MLH1 hypermethylation, BRAF mutation or KRAS mutations were independently associated with Fn infection in colorectal cancer. On the other hand, increasing Fn copy number in tissues was associated with increased probability to exhibit MSI-H, MLH1 hypermethylation or BRAF mutations but not KRAS mutations in colorectal cancer. We also show that Fn load was significantly less than that of colorectal cancer and no association was detected between BRAF/KRAS mutations or MLH1 hypermethylation and Fn infection in adenomas. Our combined data suggest that increasing loads of Fn during and/or after adenomacarcinoma transition might promote SSP but not KRAS-driven colorectal carcinogenesis. Alternatively, Fn preferentially colonizes colorectal cancers with SSP and KRAS mutations but can expand more in colorectal cancers with SSP. SIGNIFICANCE The authors demonstrated that Fn is enriched in colorectal cancers exhibiting the SSP phenotype, and in colorectal cancers carrying KRAS mutations. Fn infection should be considered as a candidate risk factor specific to colorectal cancers with the SSP phenotype and with KRAS mutations.
Collapse
Affiliation(s)
- Koki Takeda
- Division of Gastroenterology and Hepatology, Department of Internal Medicine and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Minoru Koi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
- Divsion of Gastroenterology and Hepatology, Department of Medicine and Moores Cancer Center, University of California San Diego, San Diego, California
| | - Yoshiki Okita
- Department of Gastrointestinal and Pediatric Surgery, Graduate School of Medicine, Mie University, Mie, Japan
| | - Sija Sajibu
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Temitope O. Keku
- Division of Gastroenterology and Hepatology, Departments of Medicine and Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - John M. Carethers
- Division of Gastroenterology and Hepatology, Department of Internal Medicine and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
- Divsion of Gastroenterology and Hepatology, Department of Medicine and Moores Cancer Center, University of California San Diego, San Diego, California
| |
Collapse
|
6
|
Rzasa P, Whelan S, Farahmand P, Cai H, Guterman I, Palacios-Gallego R, Undru SS, Sandford L, Green C, Andreadi C, Mintseva M, Parrott E, Jin H, Hey F, Giblett S, Sylvius NB, Allcock NS, Straatman-Iwanowska A, Feuda R, Tufarelli C, Brown K, Pritchard C, Rufini A. BRAF V600E-mutated serrated colorectal neoplasia drives transcriptional activation of cholesterol metabolism. Commun Biol 2023; 6:962. [PMID: 37735514 PMCID: PMC10514332 DOI: 10.1038/s42003-023-05331-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023] Open
Abstract
BRAF mutations occur early in serrated colorectal cancers, but their long-term influence on tissue homeostasis is poorly characterized. We investigated the impact of short-term (3 days) and long-term (6 months) expression of BrafV600E in the intestinal tissue of an inducible mouse model. We show that BrafV600E perturbs the homeostasis of intestinal epithelial cells, with impaired differentiation of enterocytes emerging after prolonged expression of the oncogene. Moreover, BrafV600E leads to a persistent transcriptional reprogramming with enrichment of numerous gene signatures indicative of proliferation and tumorigenesis, and signatures suggestive of metabolic rewiring. We focused on the top-ranking cholesterol biosynthesis signature and confirmed its increased expression in human serrated lesions. Functionally, the cholesterol lowering drug atorvastatin prevents the establishment of intestinal crypt hyperplasia in BrafV600E-mutant mice. Overall, our work unveils the long-term impact of BrafV600E expression in intestinal tissue and suggests that colorectal cancers with mutations in BRAF might be prevented by statins.
Collapse
Affiliation(s)
- Paulina Rzasa
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Sarah Whelan
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Pooyeh Farahmand
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Hong Cai
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Inna Guterman
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | | | - Shanthi S Undru
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Lauren Sandford
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Caleb Green
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Catherine Andreadi
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Maria Mintseva
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
- Area of Neuroscience, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Emma Parrott
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Hong Jin
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Fiona Hey
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Susan Giblett
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Nicolas B Sylvius
- NUCLEUS Genomics, Core Biotechnology Services, University of Leicester, Leicester, UK
| | - Natalie S Allcock
- University of Leicester Core Biotechnology Services Electron Microscopy Facility, Leicester, UK
| | | | - Roberto Feuda
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Cristina Tufarelli
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Karen Brown
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Catrin Pritchard
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Alessandro Rufini
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK.
- Dipartimento di Bioscienze, University of Milan, Milan, Italy.
| |
Collapse
|
7
|
Jung G, Hernández-Illán E, Lozano JJ, Sidorova J, Muñoz J, Okada Y, Quintero E, Hernandez G, Jover R, Carballal S, Cuatrecasas M, Moreno L, Diaz M, Ocaña T, Sánchez A, Rivero L, Ortiz O, Llach J, Castells A, Pellisé M, Goel A, Batlle E, Balaguer F. Epigenome-Wide DNA Methylation Profiling of Normal Mucosa Reveals HLA-F Hypermethylation as a Biomarker Candidate for Serrated Polyposis Syndrome. J Mol Diagn 2022; 24:674-686. [PMID: 35447336 DOI: 10.1016/j.jmoldx.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/08/2022] [Accepted: 03/04/2022] [Indexed: 11/16/2022] Open
Abstract
Serrated polyposis syndrome (SPS) is associated with a high risk for colorectal cancer. Intense promoter hypermethylation is a frequent molecular finding in the serrated pathway and may be present in normal mucosa, predisposing to the formation of serrated lesions. To identify novel biomarkers for SPS, fresh-frozen samples of normal mucosa from 50 patients with SPS and 19 healthy individuals were analyzed by using the 850K BeadChip Technology (Infinium). Aberrant methylation levels were correlated with gene expression using a next-generation transcriptome profiling tool. Two validation steps were performed on independent cohorts: first, on formalin-fixed, paraffin-embedded tissue of the normal mucosa; and second, on 24 serrated lesions. The most frequently hypermethylated genes were HLA-F, SLFN12, HLA-DMA, and RARRES3; and the most frequently hypomethylated genes were PIWIL1 and ANK3 (Δβ = 10%; P < 0.05). Expression levels of HLA-F, SLFN12, and HLA-DMA were significantly different between SPS patients and healthy individuals and correlated well with the methylation status of the corresponding differentially methylated region (fold change, >20%; r > 0.55; P < 0.001). Significant hypermethylation of CpGs in the gene body of HLA-F was also found in serrated lesions (Δβ = 23%; false discovery rate = 0.01). Epigenome-wide methylation profiling has revealed numerous differentially methylated CpGs in normal mucosa from SPS patients. Significant hypermethylation of HLA-F is a novel biomarker candidate for SPS.
Collapse
Affiliation(s)
- Gerhard Jung
- Gastroenterology Department, Hospital Clínic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain; Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | | | - Juan J Lozano
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain; Bioinformatics Platform, CIBEREHD, Barcelona, Spain
| | - Julia Sidorova
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain; Bioinformatics Platform, CIBEREHD, Barcelona, Spain
| | - Jenifer Muñoz
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Yasuyuki Okada
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute, Biomedical Research Center, Monrovia, California; Department of Gastroenterology and Oncology, Tokushima University Graduate School, Tokushima, Japan
| | - Enrique Quintero
- Department of Gastroenterology, University Hospital of the Canary Islands, Santa Cruz de Tenerife, Spain
| | - Goretti Hernandez
- Department of Gastroenterology, University Hospital of the Canary Islands, Santa Cruz de Tenerife, Spain
| | - Rodrigo Jover
- Servicio de Medicina Digestiva, Hospital General Universitario de Alicante, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Sabela Carballal
- Gastroenterology Department, Hospital Clínic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain; Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Miriam Cuatrecasas
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain; Faculty of Medicine, University of Barcelona, Barcelona, Spain; Pathology Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Lorena Moreno
- Gastroenterology Department, Hospital Clínic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain; Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Mireia Diaz
- Gastroenterology Department, Hospital Clínic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain; Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Teresa Ocaña
- Gastroenterology Department, Hospital Clínic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain; Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Ariadna Sánchez
- Gastroenterology Department, Hospital Clínic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain; Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Liseth Rivero
- Gastroenterology Department, Hospital Clínic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain; Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Oswaldo Ortiz
- Gastroenterology Department, Hospital Clínic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain; Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Joan Llach
- Gastroenterology Department, Hospital Clínic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain; Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Antoni Castells
- Gastroenterology Department, Hospital Clínic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain; Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Maria Pellisé
- Gastroenterology Department, Hospital Clínic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain; Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute, Biomedical Research Center, Monrovia, California; City of Hope Comprehensive Cancer Center, Duarte, California
| | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Francesc Balaguer
- Gastroenterology Department, Hospital Clínic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain; Faculty of Medicine, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
8
|
Orjuela S, Parker HR, Sajibu S, Cereatti F, Sauter M, Buffoli F, Robinson MD, Marra G. Disentangling tumorigenesis-associated DNA methylation changes in colorectal tissues from those associated with ageing. Epigenetics 2021; 17:677-694. [PMID: 34369258 DOI: 10.1080/15592294.2021.1952375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Physiological ageing and tumorigenesis are both associated with epigenomic alterations in human tissue cells, the most extensively investigated of which entails de novo cytosine methylation (i.e., hypermethylation) within the CpG dinucleotides of CpG islands. Genomic regions that become hypermethylated during tumorigenesis are generally believed to overlap regions that acquire methylation in normal tissues as an effect of ageing. To define the extension of this overlap, we analysed the DNA methylomes of 48 large-bowel tissue samples taken from women of different ages during screening colonoscopy: 18 paired samples of normal and lesional tissues from donors harbouring a precancerous lesion and 12 samples of normal mucosa from tumour-free donors. Each sample was subjected to targeted, genome-wide bisulphite sequencing of ~2.5% of the genome, including all CpG islands. In terms of both its magnitude and extension along the chromatin, tumour-associated DNA hypermethylation in these regions was much more conspicuous than that observed in the normal mucosal samples from older (vs. younger) tumour-free donors. 83% of the ageing-associated hypermethylated regions (n = 2501) coincided with hypermethylated regions observed in tumour samples. However, 86% of the regions displaying hypermethylation in precancerous lesions (n = 16,772) showed no methylation changes in the ageing normal mucosa. The tumour-specificity of this latter hypermethylation was validated using published sets of data on DNA methylation in normal and neoplastic colon tissues. This extensive set of genomic regions displaying tumour-specific hypermethylation represents a rich vein of putative biomarkers for the early, non-invasive detection of colorectal tumours in women of all ages.
Collapse
Affiliation(s)
- Stephany Orjuela
- Institute of Molecular Cancer Research, University of Zurich, Switzerland.,Department of Molecular Life Sciences, University of Zurich and SIB Swiss Institute of Bioinformatics, Switzerland
| | - Hannah R Parker
- Institute of Molecular Cancer Research, University of Zurich, Switzerland.,Department of Molecular Life Sciences, University of Zurich and SIB Swiss Institute of Bioinformatics, Switzerland
| | - Sija Sajibu
- Institute of Molecular Cancer Research, University of Zurich, Switzerland
| | | | - Matthias Sauter
- Division of Gastroenterology, Triemli Hospital Zurich, Switzerland
| | | | - Mark D Robinson
- Department of Molecular Life Sciences, University of Zurich and SIB Swiss Institute of Bioinformatics, Switzerland
| | - Giancarlo Marra
- Institute of Molecular Cancer Research, University of Zurich, Switzerland
| |
Collapse
|
9
|
Marra G. An "expressionistic" look at serrated precancerous colorectal lesions. Diagn Pathol 2021; 16:4. [PMID: 33423702 PMCID: PMC7797135 DOI: 10.1186/s13000-020-01064-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/27/2020] [Indexed: 01/10/2023] Open
Abstract
Background Approximately 60% of colorectal cancer (CRC) precursor lesions are the genuinely-dysplastic conventional adenomas (cADNs). The others include hyperplastic polyps (HPs), sessile serrated lesions (SSL), and traditional serrated adenomas (TSAs), subtypes of a class of lesions collectively referred to as “serrated.” Endoscopic and histologic differentiation between cADNs and serrated lesions, and between serrated lesion subtypes can be difficult. Methods We used in situ hybridization to verify the expression patterns in CRC precursors of 21 RNA molecules that appear to be promising differentiation markers on the basis of previous RNA sequencing studies. Results SSLs could be clearly differentiated from cADNs by the expression patterns of 9 of the 12 RNAs tested for this purpose (VSIG1, ANXA10, ACHE, SEMG1, AQP5, LINC00520, ZIC5/2, FOXD1, NKD1). Expression patterns of all 9 in HPs were similar to those in SSLs. Nine putatively HP-specific RNAs were also investigated, but none could be confirmed as such: most (e.g., HOXD13 and HOXB13), proved instead to be markers of the normal mucosa in the distal colon and rectum, where most HPs arise. TSAs displayed mixed staining patterns reflecting the presence of serrated and dysplastic glands in the same lesion. Conclusions Using a robust in situ hybridization protocol, we identified promising tissue-staining markers that, if validated in larger series of lesions, could facilitate more precise histologic classification of CRC precursors and, consequently, more tailored clinical follow-up of their carriers. Our findings should also fuel functional studies on the pathogenic significance of specific gene expression alterations in the initiation and evolution of CRC precursor subtypes. Supplementary Information The online version contains supplementary material available at 10.1186/s13000-020-01064-1.
Collapse
Affiliation(s)
- Giancarlo Marra
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
10
|
Sobhani I, Rotkopf H, Khazaie K. Bacteria-related changes in host DNA methylation and the risk for CRC. Gut Microbes 2020; 12:1800898. [PMID: 32931352 PMCID: PMC7575230 DOI: 10.1080/19490976.2020.1800898] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 07/17/2020] [Indexed: 02/03/2023] Open
Abstract
Colorectal cancer (CRC) is the second most common cause of cancer deaths in men and women combined. Colon-tumor growth is multistage and the result of the accumulation of spontaneous mutations and epigenetic events that silence tumor-suppressor genes and activate oncogenes. Environmental factors are primary contributors to these somatic gene alterations, which account for the increase in incidence of CRC in western countries. In recent decades, gut microbiota and their metabolites have been recognized as essential contributing factors to CRC, and now serve as biomarkers for the diagnosis and prognosis of CRC. In the present review, we highlight holistic approaches to understanding how gut microbiota contributes to CRC. We particularly focus herein on bacteria-related changes in host DNA methylation and the risk for CRC.
Collapse
Affiliation(s)
- Iradj Sobhani
- Head of the Department of Gastroenterology, Consultant in GI Oncology, Hopital Henri Mondor, APHP. Créteil-France; Head of the Research Team EC2M3, Université Paris-Est Créteil (UPEC), Créteil, France
| | - Hugo Rotkopf
- Department of Gastroenterology Hospital Henri Mondor, APHP. Créteil-France; Member of Research Team EC2M3, Université Paris-Est Créteil (UPEC). Créteil, France
| | | |
Collapse
|
11
|
Orjuela S, Machlab D, Menigatti M, Marra G, Robinson MD. DAMEfinder: a method to detect differential allele-specific methylation. Epigenetics Chromatin 2020; 13:25. [PMID: 32487212 PMCID: PMC7268773 DOI: 10.1186/s13072-020-00346-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 05/21/2020] [Indexed: 12/15/2022] Open
Abstract
Background DNA methylation is a highly studied epigenetic signature that is associated with regulation of gene expression, whereby genes with high levels of promoter methylation are generally repressed. Genomic imprinting occurs when one of the parental alleles is methylated, i.e., when there is inherited allele-specific methylation (ASM). A special case of imprinting occurs during X chromosome inactivation in females, where one of the two X chromosomes is silenced, to achieve dosage compensation between the sexes. Another more widespread form of ASM is sequence dependent (SD-ASM), where ASM is linked to a nearby heterozygous single nucleotide polymorphism (SNP). Results We developed a method to screen for genomic regions that exhibit loss or gain of ASM in samples from two conditions (treatments, diseases, etc.). The method relies on the availability of bisulfite sequencing data from multiple samples of the two conditions. We leverage other established computational methods to screen for these regions within a new R package called DAMEfinder. It calculates an ASM score for all CpG sites or pairs in the genome of each sample, and then quantifies the change in ASM between conditions. It then clusters nearby CpG sites with consistent change into regions. In the absence of SNP information, our method relies only on reads to quantify ASM. This novel ASM score compares favorably to current methods that also screen for ASM. Not only does it easily discern between imprinted and non-imprinted regions, but also females from males based on X chromosome inactivation. We also applied DAMEfinder to a colorectal cancer dataset and observed that colorectal cancer subtypes are distinguishable according to their ASM signature. We also re-discover known cases of loss of imprinting. Conclusion We have designed DAMEfinder to detect regions of differential ASM (DAMEs), which is a more refined definition of differential methylation, and can therefore help in breaking down the complexity of DNA methylation and its influence in development and disease.
Collapse
Affiliation(s)
- Stephany Orjuela
- Institute of Molecular Life Sciences and SIB Swiss Institute of Bioinformatics, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Dania Machlab
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Mirco Menigatti
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Giancarlo Marra
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Mark D Robinson
- Institute of Molecular Life Sciences and SIB Swiss Institute of Bioinformatics, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
12
|
Orjuela S, Menigatti M, Schraml P, Kambakamba P, Robinson MD, Marra G. The DNA hypermethylation phenotype of colorectal cancer liver metastases resembles that of the primary colorectal cancers. BMC Cancer 2020; 20:290. [PMID: 32252665 PMCID: PMC7137338 DOI: 10.1186/s12885-020-06777-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 03/23/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Identifying molecular differences between primary and metastatic colorectal cancers-now possible with the aid of omics technologies-can improve our understanding of the biological mechanisms of cancer progression and facilitate the discovery of novel treatments for late-stage cancer. We compared the DNA methylomes of primary colorectal cancers (CRCs) and CRC metastases to the liver. Laser microdissection was used to obtain epithelial tissue (10 to 25 × 106 μm2) from sections of fresh-frozen samples of primary CRCs (n = 6), CRC liver metastases (n = 12), and normal colon mucosa (n = 3). DNA extracted from tissues was enriched for methylated sequences with a methylCpG binding domain (MBD) polypeptide-based protocol and subjected to deep sequencing. The performance of this protocol was compared with that of targeted enrichment for bisulfite sequencing used in a previous study of ours. RESULTS MBD enrichment captured a total of 322,551 genomic regions (249.5 Mb or ~ 7.8% of the human genome), which included over seven million CpG sites. A few of these regions were differentially methylated at an expected false discovery rate (FDR) of 5% in neoplastic tissues (primaries: 0.67%, i.e., 2155 regions containing 279,441 CpG sites; liver metastases: 1%, i.e., 3223 regions containing 312,723 CpG sites) as compared with normal mucosa samples. Most of the differentially methylated regions (DMRs; 94% in primaries; 70% in metastases) were hypermethylated, and almost 80% of these (1882 of 2396) were present in both lesion types. At 5% FDR, no DMRs were detected in liver metastases vs. primary CRC. However, short regions of low-magnitude hypomethylation were frequent in metastases but rare in primaries. Hypermethylated DMRs were far more abundant in sequences classified as intragenic, gene-regulatory, or CpG shelves-shores-island segments, whereas hypomethylated DMRs were equally represented in extragenic (mainly, open-sea) and intragenic (mainly, gene bodies) sequences of the genome. Compared with targeted enrichment, MBD capture provided a better picture of the extension of CRC-associated DNA hypermethylation but was less powerful for identifying hypomethylation. CONCLUSIONS Our findings demonstrate that the hypermethylation phenotype in CRC liver metastases remains similar to that of the primary tumor, whereas CRC-associated DNA hypomethylation probably undergoes further progression after the cancer cells have migrated to the liver.
Collapse
Affiliation(s)
- Stephany Orjuela
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Institute of Molecular Life Sciences, University of Zurich and SIB Swiss Institute of Bioinformatics, Zürich, Switzerland
| | - Mirco Menigatti
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Peter Schraml
- Department of Pathology and Molecular Pathology, University of Zurich, Zürich, Switzerland
| | - Patryk Kambakamba
- Division of Surgical Research, University of Zurich, Zürich, Switzerland
| | - Mark D Robinson
- Institute of Molecular Life Sciences, University of Zurich and SIB Swiss Institute of Bioinformatics, Zürich, Switzerland
| | - Giancarlo Marra
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
13
|
Noreen F, Küng T, Tornillo L, Parker H, Silva M, Weis S, Marra G, Rad R, Truninger K, Schär P. DNA methylation instability by BRAF-mediated TET silencing and lifestyle-exposure divides colon cancer pathways. Clin Epigenetics 2019; 11:196. [PMID: 31842975 PMCID: PMC6916434 DOI: 10.1186/s13148-019-0791-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 12/02/2019] [Indexed: 12/22/2022] Open
Abstract
Background Aberrations in DNA methylation are widespread in colon cancer (CC). Understanding origin and progression of DNA methylation aberrations is essential to develop effective preventive and therapeutic strategies. Here, we aimed to dissect CC subtype-specific methylation instability to understand underlying mechanisms and functions. Methods We have assessed genome-wide DNA methylation in the healthy normal colon mucosa (HNM), precursor lesions and CCs in a first comprehensive study to delineate epigenetic change along the process of colon carcinogenesis. Mechanistically, we used stable cell lines, genetically engineered mouse model of mutant BRAFV600E and molecular biology analysis to establish the role of BRAFV600E-mediated-TET inhibition in CpG-island methylator phenotype (CIMP) inititation. Results We identified two distinct patterns of CpG methylation instability, determined either by age–lifestyle (CC-neutral CpGs) or genetically (CIMP-CpGs). CC-neutral-CpGs showed age-dependent hypermethylation in HNM, all precursors, and CCs, while CIMP-CpGs showed hypermethylation specifically in sessile serrated adenomas/polyps (SSA/Ps) and CIMP-CCs. BRAFV600E-mutated CCs and precursors showed a significant downregulation of TET1 and TET2 DNA demethylases. Stable expression of BRAFV600E in nonCIMP CC cells and in a genetic mouse model was sufficient to repress TET1/TET2 and initiate hypermethylation at CIMP-CpGs, reversible by BRAFV600E inhibition. BRAFV600E-driven CIMP-CpG hypermethylation occurred at genes associated with established CC pathways, effecting functional changes otherwise achieved by genetic mutation in carcinogenesis. Conclusions Hence, while age–lifestyle-driven hypermethylation occurs generally in colon carcinogenesis, BRAFV600E-driven hypermethylation is specific for the “serrated” pathway. This knowledge will advance the use of epigenetic biomarkers to assess subgroup-specific CC risk and disease progression.
Collapse
Affiliation(s)
- Faiza Noreen
- Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058, Basel, Switzerland.,Swiss Institute of Bioinformatics, 4053, Basel, Switzerland
| | - Taya Küng
- Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058, Basel, Switzerland
| | - Luigi Tornillo
- Institute of Pathology, University Hospital Basel, 4056, Basel, Switzerland
| | - Hannah Parker
- Institute of Molecular Cancer Research, University of Zurich, 8057, Zurich, Switzerland
| | - Miguel Silva
- Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, 81675, Munich, Germany
| | - Stefan Weis
- Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058, Basel, Switzerland
| | - Giancarlo Marra
- Institute of Molecular Cancer Research, University of Zurich, 8057, Zurich, Switzerland
| | - Roland Rad
- Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, 81675, Munich, Germany
| | - Kaspar Truninger
- Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058, Basel, Switzerland. .,Gastroenterologie Oberaargau, CH-4900, Langenthal, Switzerland.
| | - Primo Schär
- Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058, Basel, Switzerland.
| |
Collapse
|
14
|
Ashktorab H, Delker D, Kanth P, Goel A, Carethers JM, Brim H. Molecular Characterization of Sessile Serrated Adenoma/Polyps From a Large African American Cohort. Gastroenterology 2019; 157:572-574. [PMID: 31004568 PMCID: PMC6980432 DOI: 10.1053/j.gastro.2019.04.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/09/2019] [Accepted: 04/13/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Hassan Ashktorab
- Department of Medicine and Cancer Center, Howard University College of Medicine, Washington, DC.
| | - Don Delker
- Division of Gastroenterology, University of Utah Health Care, Huntsman Cancer Institute, Salt Lake City, Utah
| | - Priyanka Kanth
- Division of Gastroenterology, University of Utah Health Care, Huntsman Cancer Institute, Salt Lake City, Utah
| | - Ajay Goel
- Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Dallas, Texas
| | - John M. Carethers
- Division of Gastroenterology, Department of Internal Medicine, Department of Human Genetics, and Rogel Cancer Center, Ann Arbor, Michigan
| | - Hassan Brim
- Department of Pathology, Howard University College of Medicine, Washington DC
| |
Collapse
|
15
|
The Molecular Hallmarks of the Serrated Pathway in Colorectal Cancer. Cancers (Basel) 2019; 11:cancers11071017. [PMID: 31330830 PMCID: PMC6678087 DOI: 10.3390/cancers11071017] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/15/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer death worldwide. It includes different subtypes that differ in their clinical and prognostic features. In the past decade, in addition to the conventional adenoma-carcinoma model, an alternative multistep mechanism of carcinogenesis, namely the “serrated pathway”, has been described. Approximately, 15 to 30% of all CRCs arise from neoplastic serrated polyps, a heterogeneous group of lesions that are histologically classified into three morphologic categories: hyperplastic polyps, sessile serrated adenomas/polyps, and the traditional serrated adenomas/polyps. Serrated polyps are characterized by genetic (BRAF or KRAS mutations) and epigenetic (CpG island methylator phenotype (CIMP)) alterations that cooperate to initiate and drive malignant transformation from normal colon mucosa to polyps, and then to CRC. The high heterogeneity of the serrated lesions renders their diagnostic and pathological interpretation difficult. Hence, novel genetic and epigenetic biomarkers are required for better classification and management of CRCs. To date, several molecular alterations have been associated with the serrated polyp-CRC sequence. In addition, the gut microbiota is emerging as a contributor to/modulator of the serrated pathway. This review summarizes the state of the art of the genetic, epigenetic and microbiota signatures associated with serrated CRCs, together with their clinical implications.
Collapse
|
16
|
Liu C, Fennell LJ, Bettington ML, Walker NI, Dwine J, Leggett BA, Whitehall VLJ. DNA methylation changes that precede onset of dysplasia in advanced sessile serrated adenomas. Clin Epigenetics 2019; 11:90. [PMID: 31200767 PMCID: PMC6570920 DOI: 10.1186/s13148-019-0691-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/04/2019] [Indexed: 12/31/2022] Open
Abstract
Background Sessile serrated adenomas (SSAs) are common polyps which give rise to 20–30% of colorectal cancer (CRC). SSAs display clinicopathologic features which present challenges in surveillance, including overrepresentation in young patients, proclivity for the proximal colon and rarity of histologic dysplasia (referred to then as SSAs with dysplasia, SSADs). Once dysplasia develops, there is rapid progression to CRC, even at a small size. There is therefore a clinical need to separate the “advanced” SSAs at high risk of progression to SSAD and cancer from ordinary SSAs. Since SSAs are known to accumulate methylation over time prior to the development of dysplasia, SSAD backgrounds (the remnant SSA present within an SSAD) likely harbour additional methylation events compared with ordinary SSAs. We therefore performed MethyLight and comprehensive methylation array (Illumina MethylationEPIC) on 40 SSAD backgrounds and 40 matched ordinary SSAs, and compared the methylation results with CRC methylation, CRC expression and immunohistochemical data. Results SSAD backgrounds demonstrated significant hypermethylation of CpG islands compared with ordinary SSAs, and the proportion of hypermethylated probes decreased progressively in the shore, shelf and open sea regions. Hypomethylation occurred in concert with hypermethylation, which showed a reverse pattern, increasing progressively away from the island regions. These methylation changes were also identified in BRAF-mutant hypermethylated CRCs. When compared with CRC expression data, SV2B, MLH1/EPM2AIP1, C16orf62, RCOR3, BAIAP3, OGDHL, HDHD3 and ATP1B2 demonstrated both promoter hypermethylation and decreased expression. Although SSAD backgrounds were histologically indistinguishable from ordinary SSAs, MLH1 methylation was detectable via MethyLight in 62.9% of SSAD backgrounds, and focal immunohistochemical MLH1 loss was seen in 52.5% of SSAD backgrounds. Conclusions Significant hyper- and hypomethylation events occur during SSA progression well before the development of histologically identifiable changes. Methylation is a heterogeneous process within individual SSAs, as typified by MLH1, where both MLH1 methylation and focal immunohistochemical MLH1 loss can be seen in the absence of dysplasia. This heterogeneity is likely a generalised phenomenon and should be taken into account in future methylation-based studies and the development of clinical methylation panels. Electronic supplementary material The online version of this article (10.1186/s13148-019-0691-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cheng Liu
- The Conjoint Gastroenterology Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD, 4006, Australia. .,Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia. .,Envoi Specialist Pathologists, Brisbane, QLD, Australia.
| | - Lochlan J Fennell
- The Conjoint Gastroenterology Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD, 4006, Australia.,Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Mark L Bettington
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.,Envoi Specialist Pathologists, Brisbane, QLD, Australia
| | - Neal I Walker
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.,Envoi Specialist Pathologists, Brisbane, QLD, Australia
| | - Joel Dwine
- Envoi Specialist Pathologists, Brisbane, QLD, Australia
| | - Barbara A Leggett
- The Conjoint Gastroenterology Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD, 4006, Australia.,Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.,The Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Vicki L J Whitehall
- The Conjoint Gastroenterology Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD, 4006, Australia.,Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.,Department of Chemical Pathology, Pathology Queensland, Brisbane, QLD, Australia
| |
Collapse
|
17
|
Lee JA, Park HE, Yoo SY, Jeong S, Cho NY, Kang GH, Kim JH. CpG Island Methylation in Sessile Serrated Adenoma/Polyp of the Colorectum: Implications for Differential Diagnosis of Molecularly High-Risk Lesions among Non-dysplastic Sessile Serrated Adenomas/Polyps. J Pathol Transl Med 2019; 53:225-235. [PMID: 30887794 PMCID: PMC6639709 DOI: 10.4132/jptm.2019.03.12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 03/12/2019] [Indexed: 01/01/2023] Open
Abstract
Background Although colorectal sessile serrated adenomas/polyps (SSA/Ps) with morphologic dysplasia are regarded as definite high-risk premalignant lesions, no reliable grading or risk-stratifying system exists for non-dysplastic SSA/Ps. The accumulation of CpG island methylation is a molecular hallmark of progression of SSA/Ps. Thus, we decided to classify non-dysplastic SSA/Ps into risk subgroups based on the extent of CpG island methylation. Methods The CpG island methylator phenotype (CIMP) status of 132 non-dysplastic SSA/Ps was determined using eight CIMP-specific promoter markers. SSA/Ps with CIMP-high and/or MLH1 promoter methylation were regarded as a high-risk subgroup. Results Based on the CIMP analysis results, methylation frequency of each CIMP marker suggested a sequential pattern of CpG island methylation during progression of SSA/P, indicating MLH1 as a late-methylated marker. Among the 132 non-dysplastic SSA/Ps, 34 (26%) were determined to be high-risk lesions (33 CIMP-high and 8 MLH1-methylated cases; seven cases overlapped). All 34 high-risk SSA/Ps were located exclusively in the proximal colon (100%, p = .001) and were significantly associated with older age (≥ 50 years, 100%; p = .003) and a larger histologically measured lesion size (> 5 mm, 100%; p = .004). In addition, the high-risk SSA/Ps were characterized by a relatively higher number of typical base-dilated serrated crypts. Conclusions Both CIMP-high and MLH1 methylation are late-step molecular events during progression of SSA/Ps and rarely occur in SSA/Ps of young patients. Comprehensive consideration of age (≥ 50), location (proximal colon), and histologic size (> 5 mm) may be important for the prediction of high-risk lesions among non-dysplastic SSA/Ps.
Collapse
Affiliation(s)
- Ji Ae Lee
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Hye Eun Park
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Seung-Yeon Yoo
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Seorin Jeong
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Nam-Yun Cho
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Gyeong Hoon Kang
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea.,Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jung Ho Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea.,Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|